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Abstract

Introduction: As currently used, the Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog) has low
sensitivity for measuring Alzheimer’s disease progression in clinical trials. A major reason behind the low sensitivity
is its sub-optimal scoring methodology, which can be improved to obtain better sensitivity.

Methods: Using item response theory, we developed a new scoring methodology (ADAS-CogIRT) for the ADAS-Cog,
which addresses several major limitations of the current scoring methodology. The sensitivity of the ADAS-CogIRT
methodology was evaluated using clinical trial simulations as well as a negative clinical trial, which had shown an
evidence of a treatment effect.

Results: The ADAS-Cog was found to measure impairment in three cognitive domains of memory, language, and
praxis. The ADAS-CogIRT methodology required significantly fewer patients and shorter trial durations as compared to
the current scoring methodology when both were evaluated in simulated clinical trials. When validated on data from a
real clinical trial, the ADAS-CogIRT methodology had higher sensitivity than the current scoring methodology in
detecting the treatment effect.

Conclusions: The proposed scoring methodology significantly improves the sensitivity of the ADAS-Cog in measuring
progression of cognitive impairment in clinical trials focused in the mild-to-moderate Alzheimer’s disease stage. This
provides a boost to the efficiency of clinical trials requiring fewer patients and shorter durations for investigating
disease-modifying treatments.

Introduction
The Alzheimer’s Disease Assessment Scale’s cognitive
subscale (ADAS-Cog) is the standard primary cognitive
outcome measure for evaluating treatments in clinical

trials of mild-to-moderate Alzheimer’s disease. In patients,
the ADAS-Cog measures impairment across several cog-
nitive domains that are considered to be affected early and
characteristically in Alzheimer’s disease [1]. However,
several concerns have been raised recently regarding its
sensitivity in measuring progression of cognitive impair-
ment in clinical trials [2–5]. The low sensitivity of the
ADAS-Cog has been suggested as a possible reason be-
hind the failure of all clinical trials to date of Alzheimer’s
disease treatments [2, 3, 6, 7].
The low sensitivity of the ADAS-Cog is primarily due

to most of its items suffering from either floor or ceiling
effects in different stages of Alzheimer’s disease [2, 4, 5, 8].
As a result, the ADAS-Cog is limited in measuring
progression of cognitive impairment over the course of
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disease progression. Noting this limitation, research ef-
forts are underway towards modifying the ADAS-Cog
and developing new cognitive assessments with better
sensitivity [9, 10]. While the importance of developing
better assessments cannot be overstated, their in-depth
evaluation and eventual utilization in clinical trials is
expected to take a significant amount of time. This opens
up a parallel research avenue towards improving the appli-
cation of the ADAS-Cog in clinical trials, which could help
make trials more efficient until a better tool is available.
Another major reason behind the low sensitivity of the

ADAS-Cog is its suboptimal scoring methodology, which
suffers from low accuracy in measuring cognitive impair-
ment. Currently, cognitive impairment is estimated by
simply summing scores across the ADAS-Cog items. This
methodology suffers from several limitations. Firstly, the
current scoring methodology makes an implicit assump-
tion that a single patient trait is measured by the ADAS-
Cog. However, psychometric analysis of the ADAS-Cog
has suggested that its items measure impairment in mul-
tiple cognitive domains [11–13]. The current scoring
methodology is equivalent to a weighted summation of
impairment in the cognitive domains measured by the
ADAS-Cog. In studies of treatments that improve only
a subset of cognitive domains, such as improvement in
memory but not in language or praxis, the current meth-
odology obscures the detection of treatment effects [14].
Secondly, the current scoring methodology also impli-

citly assumes that the levels of cognitive impairment re-
quired for answering the ADAS-Cog items incorrectly
are uniformly ordered. However, the difficulty levels of
the ADAS-Cog items are not uniform [2–4] and most of
the total ADAS-Cog scores can actually be achieved by
different patterns of scores across the ADAS-Cog items
[15]. Moreover, since the ADAS-Cog items vary in their
sensitivity to measure the underlying cognitive domains
[2–4, 11–13, 15], an item-level analysis is expected to
yield better accuracy in measuring cognitive impairment.
An item-level analysis is also significant for addressing
psychometric problems of the ADAS-cog (such as item
bias due to patient factors), which were not investigated
at the time of its design [16]. The current scoring meth-
odology does not allow adjustments for such item-level
biases, which leads to unaccounted inter-patient variabil-
ity and further complicates the detection of treatment
effects in clinical trials. A related concern pertains to
clinical trials that allow inclusion of patients undergoing
symptomatic therapy using acetylcholinesterase inhibitor
(AChEI) drugs. AChEI drugs provide short term improve-
ments in cognitive performance, specifically in memory-
related tasks [17]. If AChEI drugs improve performance
on only a subset of the ADAS-Cog items, an item-level
analysis may become necessary for isolating the effects of
investigative treatments in clinical trials.

Thirdly, the current scoring methodology violates core
assumptions of the statistical methods typically employed
in clinical trials. The primary efficacy analysis of treatments
typically involves linear modeling of serial determinations
of the total ADAS-Cog scores of patients using an ana-
lysis-of-covariance (ANCOVA) methodology [18–22]. It is
reasonable to assume that a patient’s true underlying
cognitive impairment progresses linearly over short fol-
low-up durations that are typically considered in clin-
ical trials. However, when cognitive impairment is
estimated using the total ADAS-Cog scores, linear model-
ing using the ANCOVA methodology results in correlated
errors due to the categorical nature of the ADAS-Cog
items [23, 24]. The ANCOVA methodology assumes er-
rors to be independent and normally distributed, which
is violated when the total ADAS-Cog scores are used
and results in biased efficacy analysis in trials.
Fourthly, the current scoring methodology lacks a proper

definition for the measurement scale of cognitive impair-
ment. This makes comparison and interpretation of cogni-
tive impairment across patients challenging when different
variants of the ADAS-Cog are used. In theory, the adminis-
tration of additional items should only improve measure-
ment precision. However, the current scoring methodology
also changes the scale of measurement, with a wider range
of scores possible when additional items are administered.
The current scoring methodology is also sensitive to
missing item responses, scoring errors and variability in
the administration of the ADAS-Cog, which are common
in clinical trials [25, 26].
In this study, we investigated the hypothesis that ad-

dressing these limitations associated with the current scor-
ing methodology would improve the sensitivity of the
ADAS-Cog in clinical trials. This resulted in a new scoring
methodology for the ADAS-Cog based on a comprehen-
sive psychometric analysis using item response theory
(ADAS-CogIRT). Some prior studies have investigated the
potential of item response theory for scoring the ADAS-
Cog and reported very promising preliminary results [15,
27]. The ADAS-CogIRT methodology is based on extend-
ing this prior work, addressing its limitations, and devel-
oping a clinically meaningful scale to measure cognitive
impairment. We evaluated the sensitivity of the ADAS-
Cog using the ADAS-CogIRT methodology and compared
it with the current scoring methodology for detecting
treatment effects in clinical trials using simulation experi-
ments and data from a real negative clinical trial [18].

