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Abstract

Background: Patients with Mild Cognitive Impairment (MCI) are at high risk of progression to Alzheimer’s
dementia. Identifying MCI individuals with high likelihood of conversion to dementia and the associated
biosignatures has recently received increasing attention in AD research. Different biosignatures for AD
(neuroimaging, demographic, genetic and cognitive measures) may contain complementary information for
diagnosis and prognosis of AD.

Methods: We have conducted a comprehensive study using a large number of samples from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) to test the power of integrating various baseline data for predicting the
conversion from MCI to probable AD and identifying a small subset of biosignatures for the prediction and assess
the relative importance of different modalities in predicting MCI to AD conversion. We have employed sparse
logistic regression with stability selection for the integration and selection of potential predictors. Our study differs
from many of the other ones in three important respects: (1) we use a large cohort of MCI samples that are
unbiased with respect to age or education status between case and controls (2) we integrate and test various types
of baseline data available in ADNI including MRI, demographic, genetic and cognitive measures and (3) we apply
sparse logistic regression with stability selection to ADNI data for robust feature selection.

Results: We have used 319 MCI subjects from ADNI that had MRI measurements at the baseline and passed quality
control, including 177 MCI Non-converters and 142 MCI Converters. Conversion was considered over the course of
a 4-year follow-up period. A combination of 15 features (predictors) including those from MRI scans, APOE
genotyping, and cognitive measures achieves the best prediction with an AUC score of 0.8587.

Conclusions: Our results demonstrate the power of integrating various baseline data for prediction of the
conversion from MCI to probable AD. Our results also demonstrate the effectiveness of stability selection for feature
selection in the context of sparse logistic regression.
Background
Alzheimer’s disease (AD) is the most common type of
dementia, accounting for 60–80% of age-related demen-
tia cases [1]. AD currently affects about 5.3 million
people in the US, with a significant increase predicted in
the near future if no disease-altering therapeutics are
developed [1]. In AD patients, neurons and their con-
nections are progressively destroyed, leading to loss of
* Correspondence: jieping.ye@asu.edu
1Center for Evolutionary Medicine and Informatics, The Biodesign Institute,
Arizona, State University, Tempe, AZ, USA
Full list of author information is available at the end of the article

© 2012 Ye et al.; licensee BioMed Central Ltd.
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
cognitive function and ultimately death. As therapeutic
intervention is most likely to be beneficial in the early
stage of the disease, identification of a biosignature that
enables an earlier and more accurate diagnosis of AD is
an important goal. Mild Cognitive Impairment (MCI), a
transitional stage between normal aging and the devel-
opment of dementia, has been introduced to account for
the intermediate cognitive state where patients are
impaired on one or more standardized cognitive tests
but do not meet the criteria for clinical diagnosis of
dementia [2]. The American Academy of Neurology has
recognized MCI as an important clinical group to be
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identified and monitored [3]. Patients with MCI are at
high risk of progression to dementia; it is estimated that
10–15% of these patients progress to AD annually. MCI
has thus attracted increasing attention, because it offers
an opportunity to target the disease process early. More
recently, MCI has been further classified according to
the presence or absence of a primary memory deficit
(amnestic and nonamnestic MCI, respectively), either in
relative isolation (single domain) or accompanied by
other types of cognitive deficits (multiple domain). As
the amnestic form of MCI, single or multiple domain,
has the greatest risk of progression to dementia, it has
been a primary focus of interest in aging studies. There
is thus an urgent need to address two major research
questions: (1) how can we identify MCI individuals with
high likelihood of progression to dementia (2) what is
the biosignature most predictive of the conversion from
MCI to AD. Brain atrophy measured by MRI scans,
positron emission tomography (PET) including imaging
of amyloid burden, and CSF measurements including
Aβ42 and total tau (t-tau) have been the prime candidate
biosignatures for diagnosis and tracking disease
progression.
Neuroimaging has been shown to be a powerful tool