Methods
Data
The data for this study were assembled from three major
public cohorts to ensure that the developed scoring meth-
odology is robust against heterogeneity in patients and
study designs. The three cohorts are the Alzheimer’s
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Disease Neuroimaging Initiative (ADNI), the Coalition
against Major Diseases (CAMD), and the Alzheimer’s
Disease Cooperative Study (ADCS). These cohorts are
briefly described in the Additional file 1: Supplementary
Materials. We obtained data from 1,275 participants in
ADNI, which included 342 patients clinically diagnosed
with probable Alzheimer’s disease at baseline, 866 patients
diagnosed with amnestic mild cognitive impairment at
baseline, and 67 normal controls who converted to amnes-
tic mild cognitive impairment during follow-up. The
clinical dementia rating (CDR) scale was used to select
mild cognitively impaired patients in ADNI who are
likely to be amnestic type. A global CDR score of 0.5,
with at least a 0.5 in the memory domain, was required for
inclusion of mild cognitively impaired patients in this
study. Out of the 866 mild cognitively impaired patients
that satisfied this criterion, 262 converted to a clinical diag-
nosis of probable Alzheimer’s disease during the course of
the study [28]. We additionally collected data from 1,828
Alzheimer’s patients in the placebo arms of six clinical tri-
als in CAMD and 2,496 Alzheimer’s patients in the placebo
and treatment arms of six clinical trials in ADCS cohorts.
The global CDR scores of Alzheimer’s patients across the
three cohorts were approximately uniformly distributed
between 0.5 (very mild stage), 1 (mild stage), and 2 (moder-
ate stage) points, resulting in good patient heterogeneity
with respect to disease severity.
The data consist of longitudinal ADAS-Cog re-

sponses over the duration of trial, basic demographics,
apolipoprotein-E (APOE) genotype, and details on con-
comitant treatments of patients. The most common ver-
sion of the ADAS-Cog, which contains a ‘Delayed word
recall’ item in addition to the original 11 items, was used

in this study [1, 29]. Table 1 summarizes the data from the
ADNI and the 12 clinical trials of the CAMD and ADCS
cohorts. The data were divided into two subsets. The first
subset was used for a comprehensive psychometric ana-
lysis of the ADAS-Cog and contained data from the
ADNI and the placebo arms of all clinical trials except
the trial of huperzine A [18]. For psychometric analysis,
data from a single visit of every patient was randomly
selected to avoid correlated ADAS-Cog responses. The
second subset was used to evaluate the scoring method-
ology we describe in this paper and contained data from
the treatment arms of 11 clinical trials. In addition, the
clinical trial of huperzine A, which detected a marginally
significant treatment effect [18], was used exclusively to
evaluate the sensitivity of the new scoring methodology in
a real clinical trial scenario.
The patient data from the ADNI, ADCS, and CAMD

cohorts were deidentified before transfer to The Univer-
sity of Texas at Austin. A study specific protocol for the
collection and the analysis of deidentified data in this re-
search was approved by the Institutional Review Board
of The University of Texas at Austin. Since the data are
publicly available and deidentified, ethics approval was
not necessary from all the participating institutions in
the ADNI, ADCS, and the CAMD cohorts for conduct-
ing this research. However, as part of the study protocols
for data collection in the three cohorts, all participating
institutions obtained ethics approval from their respect-
ive institutional review boards in accordance with the
Good Clinical Practice guidelines, the Declaration of
Helsinki, US 21CFR Part 50-Protection of Human Subjects,
and Part 56-Institutional Review Boards, and pursuant
to state and federal HIPAA regulations. Written informed

Table 1 Data description: summary of patient characteristics from the ADNI and the clinical trials of the CAMD and ADCS cohorts

Study Sample size Gender (% Females) APOE (% ε4 positive) ADAS-Coga Study duration

ADNI 1275 41.7 58.7 14.2 ± 8.5 8 years

CAMD-1105 325 51.0 - 25.2 ± 12.2 20 months

CAMD-1131 57 59.6 - 20.5 ± 3.6 24 weeks

CAMD-1132 412 43.4 38.0 19.1 ± 3.1 51 weeks

CAMD-1140 137 42.3 - 19.1 ± 3.4 24 weeks

CAMD-1141 492 55.3 - 9.9 ± 6.0 23 months

CAMD-1142 405 56.0 64.1 25.3 ± 10.4 18 months

ADCS-HU [18] 210 64.4 65.2 27.1 ± 10.8 24 months

ADCS-DHA [19] 402 52.5 57.7 23.9 ± 9.0 18 months

ADCS-VN [20] 300 63.1 71.3 30.1 ± 9.8 24 months

ADCS-HC [21] 409 53.9 70.0 22.6 ± 8.6 18 months

ADCS-LL [22] 406 59.9 55.3 23.9 ± 10.5 18 months

ADCS-MCI [67] 769 47.0 53.0 11.03 ± 4.2 26 months

ADNI Alzheimer’s Disease Neuroimaging Initiative, CAMD Coalition against Major Diseases, ADCS Alzheimer’s Disease Cooperative Study, APOE apolipoprotein-E,
HU Huperzine, DHA Docosahexaenoic Acid, VN Valproate Neuroprotection, HC Homocysteine, LL Simvastatin, MCI Mild Cognitive Impairment
aSummary total ADAS-Cog scores are represented as mean ± standard deviation
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consents were obtained from all subjects and authorized
study partners in accordance with local institutional re-
view board guidelines before data collection and study-
specific procedures were conducted. A list of participating
institutions that obtained ethics approval is provided in
the Acknowledgements section.

Psychometric analysis of the ADAS-Cog
We used multidimensional item response theory (IRT) to
evaluate the psychometric properties of the ADAS-Cog
for measuring cognitive impairment over the course of
disease progression. Traditionally, IRT has been employed
for investigating psychometric properties of scales in social
and educational research that measured a single latent
trait in respondents. However, with advances in estimation
theory [30–32] and computational abilities, multidimen-
sional IRT models have started to gain popularity since
most psychological constructs are unavoidably multidi-
mensional in nature [33]. Using IRT, probabilities of pa-
tients’ responses to the ADAS-Cog items were modeled as
functions of patients’ underlying cognitive impairment. In
psychometric theory, these functions are typically known
as the item characteristic functions [33, 34]. Based on the
nature of the ADAS-Cog items, patients’ responses are re-
corded as either dichotomous (response as either correct
or incorrect) or ordinal (responses rated on Likert scales).
The three-parameter logistic (3PL) model was used to
model the probability of an incorrect response to the
dichotomous ADAS-Cog items, which included lower
asymptotes to account for really difficult items [33, 34].
For instance, if an ADAS-Cog item is difficult and is
answered incorrectly by a quarter of cognitively normal
individuals, the lower asymptote of that ADAS-Cog
item will be estimated as 0.25. On the other hand, the
different response categories of the ordinal ADAS-Cog
items were modeled using the Samejima’s graded response
model [35]. In the Samejima’s graded response models,
boundaries between the consecutive response categories
are probabilistically modeled using the two-parameter
logistic (2PL) models, which can be subtracted to obtain
probabilistic models of individual response categories [35].
The key parameters of the ADAS-Cog item characteristic
functions are the item slopes and the item intercepts,
which represent important characteristics of the ADAS-
Cog items. While the slope represents the sensitivity of an
item in discriminating between patients with different
levels of cognitive impairment, the item intercept repre-
sents the difficulty level of an item (or difficulty levels of
different response categories of an item) for Alzheimer’s
patients. The parameters of the ADAS-Cog item charac-
teristic functions were estimated using the Metropolis-
Hastings Robbins-Monro algorithm during both the
exploratory [31] and the confirmatory phases of IRT
analysis [32].

Cognitive domains assessed by the ADAS-Cog
The evaluation of the cognitive domains assessed by the
ADAS-Cog in Alzheimer’s patients is important not only
for its associated clinical significance but also for ensuring
the validity of IRT analysis. IRT makes a strong assump-
tion of local item independence, i.e., patients’ responses
to the ADAS-Cog items are determined solely by their
underlying extents of cognitive impairment. The use of
an inappropriate set of latent traits violates this key as-
sumption, which severely compromises the validity of
inferences from IRT analysis [36]. More importantly,
local item dependence results in unreliable estimates of
latent traits [36], which have been suggested as more
accurate measures of cognitive impairment [15, 27].
Therefore, the use of an appropriate number of latent
traits is crucial for an accurate IRT-based psychometric
analysis of the ADAS-Cog and estimation of latent traits.
For this reason, we first performed a parallel analysis on
pair-wise polychoric correlations between the ADAS-Cog
item responses [37, 38] to determine an upper limit on
the number of latent traits to be considered for a more
in-depth evaluation [39]. Exploratory IRT models were
developed for competing latent trait structures with the
number of latent traits ranging from one (unidimensional
trait structure) to the upper limit determined by the
parallel analysis. No restrictions on item-trait loadings
were imposed during the exploratory phase of IRT analysis.
For the cases of multidimensional latent trait structures,
the item-trait loadings were rotated to oblique solu-
tions (oblimin) with the latent traits allowed to be inter-
correlated. The oblique solutions have fewer cross-loadings
of items across multiple latent traits, which makes clinical
interpretation of latent traits easier. The competing latent
trait structures were compared using the following criteria:

1. Model fit: The latent trait structure should have
good global and item-level fits to the ADAS-Cog
responses. Global fit was assessed using the two
standard statistics of root mean squared error of
approximation (RMSEA) [40] and Tucker Lewis
index (TLI) [41]. The criteria of RMSEA ≤ 0.05 and
TLI ≥ 0.95 are required for a good global fit [42].
Item-level fit was assessed using the recommended
S-X2 statistic, which effectively controls type-I error
rates [43, 44].

2. Local item independence: The local item independence
assumption was tested using the recommended G2

statistic, which has high sensitivity in detecting local
item dependence [45].

3. Clinical relevance: The individual latent traits should
be clinically meaningful constructs that are worth
measuring separately. The latent trait structure should
be in agreement with the motivation behind the
design of the ADAS-Cog items in the original study
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[1]. Moreover, the latent trait structure should also
be supported by the current knowledge of the
pathological processes underlying Alzheimer’s disease.

After determining the most appropriate latent trait
structure, a confirmatory IRT model was estimated with
a restricted item-trait loadings structure. From the ex-
ploratory IRT model corresponding to the most appro-
priate latent trait structure, only the item-trait loadings
greater than 0.2 were allowed in the confirmatory IRT
model [46]. Furthermore, for the ADAS-Cog items that
cross-loaded on multiple latent traits, the weaker item-
trait loadings that were less than 0.3 were included only
if they significantly improved the model fit of the
ADAS-Cog items. The model fit and the validity of the
local independence assumption were evaluated for the
confirmatory IRT model. The confirmatory IRT model
was used for subsequent psychometric analysis of the
ADAS-Cog.

Measurement invariance of the ADAS-Cog items
The ADAS-Cog items should show measurement invari-
ance across patients, despite their characteristics. We
performed differential item functioning (DIF) [47] analyses
to investigate measurement bias in the ADAS-Cog items
due to the patient-level factors of gender (men/women),
education level (less/greater than 13 years), and APOE-ε4
genotype (presence/absence of an ε4 allele). The ADNI,
CAMD, and ADCS cohorts contain predominantly non-
Hispanic Caucasian patients, which did not allow DIF ana-
lysis due to racial and ethnic factors. In the DIF analyses,
the ADAS-Cog item parameters were estimated separately
for patient groups and compared using the Lord’s Wald
test [34] with the Benjamini and Hochberg false discovery
rate correction [48]. The Lord’s Wald test was used in-
stead of the traditional likelihood ratio test [49] due to the
large number of hypothesis being tested in this study,
which makes the likelihood ratio test very computationally
intensive. Using large sample sizes as considered in this
study, the Lord’s Wald test has been shown to be sensitive
in detecting measurement invariance and asymptotically
equivalent to the likelihood ratio test [50].
We additionally investigated the invariance properties

of the ADAS-Cog item characteristic functions with re-
spect to the status of concomitant symptomatic therapy
using AChEI drugs (presence/absence). In clinical trials
involving heterogeneous patient samples with respect to
the status of AChEI drugs, the effects of AChEI drugs
should be accounted for during statistical analysis to
isolate and accurately evaluate the effects of investiga-
tive treatments. If AChEI drugs uniformly affect all the
ADAS-Cog items assessing a cognitive domain (such as
memory), the inclusion of an interaction term with the
corresponding progression rate is sufficient to account

for the effects of symptomatic therapy. However, an
item-level analysis may become necessary if AChEI drugs
affect only a subset of the ADAS-Cog items that measure
a cognitive domain. In the absence of an item-level
analysis, the treatment effects of the AChEI drugs may
be inaccurately modeled leading to a biased evaluation
of the investigative treatments in clinical trials. While
measurement invariance of the ADAS-Cog item charac-
teristic functions is investigated using the same DIF meth-
odology as discussed earlier, violation of measurement
invariance should not be interpreted as measurement bias
of the ADAS-Cog items but rather as treatment effects of
the AChEI drugs on specific subdomains within the cogni-
tive domains.
Longitudinal invariance of the item characteristic func-

tions across different disease stages was also investigated
by comparing item parameters estimated using baseline
responses of patients versus using their responses at the
24-month visit, when the disease has significantly pro-
gressed. We additionally investigated the extent of sample
bias and variance in the ADAS-Cog item characteristic
functions due to different patient samples considered for
estimation. Sample bias was assessed as the goodness-of-
fit of the item characteristic functions to the ADAS-Cog
response data from the treatment arms of ADCS studies,
which were not used for parameter estimation. Sample
variance was evaluated by conducting 1,000 bootstrap rep-
lications of estimation of the item characteristic functions
with sample replacement.