for the ex ploration of disease progression and thera-
peutic efficacy in AD and MCI. Neuroimaging research
offers great potential to identify features that can identify
individuals early in the course of dementing illness;
several candidate neuroimaging biosignatures have been
examined in recent cross-sectional and longitudinal neu-
roimaging studies [4,5]. Realizing the importance of neu-
roimaging, NIH in 2003 funded the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). All subjects in ADNI
undergo 1.5T or 3T structural Magnetic Resonance Im-
aging (MRI) scans. Half of the subjects undergo Positron
Emission Tomography (PET) scans. While FDG-PET scans
may show a high sensitivity or specificity for the early
detection of AD, the validation of structural MRI markers
is the core project in ADNI due to its greater availability,
faster data acquisition, and lower cost. Structural MRI, in
particular, has great potential in enabling earlier clinical
diagnosis and predicting disease progression. Previous
studies have demonstrated that the hippocampus and the
entorhinal cortex of MCI patients are typically smaller than
those measured in normal controls, and are predictive of
future conversion to AD [4]. As the specificity of the pre-
diction is still low [5], current work continues to examine
additional regions and pattern changes for more accurate
prediction.
Besides brain atrophy measured by MRI scans, CSF

measurements including total tau (t-tau), phosphorylated
tau (p-tau), and Aβ42 were identified as being among
the most promising and informative AD biosignatures.
Increased CSF concentrations of t-tau and p-tau and
decreased concentrations of Aβ42 are found in MCI and
AD, and their combination is considered to be charac-
teristic of AD. However, there is considerable variability
of published opinion on the utility of CSF measurements
for predicting conversion from MCI to AD [6–8]. This
may be attributable to the small number of subjects used
in many of the previous studies and the variability in their
measurement methodology.
In addition to MRI and CSF measurements, there are

various clinical/cognitive assessment scores from the
ADNI data set that are potentially useful for the predic-
tion of MCI-to-AD conversion, including Mini Mental
State Examination (MMSE), Clinical Dementia Rating
Sum of Boxes (CDR-SB), Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS-cog), Logical Memory
immediate (LIMM) and delayed (DELL) paragraph recall,
Activities of Daily Living Score (from the Functional Activ-
ities Questionnaire, FAQ), and Trail Making Tests: Part A
(TRAA) and Part B (TRAB). Clinical/cognitive assessments
offer potential advantages over imaging or CSF biomarkers
since the use of imaging and CSF biomarkers could severely
limit the number of participants screened for a study.
Although MRI, CSF, and clinical/cognitive assessments
have been extensively studied in the past, few reports
have compared and combined various measurements
from MCI subjects. In this study, we use a large num-
ber of samples from ADNI to test:

(1) the ability of various baseline data (MRI,
demographic, genetic and cognitive measures) for
predicting the conversion from MCI to probable
AD

(2) the power of integrating various baseline data in
order to identify a biosignature (small subset of
predictive biomarkers) for prediction of the
conversion from MCI to probable AD and

(3) the use of CSF biomarkers for predicting the
conversion from MCI to probable AD and the
potential of increasing predictive accuracy by
combining CSF biomarkers with other
measurements.

The main technical challenge is how to integrate
effectively various baseline data for classification (MCI
Converts versus MCI Non-converts). A simple approach
for data integration is to form a long vector for each
sample (subject) by concatenating the features from all
baseline data, which is then fed into a classifier such as
support vector machines (SVM) [9]. To deal with the high
dimension/small sample size problem, feature selection,
which selects a small subset of features for improved
generalization performance, is commonly applied. Most
existing feature selection algorithms such as the t-test
perform univariate feature ranking [10], and they fail to
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take the feature correlation into consideration. In this
paper, we apply sparse logistic regression for feature selec-
tion, which selects a small subset of features using the L1-
norm regularization [11]. The L1-norm regularization is
appealing in many applications due to its sparsity-inducing
property, convenient convexity, and strong theoretical guar-
antees [12]. An important issue in the practical application
of sparse logistic regression is the selection of an appropri-
ate amount of regularization, known as model selection.
Cross validation is commonly used for model selection,
however it tends to select more features than needed. In
this paper, we employed stability selection, a method re-
cently proposed to address the problem of proper
regularization using subsampling/bootstrapping [13].
Our study differs from others in three important