Measurement of cognitive impairment in patients
ADAS-Cog scoring methodology based on IRT modeling
(ADAS-CogIRT)
We propose a new ADAS-Cog scoring methodology based
on psychometric modeling using IRT (ADAS-CogIRT) for
more accurate measurement of cognitive impairment.
Given a patient’s responses to the ADAS-Cog items,
the ADAS-CogIRT methodology collectively uses the
ADAS-Cog item characteristic functions to measure
cognitive impairment via maximum-likelihood estimation,
i.e., the latent trait values that have the highest likelihood
of producing the observed set of item-wise responses.
Based on the DIF analysis, appropriate adjustments were
included in the item slopes and the intercepts to ensure
measurement invariance across patient characteristics. By
default, the latent traits in IRT are estimated with means
of zero and standard deviations of one. We defined ap-
propriate measurement scales for cognitive impairment
by linearly scaling the latent traits obtained from the
maximum likelihood estimation, a technique commonly
used in educational testing. The values of the scaling
parameters were determined based on fulfilling the fol-
lowing two criteria: (1) scores of cognitive impairment
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in mild-to-moderate Alzheimer’s patients should be non-
negative; and (2) scores of cognitive impairment can
be rounded off to the nearest integers without loss of
precision.

Accuracy of the ADAS-CogIRT methodology for measuring
cognitive impairment
Since the ground truth cognitive impairment is unknown,
the accuracy of the ADAS-CogIRT methodology for meas-
uring cognitive impairment cannot be directly evalu-
ated. Therefore, we indirectly evaluated the ADAS-CogIRT
methodology by assessing its accuracy to predict future
ADAS-Cog responses of patients based on their responses
in a few initial visits. Specifically, we used the ADAS-Cog
responses at the baseline, 6-month, and 12-month visits of
patients belonging to the treatment arms of the five ADCS
studies to obtain longitudinal estimates of their cognitive
impairment. These estimates were used to predict cogni-
tive impairment and the corresponding total ADAS-Cog
scores at the 24-month visit. The accuracy of the ADAS-
CogIRT methodology was calculated using the root mean
squared error (RMSEADAS) between the observed and the
predicted total ADAS-Cog scores at the 24-month visit.
The RMSEADAS of the ADAS-CogIRT methodology was
compared to the RMSEADAS achieved by using the total
ADAS-Cog scores as estimates of cognitive impairment in
the initial visits.

Precision of the ADAS-CogIRT methodology for measuring
cognitive impairment
The precision of the ADAS-CogIRT methodology is
dependent on the amount of information contributed by
the ADAS-Cog items for measuring different levels of
cognitive impairment. We calculated the item information
functions of the ADAS-Cog items to estimate the preci-
sion of the ADAS-CogIRT scoring methodology [46]. A
high value for the item information at a given level of
cognitive impairment implies that the item measures
that level of cognitive impairment with high precision.
Conversely, low item information at a given cognitive
impairment level represents that the item measures that
level of cognitive impairment with low precision. The
composite information across all the ADAS-Cog items
was used to estimate the expected standard error of meas-
urement of different levels of cognitive impairment using
the ADAS-CogIRT methodology.

Improving the sensitivity of the ADAS-Cog in clinical trials
Application of the ADAS-CogIRT methodology in clinical trials
We propose a generalized mixed-effects approach for
using the ADAS-CogIRT methodology in clinical trials.
Besides estimating baseline cognitive impairment, this
approach estimates the rates of progression in cognitive
impairment based on patients’ longitudinal ADAS-Cog

responses. We assumed linear progression of cognitive
impairment in patients because the durations of clinical
trials are typically too short (~2-3 years) to observe any
complex patterns of disease progression. Significant inter-
patient variability in baseline cognitive impairment and
progression rates is typically observed in clinical trials.
While some variability is systematic due to patient-level
factors (such as APOE-ε4 genotype) and treatment ef-
fects, random variability across patients is also substan-
tial. Therefore, we modeled baseline cognitive impairment
and progression rates as mixed-effects in the model to en-
sure validity of the key assumptions of efficacy analysis.
While the fixed effects modeled systematic variability
due to patient factors and treatment effects, the random
effects accounted for random variability across patients.
We evaluated the sensitivity of the ADAS-CogIRT meth-
odology for detecting treatment effects in clinical trials
using simulation experiments and a real clinical trial,
which had been reported as negative but which showed
some evidence of a treatment effect [18].

Sensitivity analysis using clinical trial simulations
Clinical trials were simulated to mimic the complexity of
real-world clinical trials by including unbalanced patient
samples, systematic and random inter-patient variability
in cognitive impairment and progression rates, and drop-
out of patients from clinical trials. The parameters for
simulating these characteristics were obtained by analyz-
ing the longitudinal ADAS-Cog data from the placebo
arms of ADCS and CAMD trials using a generalized
mixed-effects model approach. A Cox proportional haz-
ards model was used for modeling hazard of patient
dropout with baseline cognitive impairment, progres-
sion rates, and patient-level factors as covariates.
The statistical power of the newly proposed (ADAS-

CogIRT) and the standard ADAS-Cog scoring method-
ologies for detecting treatment effects was evaluated
through two simulation experiments. In the first experi-
ment, their power was evaluated for different sample sizes
of 200, 400, 600, 800, and 1,000 patients considered in
clinical trials of fixed 24 months duration. For the second
experiment, the sample size was fixed as 400 patients and
the statistical power was evaluated for different durations
of 12, 24, 36, and 48 months. These fixed values were se-
lected based on the average characteristics of past clinical
trials. Both experiments were repeated for four hypothet-
ical treatment effects of Cohen’s d = 0 (no effect), 0.2 (mild
effect), 0.5 (moderate effect), and 0.8 (large effect) simu-
lated in the treatment arms of clinical trials [51]. The case
of no treatment effect evaluated the type-I error rates of
the proposed scoring methodology. The follow-up visits in
both of the experiments were considered to be biannual
during the duration of each trial. The ADAS-Cog re-
sponses of patients were simulated using the estimated
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item characteristic functions. The slope and the intercept
parameters of the item characteristic functions were
randomly perturbed in every trial simulation using the
estimated standard errors associated with the parameters.
The standard errors represent the expected variability in
item parameters if different patient samples were consid-
ered for parameter estimation. Therefore, simulating the
ADAS-Cog responses using perturbed item parameters
resembles real world situations, where patient samples to
be analyzed would have different characteristics than the
patient sample used for estimating the parameters of the
ADAS-CogIRT scoring methodology. The perturbation in
the item parameters also reduces the extent of bias in-
volved in our simulation experiments from using the same
item characteristic functions for both simulating and ana-
lyzing the ADAS-Cog response data.
The simulated ADAS-Cog responses were analyzed using

the proposed ADAS-CogIRT and the currently employed
analysis-of-covariance (ANCOVA) methodologies. The
treatments effects in both of the scoring methodologies
were assessed using the z-statistic with a Bonferroni
correction for multiple comparisons. While a signifi-
cance level of α = 0.05 was considered for the ANCOVA
methodology, the significance level for investigating
treatments effects using the ADAS-CogIRT scoring
methodology was pre-specified as α = 0.05/m, where m
denotes the number of cognitive domains assessed by
the ADAS-Cog. In both experiments, 500 clinical trials
were simulated for every possible combination of treat-
ment effect, sample size, and trial duration. The statis-
tical power was evaluated as the proportion of clinical
trials in which a statistically significant treatment effect
on patients’ progression rates was detected.

Sensitivity analysis using a real clinical trial
Besides simulations, we additionally evaluated the sen-
sitivity of the ADAS-CogIRT methodology in a real
clinical trial study of huperzine A [18]. In the original
negative trial, the higher dose level of 400 μg had a
marginal effect (p-value = 0.07) on patients’ cognitive
functioning after 16 weeks [18]. Given this trend from
the original ANCOVA analysis, we were interested in
determining whether a more sensitive methodology
would change the significance of the treatment effect
on progression rates of cognitive impairment. There-
fore, we re-analyzed the data from the placebo and the
400 μg huperzine A treatment arms using the ADAS-
CogIRT methodology. The sample size was 141 pa-
tients across the two arms in the 16-week long trial.
Besides statistical significance, we also calculated the
size of treatment effects estimated by the ANCOVA
and the ADAS-CogIRT methodologies for a compari-
son of sensitivities.

All data analyses in this study were performed using
the R 3.2.1 software environment for statistical computing.
A more detailed description of our Methods is provided
in the Additional file 1: Supplementary Material published
online only.

Results
Psychometric analysis of the ADAS-Cog
Cognitive domains assessed by the ADAS-Cog
From the parallel analysis we estimated that the upper
limit on the required number of latent traits is seven. By
comparing the latent trait structures for up to seven
latent traits using the criteria defined in the 'Cognitive
domains assessed by the ADAS-Cog' section, the three-
dimensional latent trait structure was found to be the
most appropriate one. All models with the number of la-
tent traits greater than or equal to three showed a good
global and item-level fit to the ADAS-Cog response
data. Local item dependence (LID) between a set of
items typically indicates that the item set measures add-
itional latent traits besides the traits already considered
in the model. The three-dimensional trait structure had
LID only between a few subitems, which belong to the
same ADAS-Cog items. Since subitems within items
tend to share item-specific contexts, such LID is expected.
To eliminate all LID, seven traits were required, where
several traits were measured only by single items indicat-
ing an overfit to the ADAS-Cog response data. We inves-
tigated the effect of the presence of LID on the item
parameter estimates of the three-dimensional latent trait
structure. The item parameter estimates of IRT models
with three and seven latent traits were very similar, which
suggests that LID in the three-dimensional model is negli-
gible and does not affect item parameter estimates. While
lower asymptotes were considered in the item characteris-
tic functions of all the dichotomous ADAS-Cog items,
only the constructional praxis subitem assessing a patient’s
ability to draw a cube was found to have a statistically sig-
nificant lower asymptote of 20.6 %. Drawing a cube is re-
lated to the patients’ spatial visualization ability, which is
known to deteriorate with aging [52]. Therefore, these
results indicate that even 20.6 % of cognitively normal
elderly people make mistakes in drawing a cube. In the
confirmatory IRT model, only the ‘Draw a cube’ subi-
tem within the ‘Constructional Praxis’ item was allowed
to have a non-zero lower asymptote.
The three-dimensional trait structure also provides a

clinically meaningful interpretation. The pattern of dom-
inant item-trait loadings suggests that the three traits
basically represent impairment in the memory, language,
and praxis cognitive domains (Fig. 1). In the original
study by Rosen et al. [1], the ADAS-Cog items were de-
signed to assess these three cognitive domains with the
same associations between the items and the domains as
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observed in Fig. 1. However, our IRT analysis revealed
some additional psychometric properties of the ADAS-Cog
items. While the item ‘Remembering test instructions’ was
designed to assess the memory domain [1], psychometric
analysis suggests that it cross-loads across both the
memory and the language domains, with more domin-
ant loading on the language domain. Similarly, the item
‘commands’ was designed to assess the language functions
in patients. However, psychometric analysis revealed that
it cross-loads between the language and the praxis do-
mains, with more dominant loading on the praxis domain.
The three-dimensional latent trait structure is also sup-

ported by the underlying neurodegenerative profile of
Alzheimer’s disease. The classic topography of brain tis-
sue loss in Alzheimer’s disease starts early in the medial
temporal lobe, which deals with memory functions,
followed by involvement of the parietal, frontal, and oc-
cipital lobes, which have functions in language process-
ing and praxis [53–56]. A factor analysis of structural
brain measurements suggests four distinguishable pro-
files of neurodegeneration [57], where the brain regions
involved in the four profiles are distinctively related to
memory, language, and praxis functions. These observa-
tions suggest that impairment in the memory, language,
and praxis cognitive domains progress differently based
on the brain regions involved in different stages of Alzhei-
mer’s disease. Therefore, it would be clinically relevant to
separately measure cognitive impairment in the memory,
language, and praxis domains. The higher dimensional la-
tent trait structures further divided the memory, language,
and praxis domains into several subdomains, which were
highly inter-correlated (>0.80). For instance, in the seven
dimensional latent trait structure, subdomains of semantic
memory and working memory were measured by different
latent traits. In view of model conciseness and the high

correlations between the memory, language, and praxis
subdomains, the three dimensional latent trait structure
was found to be the most appropriate for measuring
cognitive impairment in Alzheimer’s patients.
The confirmatory IRT model using the item-trait loading

structure in Fig. 1 showed good model fit (RMSEA = 0.039,
TLI = 0.95, and S-X2 insignificant for all the ADAS-Cog
items) and low levels of local item dependence as observed
in the exploratory IRT model.