respects: (1) we use a large cohort of MCI samples that
are unbiased with respect to age or education status
between case and controls (2) we integrate and test vari-
ous types of baseline data available in ADNI including
MRI, demographic, genetic and cognitive measures and
(3) we apply sparse logistic regression with stability
selection to ADNI data for robust feature selection. We
have evaluated sparse logistic regression with stability
selection on a set of 319 MCI subjects from ADNI,
including 177 MCI Non-converters and 142 MCI Conver-
ters (the conversion was considered over the course of a
4-year follow-up period). Our experiments show that a
combination of 15 features from MRI scans, APOE
genotyping, and cognitive measures selected by sparse
logistic regression with stability selection achieves an
AUC score of 0.8587.

Methods
Ethics
In this study we used ADNI data that were previously
collected across 50 sites. Study subjects gave written
informed consent at the time of enrollment for data
collection and completed questionnaires approved by
each participating site’s Institutional Review Board (IRB).
The complete list of ADNI sites’ IRBs can be found at
the link: http://adni.loni.ucla.edu/about/data-statistics/.
The authors state that they have obtained approval from
the ADNI Data Sharing and Publications Committee for
use of the data.

ADNI participants
The data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.ucla.edu). Data
used for our analyses were accessed on August 8, 2010.
The ADNI was launched in 2003 by the National Insti-
tute on Aging (NIA), the National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million,
5 -year public- private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). The identification of sensitive
and specific markers of very early AD progression will fa-
cilitate the diagnosis of early AD and the development, as-
sessment, and monitoring of new treatments.
The Principal Investigator of this initiative is Michael

W. Weiner, MD, VA Medical Center and University of
California – San Francisco. ADNI is the result of efforts of
many co- investigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800
adults, ages 55 to 90, to participate in the research, ap-
proximately 200 cognitively normal older individuals to be
followed for 3 years, 400 people with MCI to be followed
for 3 years and 200 people with early AD to be followed
for 2 years.” For up-to-date information, see www.adni-
info.org.

Subject characteristics and schedule of assessments in
ADNI
There were 319 MCI subjects included in this study
including 177 MCI Non-converters and 142 MCI Con-
verters. We only used a subset of the MCI subjects from
ADNI which had MRI measurements at baseline and
passed quality control. The conversion was considered
over the course of a 4-year time period. General inclu-
sion/exclusion criteria for MCI subjects are as follows:
MMSE scores between 24 and 30 (inclusive; exceptions
made on a case-by-case basis), memory complaint, object-
ive memory loss measured by education adjusted scores on
Wechsler Memory Scale Logical Memory II, CDR of 0.5,
absence of significant levels of impairment in other cogni-
tive domains, essentially preserved activities of daily living,
and an absence of dementia. Thus, this corresponds to
criteria for amnestic MCI. ADNI eligibility criteria are
described at http://www.adni-info.org. MCI individuals at
ADNI were assessed by neuroimaging at baseline, 6, 12,
18, 24, 36, 48 months. The number of MCI to AD
conversions at each time point (6, 12, 18, 24, 36, 48
months) is summarized in Figure 1.
All participants received 1.5 Tesla (T) structural MRI.

The analyses in this study were based on the imaging data
from the ADNI database processed by the team at the
University of California at San Francisco, which performed
cortical reconstruction and volumetric segmentation with
the Freesurfer image analysis suite (http://surfer.nmr.mgh.
harvard.edu/). The detailed procedure is available at

http://adni.loni.ucla.edu/about/data-statistics/
http://www.adni-info.org
http://www.adni-info.org
http://www.adni-info.org
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Figure 1 The number of MCI to AD conversions at each time
point (6, 12, 18, 24, 36, 48 months).
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http://adni.loni.ucla.edu/research/imaging-analysis/. A list
of 237 MRI features used in this study is provided at the
Additional file 1: Supplemental document. More details
on ADNI neuroimaging instrumentation and procedures
[14] can be found at www.loni.ucla.edu. About 50% of
MCI subjects (74 MCI Converts, 86 MCI Non-converters)
have a complete set of CSF measurements and MRI scans
at the baseline. CSF was analyzed at the ADNI Biomarker
Core laboratory at the University of Pennsylvania Medical
Center.
A number of clinical/cognitive assessment scores were