Measurement invariance of the ADAS-Cog items
Table 2 lists the ADAS-Cog items that violate measure-
ment invariance due to patient-level characteristics. Four
ADAS-Cog items have measurement bias due to gender
because of different item difficulty for men and women.
While naming the object “rattle” is easier for women, they
are less likely to correctly name “harmonica” and have
more difficulty in drawing a cube. A strong measurement
bias due to gender was also observed for the item ‘Re-
membering test instructions’, where women are more
likely to forget test instructions during administration
of the ADAS-Cog. No measurement bias was observed
due to education level and APOE-ε4 genotype. AChEI
drugs showed treatment effects only on a subset of the
ADAS-Cog items that assess the memory domain. Spe-
cifically, the item slopes of the ‘Word recall’, ‘Delayed
word recall’, and ‘Word recognition’ items were signifi-
cantly smaller in patients receiving AChEI drugs. This
indicates that patients receiving AChEI drugs have
much slower deterioration in their ability to recall and
recognize words, which probe short-term working memory.
However, other memory-related items (such as ‘Orientation’)
assessing other subdomains of the memory domain
were not affected by the use of AChEI drugs.
The ADAS-Cog item parameters estimated using the

baseline and the 24-month visit data did not show any
statistically significant differences, which suggests that the
ADAS-Cog item characteristic functions are longitudinally

Fig. 1 Cognitive domains assessed by the ADAS-Cog: figure showing
the item-trait loading structure for the three-dimensional latent
trait structure

Table 2 Differential item functioning: measurement bias of
ADAS-Cog items with respect to gender (men/women) and
status of concomitant AChEI symptomatic therapy (yes/no)

DIF factor ADAS-Cog item Bias type

Gender Naming objects & fingers: rattle dMen < dWomen***

Gender Naming objects & fingers: harmonica dMen < dWomen**

Gender Constructional Praxis: Cube dMen < dWomen**

Gender Remembering test instructions dMen < dWomen***

AChEI Word recall aYes < aNo***

AChEI Word recognition aYes < aNo***

AChEI Delayed word recall aYes < aNo***

ADAS-Cog Alzheimer’s disease assessment scale-Cognitive subscale, AChEI
acetylcholinesterase inhibitors, DIF differential item functioning, d item intercept/
difficulty, a item slope
*indicates the level of significance (**for p-value <10-4 and ***for p-value <10-6)
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invariant. The item characteristic functions also illustrated
little sample bias, with good global (RMSEA = 0.039 and
TLI = 0.95) and item-level fit (S-X2 was not statistically
significant) to response data from the treatment arms of
the ADCS clinical trials. The item characteristics functions
also showed little variance across different patient sam-
ples with a tight agreement observed across 1,000 boot-
strap replicates (Additional file 1: Figures S2-S4).

Measurement of cognitive impairment in Alzheimer’s
patients
By default, the parameters of the ADAS-Cog item char-
acteristic functions are estimated such that the scores of
memory, language, and praxis impairment have means
of 0 and standard deviations of 1 in the patient sample.
We found that linear scaling by multiplying with factors
of 15 and adding 50 points to the scores of memory,
language, and praxis impairment were sufficient for sat-
isfying the two criteria of (1) non-negative cognitive
impairment scores for mild-to-moderate Alzheimer’s
patients, and (2) standard errors of magnitude ~ 1 point
in the mild-to-moderate Alzheimer’s stage. Similar ap-
proaches have been previously utilized with different
scaling factors in the educational and social domains.
Instead of scaling the cognitive impairment scores post-
estimation, we performed an equivalent linearly scaling
of the ADAS-Cog item parameters to enforce these meas-
urement scales for estimation of memory, language, and
praxis impairment. An additional advantage of the defined
measurement scales is the fractional interpretation of the
cognitive impairment scores. Severe Alzheimer’s patients
have cognitive impairment scores close to 100 points and,
therefore, a patient’s extent of cognitive impairment can
be interpreted fractionally relative to severe Alzheimer’s

disease patients, who have lost the ability to independently
function in daily life activities.

Accuracy of the ADAS-CogIRT methodology for measuring
cognitive impairment
The ADAS-CogIRT methodology illustrated good accur-
acy in predicting total ADAS-Cog scores at the 24-month
visit with RMSEADAS = 1.82 points. In comparison, the
current scoring methodology resulted in an error of
RMSEADAS = 6.05 points, which is similar in magni-
tude to the annual change of 5-10 points in the total
ADAS-Cog scores of mild-to-moderate Alzheimer’s pa-
tients [58, 59]. Figure 2 qualitatively compares the pre-
dictive accuracies of the ADAS-CogIRT and the current
scoring methodologies.

Precision of the ADAS-CogIRT methodology for measuring
cognitive impairment
While the memory items of the ADAS-Cog are informative
over the whole range of memory impairment, language
and praxis items hold information only for pronounced
levels of language and praxis impairment (Fig. 3a-c). The
ADAS-CogIRT methodology shows good precision for al-
most the whole range of memory impairment. However,
due to the inherent limitation of the ADAS-Cog items, the
precision of the ADAS-CogIRT methodology in measuring
language and praxis impairment is good only when a pa-
tient’s performance is quite poor (Fig. 3d).

Improving the sensitivity of the ADAS-Cog in clinical trials
The treatment effects in the simulated trials and the huper-
zine A trial were investigated using the ADAS-CogIRT
scoring methodology at a significance level of α = 0.05/3

Fig. 2 Accuracy of the ADAS-CogIRT methodology: scatterplots showing agreement between the observed total ADAS-Cog scores and the predicted
total ADAS-Cog scores at the 24-month visit using a the proposed ADAS-CogIRT methodology and b the standard scoring methodology. ADAS-CogIRT
Alzheimer’s disease assessment scale-Cognitive subscale scoring methodology based on item response theory
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since treatments are evaluated in the three domains of
memory, language, and praxis simultaneously.

Sensitivity analysis using clinical trial simulations
In detecting simulated treatment effects, the ADAS-CogIRT
methodology provides significant improvements in stat-
istical power over the currently used ANCOVA method-
ology (Figs. 4b-d and 5b-d). For a mild treatment effect
(Figs. 4b and 5b), both methodologies have low power and
are unable to attain the 80 % power cut-off even with
large sample sizes and long trial durations. This is due
to large inter-patient variability in progression rates
within each trial arm, which obscures the presence of a
mild treatment effect. However, in comparison to the

ANCOVA methodology, the ADAS-CogIRT method-
ology shows better improvements in statistical power as
sample size and trial duration are increased (Figs. 4b
and 5b). In the case of a moderate treatment effect, the
ADAS-CogIRT methodology shows significantly better
statistical power than the ANCOVA methodology. The
ADAS-CogIRT methodology attains the 80 % power
threshold in trials with much smaller sample size (~300
patients) and shorter trial duration (~18 months) than the
ANCOVA methodology, which requires ~ 1,000 patients
in a 24-month trial to achieve 80 % power (Fig. 4c). With
a sample size of 400 patients, the ANCOVA method-
ology never achieves 80 % power even if the trial dur-
ation is increased to over four years (Fig. 5c). However,

Fig. 3 Precision of the ADAS-CogIRT methodology: figure showing item-wise and cumulative Fisher information associated with the estimation of
(a) memory, (b) language, and (c) praxis impairment. The plot in (d) shows the expected magnitudes of estimation errors associated with different
levels of memory, language, and praxis impairment. The superimposed histogram in plot (d) shows the distribution of baseline cognitive impair-
ment in mild-to-moderate Alzheimer’s patients, which have been appropriately scaled for better interpretation. ADAS-CogIRT Alzheimer’s disease
assessment scale-Cognitive subscale scoring methodology based on item response theory
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the performance of the ANCOVA methodology improves
for a large treatment effect (Figs. 4d and 5d). While the
ADAS-CogIRT methodology achieves ~100 % power
for all sample sizes and trial durations, the ANCOVA
methodology also shows good sensitivity reaching 80 %
power with ~ 450 patients in a 24-month trial. The

improvement in statistical power of both methodolo-
gies with an increase in trial duration was less than
that observed with an increase in sample size. Both
methodologies have acceptable type-1 error rates of
~5 % for different sample sizes and trial durations
(Figs. 4a and 5a).