used in this study, including Mini Mental State Examin-
ation (MMSE), Clinical Dementia Rating Sum of Boxes
(CDR-SB), Alzheimer’s Disease Assessment Scale-
cognitive subscale (ADAS-cog), Logical Memory immedi-
ate (LIMM) and delayed (DELL) paragraph recall, Activ-
ities of Daily Living Score (from the Functional Activities
Questionnaire, FAQ), and Trail Making Tests: Part A
(TRAA) and Part B (TRAB).
The following 18 lab tests were included in our study:

Test RCT1 -Total Bilirubin, Test RCT11-Serum Glucose,
Test RCT12-Total Protein, Test RCT13-Albumin, Test
RCT14-Creatine Kinase, Test RCT1407-Alkaline Phos-
phatase, Test RCT1408-Lactate Dehydrogenase (LDH),
Test RCT183-Calcium (EDTA), Test RCT19-Triglycer-
ides (GPO), Test RCT20-Cholesterol (High Perform-
ance), Test RCT29-Direct Bilirubin, Test RCT3-GGT,
Test RCT392-Creatinine (Rate Blanked), Test RCT4-
Alanine aminotransferase (ALT), Test RCT5-aspartate
aminotransferase, Test RCT6-Urea Nitrogen, Test RCT8-
Serum Uric Acid, and Test RCT9-Phosphorus. We report
the P-value of various baseline measurements computed
by 2 -sample t-test. To test the ability of various baseline
data for predicting the conversion from MCI to probable
AD, we apply support vector machines (SVM) on each
type of baseline measurement to build the classifier [9].
SVM finds a maximum margin separating hyperplane
between two classes. It leads to a straightforward learning
algorithm that can be reduced to a convex optimization
problem. We evaluate the prediction performance in
terms of the area under the curve (AUC) score [15], com-
monly used in the literature. Specifically, we report the
leave-one-out AUC score, in which we build an SVM
model on all but one MCI subject and apply the classifica-
tion model to predict the left-out MCI subject, and we re-
peat this procedure for all MCI subjects.

Biosignature selection via sparse logistic regression with
stability selection
We employed sparse logistic regression based on the L1
norm regularization for biosignature (feature) selection.
Let x2Rp denote a sample of p features, and let y2{−1,+1}
be the associated (binary) class label (y = 1 for MCI Con-
verts and y=−1 for MCI Non-converts). The logistic re-
gression model is given by:

Prob y xj Þ ¼ 1= 1þ exp �y wTxþ c
� �� �� ��

where Prob(y|x) is the conditional probability of y, given x,
w2Rp is a weight vector, and c2R is the intercept. The
expression wT x+ c=0 defines a hyperplane in the feature
space, on which Prob(y|x) = 0.5. The conditional probabil-
ity Prob(y|x) is larger than 0.5 if wT x+ c has the same sign
as y, and less than 0.5 otherwise. Suppose that we are given
a set of n training data {xi,yi}, i = 1,2,. . .,n, where xi2Rp

denotes the i-th sample and yi2{−1,+1} denotes the corre-
sponding class label. The likelihood function associated
with these n samples is defined a s