Fig. 4 Statistical power against sample size: plots showing the relationship between the statistical power of the ADAS-CogIRT and the ANCOVA
methodologies and sample size for hypothetical treatment levels of (a) d = 0, (b) d = 0.2, (c) d = 0.5, and (d) d = 0.8. The trial duration was fixed at
24 months. ADAS-CogIRT Alzheimer’s disease assessment scale-Cognitive subscale scoring methodology based on item response theory, ANCOVA,
analysis of covariance
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Sensitivity analysis using a real clinical trial
The analysis of the huperzine A trial data using the ADAS-
CogIRT methodology revealed that 400 μg huperzine A re-
duces the annual progression rate of praxis impairment by
14.75 points/year (z = -2.71, p-value = 0.0066). The ef-
fects of huperzine A on progression rates of memory
(z = -1.04, p-value = 0.30) and language impairment (z
= -1.63, p-value = 0.10) were not statistically significant.

The size of the treatment effect detected by the ADAS-
CogIRT methodology (d = 1.97) was significantly higher
than that detected by the ANCOVA methodology (d =
0.35). Since praxis items contribute the least to the total
ADAS-Cog scores (15/70 points), the ANCOVA method-
ology detects a much smaller treatment effect in compari-
son to the ADAS-CogIRT methodology. When only the
praxis ADAS-Cog items are used in the current scoring

Fig. 5 Statistical power against trial duration: plots showing the relationship between the statistical power of the ADAS-CogIRT and the ANCOVA
methodologies and duration of clinical trials for hypothetical treatment levels of (a) d = 0, (b) d = 0.2, (c) d = 0.5, and (d) d = 0.8. The sample size was
fixed at 400 patients. ADAS-CogIRT Alzheimer’s disease assessment scale-Cognitive subscale scoring methodology based on item response theory,
ANCOVA, analysis of covariance
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methodology, the ANCOVA analysis detects a significantly
larger treatment effect size (d = 0.68), which is statistically
significant (z = -2.49, p-value = 0.012).

Discussion
The proposed ADAS-CogIRT scoring methodology ad-
dresses several limitations associated with the current
scoring methodology. An in-depth psychometric analysis
showed that the ADAS-Cog measures impairment in the
three distinct cognitive domains of memory, language,
and praxis in patients. This is in agreement with the de-
sign of items in the original ADAS-Cog study [1] and find-
ings of several other factor analysis studies [11–13, 60].
While memory loss has been long considered characteris-
tic of Alzheimer’s disease, its classic neuropathology can
also be associated with important language and praxis
impairment in patients with predominant posterior peri-
sylvian damage [61]. Similar to AChEI drugs, which
specifically target memory mechanisms, and to the effect
we detected in the huperzine A trial, investigative treat-
ments in the future may also have non-uniform effects
across the three cognitive domains. The current scoring
methodology cannot detect non-uniform effects across
the cognitive domains. In contrast, the ADAS-CogIRT
methodology allows for separate evaluation of treatment
effects on the memory, language, and praxis domains.
The ADAS-CogIRT methodology estimates cognitive

impairment based on patients’ response patterns across
the ADAS-Cog items. Such an item-level analysis also al-
lows adjustment for measurement bias of the ADAS-Cog
items due to gender. Gender differences in item difficulty
are likely due to socio-cultural factors that expose one gen-
der to certain objects and tasks more often than the other
gender experiences them. AChEI drugs have a treatment
effect on patients’ performance on word recall and recogni-
tion items. Since these items contribute heavily to the total
ADAS-Cog scores (32/80 points), this may be the reason
behind the slower cognitive deterioration observed in
patients undergoing AChEI drugs, as assessed by the
current methodology [62, 63]. Since only a subset of the
ADAS-Cog items assessing the memory domain are af-
fected by the AChEI drugs, adjustments in the item char-
acteristic functions of the three affected ADAS-Cog items
are important before application in clinical trials. If such
adjustments are not included, the invariance properties of
the ADAS-Cog item characteristic functions are violated
resulting in an underestimation of cognitive impairment
in patients who are taking AChEI drugs. Moreover, the
effects of the investigative treatments in clinical trials
may be estimated with a positive bias since the treatment
effects of the AChEI drugs are underestimated on a
domain-level analysis. While including the treatment
effects of the AChEI drugs within the ADAS-Cog item
characteristic functions may be controversial, we

recommend these item-level adjustments in clinical tri-
als since the primary goal is to accurately evaluate the
investigative treatments. A domain-level modeling of
the AChEI treatment effects is expected to produce
biased estimates of the effects of the investigative treat-
ments on the memory domain. Therefore, it makes
sense to utilize the established treatment effects of the
AChEI drugs within the statistical modeling framework
to more accurately investigate the effects of investiga-
tive treatments. It should be noted that the experiments
presented in this study did not require such item-level
adjustments because we did not consider the use of
AChEI drugs in simulated clinical trials and the huper-
zine A trial is homogeneous with respect to AChEI
therapy status.
Inspired by the application of IRT in educational test-

ing, we defined a clinically meaningful scale to measure
cognitive impairment. In mild-to-moderate Alzheimer’s
patients, the scale allows estimates to be rounded off to
the nearest integers without loss of precision. The scale
also facilitates a fractional interpretation of cognitive im-
pairment in study patients, relative to severely impaired
patients, who have a cognitive impairment score of 100
points. The parameters of the ADAS-CogIRT methodology
are scale independent. Therefore, items can be easily added
or removed from the ADAS-CogIRT methodology without
having to re-estimate parameters or redefine properties
(such as range) of the measurement scale. This is relevant
because active research towards improving the ADAS-Cog
items is already underway [9]. Since the ADAS-CogIRT
methodology pools information across items for estimating
cognitive impairment, it is less sensitive to scoring errors
in individual items as compared to the current scoring
methodology, which is linearly affected. For patients with
missing responses to certain items, the ADAS-CogIRT
methodology does not require data imputation and es-
timates cognitive impairment using the set of items an-
swered by the patients. However, measurement precision
is lower for patients with missing responses, as would be
expected from psychometric theory.
By addressing limitations of the current scoring meth-