Q
i Prob(yijxi). The

negative log-likelihood function is called the (empirical)
logistic loss, and the average logistic loss is defined as:

g w; cð Þ ¼ �1=n logProb yi xij Þð
¼ 1=n log 1þ exp �yi w

Txi þ c
� �� �� �

which is a smooth and convex function. We can determine
w and c by minimizing the average logistic loss as follows:
min(w,c) g(w,c), which is a smooth convex optimization
problem. For high-dimensional data directly solving the
logistic regression problem may lead to overfitting. A stand-
ard technique to prevent overfitting is regularization. The
use of the L1 norm regularization leads to the L1 regular-
ized logistic regression: min(w,c) g(w,c) + λ||w||1, where
λ > 0 is a regularization parameter. It is well known
that the use of the L1 regularization leads to a sparse
model, i.e., many of the entries of w are zero, thus
achieving feature selection [11]. The resulting
optimization problem is convex and non-smooth. In
this study, the SLEP (Sparse Learning with Efficient
Projections) package that we recently developed is
used for solving sparse logistic regression [16].
One major challenge in the use of sparse logistic

regression especially for small sample size problems is
the estimation of the right amount of regularization (the

http://adni.loni.ucla.edu/research/imaging-analysis/
http://www.loni.ucla.edu
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value of λ), which determines the number of features
selected. When λ= 0 all features are likely to be included
in the model. As λ > 0 increases, the number of features
selected decreases. In this paper, we employed stability
selection, a method recently proposed to address the
problem of proper regularization using subsampling/
bootstrapping [13]. We used bootstrapping in our
experiments. The key to stability selection is to perturb
the data (e.g. by subsampling or bootstrapping) many
times and choose features that occur in a large fraction
(determined by a parameter τ described below) of the
resulting selection sets. Thus, choosing the right value of
the regularization parameter λ becomes much less
critical using the stability selection approach, and we
have a better chance of selecting truly relevant features.
The key steps of stability selection include:

� Draw a bootstrap sample Bt of size n.
� For a given value of the regularization parameter λ

(>0), run the sparse logistic regression algorithm on
Bt to get the optimal solution wλ. Denote Sλ Btð Þ ¼
j : wλ

j 6¼ 0
n o

as the set of features selected by sparse
logistic regression.

� Repeat the above two steps N times (t = 1, 2, . . ., N)
and compute the relative selection frequencies:Qλ

j ¼
P

tI j 2 Sλ Btð Þ� �
=N; j ¼ 1; 2; . . . ; p where I(�)

is the indicator function defined as follows: I(g) = 1 if
g is true and I(g) = 0 otherwise. That is,

Qλ
j is

defined as the fraction of bootstrap experiments for
which the j-th feature is selected.

� Repeat the above procedure for a sequence of M
regularization parameters Λ= {λ1, λ1, ...., λM}.

� Stability selection outputs the following feature set:
Sstable ¼ j : maxλ2Λ

Qλ
j ≥τ

n o
, where τ > 0 is a given

threshold value, i.e., a feature is finally selected if, for
at least one value of λ, the fraction of bootstra p
experiments for which the feature is selected
exceeds the threshold τ. In the following, we call
maxλ2Λ

Qλ
j the stability score of the j-th feature.

In our experiments, we set N= 1,000, Λ= {i*0.005,
i = 1,2,. . .,60} (M= 60), and τ= 0.5. Our experimental
results showed that the classification was not sensitive
to τ. Stability selection outlined above is appealing in
that it has strong theoretical guarantees. Specifically, it
has been shown that subsampling/bootstrapping in con-
junction with L1-regularized estimation requires much
weaker assumptions on the data for asymptotically con-
sistent feature selection than what is needed for the
traditional L1-regularized scheme [13]. Subsampling/
bootstrapping is commonly used for asymptotic statis-
tical inference in terms of standard errors, confidence
intervals and statistical testing; one of the distinguishing
features of stability selection lies in the marriage of
subsampling/bootstrapping and high-dimensional fea-
ture selection algorithms which yields finite sample
familywise error control and dramatically improves fea-
ture selection [13].
We compare sparse logistic regression with stability

selection to t-test, which ranks features by calculating a
ratio between the difference of two class means and the
variability of the two classes [10]. With the selected
features (either by t-test or sparse logistic regression
with stability selection), we apply support vector machines
(SVM) to build the classifier [9]. We evaluate the predic-
tion performance of different algorithms in terms of the
leave-one-out AUC score.

Results
Baseline characteristics
The baseline information of the 319 MCI subjects by
diagnostic group (e.g., MCI Converters and MCI Non-
converters) is summarized in Table 1. There are no
significant between-group differences in age (p = 0.6150)
or years of education (p = 0.7093) between the two
groups. Both ADAS-cog total 11, which is the 70 point
total excluding Q4 (Delayed Word Recall) and Q14
(Number Cancellation), and ADAS-cog total 13, the 85
point total including Q4 and Q14, are significantly
higher for MCI Converters than for MCI Non-
Converters (p < 0.001); 4 ADAS-cog subscores, including
Word Recall (Q1), Delayed Word Recall (Q4), Orientation
(Q7), and Word Recognition (Q8), are much higher for
MCI Converters (p < 0.001). In addition, between-group
differences that represented significantly greater baseline
impairment for MCI Converters were noted for MMSE,
CDR -SB, LDEL, LIMM, TRAA, TRAB, and FAQ. Finally,
MCI Converters were more likely to carry 1 or 2 APOE4
alleles than MCI Non-converters.

Pattern classification using baseline measurements
The leave-one-out AUC scores of various baseline mea-
surements and their combinations (without feature selec-
tion) are reported in Table 2. Note that the leave-one-out
AUC score may be significantly lower than 0.5. Age (AUC=
0.5123), years of education (AUC=0.5090), the combin-
ation of 18 lab tests (AUC=0.5348), and APOE genotyping
(AUC=0.5473) perform poorly for the discrimination of
MCI Non-converters and MCI Converters. MMSE achieves
an AUC score of 0.5916 and CDR-SB achieves an AUC
score of 0.6064. The combination of 13 ADAS-cog sub-
scores Q1-Q14 (AUC=0.7598) achieves a higher AUC
score than each of the 13 ADAS-cog subscores and both
ADAS-cog total 11 (AUC=0.7024) and ADAS-cog total 13
(AUC=0.7248). Among the 13 ADAS-cog subscores,
ADAS-cog subscore Q1 (AUC=0.6830) and ADAS-cog
subscore Q4 (AUC=0.6842) achieve the best perform-
ance. The combination of ADAS total 13, ADAS



Table 1 Sample characteristics

Non-converter Converter P-Value

Number of subjects 177 (114/64) 142 (87/55)