odology, the ADAS-CogIRT methodology measures cog-
nitive impairment more accurately (Fig. 2) and makes
clinical trials more efficient by reducing the sample size
and the follow-up duration required to investigate treat-
ments (Figs. 4 and 5). More importantly, it allows for the
detection of treatment effects that may be missed by using
the current scoring methodology. This was validated
using data from the huperzine A clinical trial, where
the ADAS-CogIRT methodology detected a significant
improvement in the praxis domain that had been over-
looked using the current scoring methodology. The current
scoring methodology obscures detection of effects of treat-
ments that only improve a subset of cognitive domains.
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This is evident from the observation that when the
ANCOVA analysis is repeated using only the praxis
ADAS-Cog items in the current scoring methodology, a
statistically significant treatment effect is detected. In
agreement with these findings, a positive effect of huper-
zine A on praxis abilities of patients has been found using
the activities of daily living scale [64, 65]. It is noteworthy
that while we assumed linear progression of cognitive im-
pairment in clinical trials, future studies involving longer
durations may require models of nonlinear profiles of
progression of cognitive impairment. The presented
generalized mixed-effects approach for utilizing the ADAS-
CogIRT scoring methodology in clinical trials is flexible
and can be extended to include such nonlinear profiles
of progression.
Prior work on the application of IRT to the ADAS-Cog

mostly focused on evaluating its measurement properties
[4, 60, 66]. A few studies additionally investigated IRT for
measuring cognitive impairment [15, 27]; however, they
assumed that the ADAS-Cog measures a single trait in pa-
tients. While a single trait is easy to interpret and model
using IRT, it does not adequately fit patient response data
(Additional file 1: Figures S1a-b) and severely violates the
core IRT assumption of local item independence, which
has severe effects on trait estimates [36]. Similar to the
total ADAS-Cog scores, the single trait also measures a
weighted average of impairment across multiple cognitive
domains. Memory items, which have the highest weights,
show the poorest fit to the ADAS-Cog response data
(Additional file 1: Figure S1b). As a result, measurement
of cognitive impairment from a single latent trait IRT
model suffers from low precision and reliability. Despite
these shortcomings, a single trait IRT model has been
demonstrated to significantly improve the sensitivity of
the ADAS-Cog in clinical trial simulations [27]. However,
those reported results may be overly optimistic because
several of the trial characteristics simulated in the analysis
[27] are atypical for real clinical trials, such as frequent
follow-ups, no patient dropouts, and no heterogeneity due
to patient-level factors. Therefore, for a proper compari-
son, we additionally evaluated the single trait version of
the ADAS-CogIRT methodology in more realistic clinical
trial simulations and found it to illustrate significantly
lower power than the proposed ADAS-CogIRT method-
ology (Additional file 1: Figures S5 and S6). Since prior
studies were primarily focused on evaluating the potential
of IRT in this application domain, they did not define a
measurement scale [15, 27], resulting in counterintuitive
negative scores of cognitive impairment in study patients.
As also noted by the authors [15, 27], they were add-
itionally limited by ignoring measurement bias and het-
erogeneity in disease severity of patients.
While our study addressed several limitations of the

current scoring methodology, some limitations persist.

Firstly, we could not investigate measurement invariance
of the proposed scoring methodology across all patient-
level factors (such as race and ethnicity) due to a lack of
heterogeneity in the data. This limitation should be
noted in future work in order to avoid biased estimates
of cognitive impairment using the ADAS-CogIRT meth-
odology with patient groups not considered in this study.
Secondly, when compared to the current scoring meth-
odology, the ADAS-CogIRT methodology requires the
use of a computer or a handheld device for measuring
cognitive impairment in patients. However, this limitation
is less relevant for clinical trials than for routine practice
because computing is already required for efficacy analysis
of investigative treatments. For routine practice, a spe-
cialized application (e.g., for a tablet or phone) could be
developed to help providers use the ADAS-CogIRT
methodology. Thirdly, the precision of the ADAS-CogIRT
methodology for measuring language and praxis im-
pairment is affected by the inherent limitations of the
ADAS-Cog items (Fig. 3). As a result, the improvement
in sensitivity afforded by the ADAS-CogIRT methodology
will decrease for clinical trials focusing on milder stages of
Alzheimer’s disease. In those disease stages, it may be bet-
ter to use this tool only for investigating treatment effects
on memory impairment. However, this approach would
not be applicable to mild Alzheimer’s disease patients who
have predominant involvement of the parietal lobe [61].
The inclusion of more difficult items probing subtle levels
of language and praxis impairment would improve its
measurement precision in milder stages of Alzheimer’s
disease. Fourthly, as is the case for most simulation stud-
ies, the evaluation results using simulated clinical trials
suffer from some bias. The bias is primarily because the
estimated item parameters are used for both simulating
patients’ response data and within the ADAS-CogIRT
scoring methodology for detecting treatment effects.
While we reduced the bias by perturbing the ADAS-Cog
item parameters (using their estimated standard errors)
before simulating patients’ ADAS-Cog responses, some
bias is still expected.
Despite these limitations, the ADAS-CogIRT method-

ology holds great significance for clinical trials of Alzhei-
mer’s treatments. A significant proportion of clinical trials
still focus on the mild-to-moderate disease stages due to
the inability to detect Alzheimer’s disease early with high
specificity. The proposed scoring methodology signifi-
cantly improves the efficiency of clinical trials focused on
the mild-to-moderate stages of Alzheimer’s disease. Such
an improvement in efficiency of clinical trials is highly
desirable for rapid testing of future treatments in the
critical quest for a disease-modifying treatment. The
ADAS-CogIRT methodology also allows separate evalu-
ation of treatment effects in the memory, language, and
praxis domains, which can potentially provide additional
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information on the pharmacological properties of treat-
ments and facilitate development of improved therapies.
Future clinical trials of Alzheimer’s treatments should
consider the proposed ADAS-CogIRT scoring method-
ology as part of their secondary efficacy analysis to fur-
ther evaluate and establish the significance of the
proposed methodology in comparison to the current
scoring methodology.

Conclusions
The sensitivity of the Alzheimer’s disease assessment
scale-cognitive subscale (ADAS-Cog) in its current form
can be significantly improved by addressing limitations
associated with its scoring methodology. In this study,
we described a new scoring methodology for the ADAS-Cog
called the ADAS-CogIRT, which addresses several major
limitations of the current scoring methodology and sig-
nificantly improves the sensitivity of the ADAS-Cog in
measuring progression in cognitive impairment in clin-
ical trials. Future clinical trials of Alzheimer’s disease-
modifying treatments should consider the application
of the described scoring methodology as part of their
secondary efficacy analysis to further validate its signifi-
cance in comparison to the currently employed scoring
methodology.
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