Age 74.90 ± 7.39 74.49 ± 6.94 0.6150

Years of education 15.65 ± 3.06 15.77 ± 2.90 0.7093

MMSE 27.38 ± 1.75 26.62 ± 1.71 <0.001

CDR-SB 1.37 ± 0.75 1.83 ± 0.93 <0.001

ADAS-cog total 11 9.99 ± 4.16 13.09 ± 4.13 <0.001

ADAS-cog total 13 16.06 ± 6.28 21.12 ± 5.79 <0.001

ADAS-cog subscore Q1 Word Recall 4.07 ± 1.36 5.07 ± 1.23 <0.001

ADAS-cog subscore Q2 Commands 0.14 ± 0.47 0.19 ± 0.44 0.3437

ADAS-cog subscore Q3 0.51 ± 0.54 0.56 ± 0.59 0.3931

ADAS-cog subscore Q4 Delayed Word 5.36 ± 2.33 7.12 ± 1.94 <0.001

ADAS-cog subscore Q5 Naming 0.28 ± 0.52 0.22 ± 0.45 0.2380

ADAS-cog subscore Q6 Ideational 0.14 ± 0.40 0.15 ± 0.45 0.7760

ADAS-cog subscore Q7 Orientation 0.39 ± 0.72 0.93 ± 1.10 <0.001

ADAS-cog subscore Q8 Word 4.05 ± 2.68 5.33 ± 2.52 <0.001

ADAS-cog subscore Q9 Recall 0.06 ± 0.38 0.06 ± 0.26 0.9965

ADAS-cog subscore Q10 Spoken 0.05 ± 0.22 0.13 ± 0.46 0.0517

ADAS-cog subscore Q11 Word Finding 0.24 ± 0.57 0.35 ± 0.63 0.0943

ADAS-cog subscore Q12 0.07 ± 0.33 0.09 ± 0.33 0.5268

ADAS-cog subscore Q14 Number 0.78 ± 0.92 1.08 ± 1.09 0.0101

FAQ: Activities of Daily Living 2.41 ± 3.61 5.37 ± 4.70 <0.001

LDEL: Logical Memory delayed 4.59 ± 2.64 2.81 ± 2.32 <0.001

LIMM: Logical Memory immediate 7.77 ± 3.03 6.46 ± 2.95 <0.001

APOE (0 allele/1 allele/2 alleles) 103/59/15 48/71/23 <0.001

TRAA: Trail Making Test: Part A 40.0 ± 15.5 48.1 ± 25.2 <0.001

TRAA: Trail Making Test: Part B 114.7 ± 64.8 144.0 ± 75.2 <0.001
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subscores, MMSE, and CDR-SB perform better than indi-
vidual scores. A combination of 237 MRI features (see the
list of MRI features in the supplemental document)
achieves an AUC score of 0.7214, FAQ achieves an AUC
score of 0.6874, and TRAB (AUC=0.6187) performs
slightly better than TRAA (AUC=0.5944).

Data integration and biosignature selection
Next, we study the integration of various baseline mea-
surements for predicting the conversion from MCI to
probable AD and identify an optimal biosignature for
the prediction. We examine two feature selection algo-
rithms, including univariate feature ranking based on
the t-test and sparse logistic regression with stability se-
lection. Univariate feature ranking achieves an AUC
score of 0.7935 by using the top 15 features, while sparse
logistic regression with stability selection achieves an
AUC score of 0.8587 by using a total of 15 features. The
top 15 features identified by the stability selection (listed
in Figure 2) include FAQ: Activities of Daily Living
Score, APOE genotyping, ADAS-cog subscore Q4
(Delayed Word Recall), Logical Memory delayed,
ADAS-cog subscore Q1 (Word Recall), ADAS-cog sub-
score Q7 (Orientation), Volume (White Matter Parcel-
lation) of Left Hippocampus, Surface Area of Left Rostral
Anterior Cingulate, Volume (Cortical Parcellation) of Left
Entorhinal, Volume (White Matter Parcellation) of Right
Cerebellum Cortex, Volume (Cortical Parcellation) of Right
Inferior Parietal, TRAA: Trail Making Test: Part A, Volume
(Cortical Parcellation) of Left Cuneus, Volume (Cortical Par-
cellation) of Left Temporal Pole, ADAS-cog subscore Q5
(Naming). For convenience we call this set of 15 features
“Biosignature-15” in the following discussions. The cor-
responding AUC curve is shown in Figure 3.
To demonstrate the stability of sparse logistic regres-

sion with stability selection, we conduct the classification
using the top T features for T= 1, 2, . . ., 30, and the
results are shown in Figure 4. The performance in terms
of the AUC score is not sensitive to the number of
features selected. The AUC score stabilizes after the top



Table 2 Prediction performance of various baseline
measurements and their combinations in terms of the
AUC Score

AUC score

ADAS-cog total 11 0.7024

ADAS-cog total 13 0.7248

ADAS-cog subscore Q1 Word Recall 0.6830

ADAS-cog subscore Q2 Commands 0.1581

ADAS-cog subscore Q3 Construction 0.4899

ADAS-cog subscore Q4 Delayed Word 0.6842

ADAS-cog subscore Q5 Naming 0.3202

ADAS-cog subscore Q6 Ideational 0.5142

ADAS-cog subscore Q7 Orientation 0.4836

ADAS-cog subscore Q8 Word 0.6062

ADAS-cog subscore Q9 Recall 0.2581

ADAS-cog subscore Q10 Spoken 0.3914

ADAS-cog subscore Q11 Word Finding 0.5436

ADAS-cog subscore Q12 Comprehension 0.2756

ADAS-cog subscore Q14 Number Cancellation 0.4451

ADAS-cog subscore Q1-Q14 0.7598

Age 0.5123

Years of Education 0.5090

MMSE Score 0.5916

CDR-SB 0.6064

ADAS total 13 + ADAS subscores 0.7561

ADAS total 13 + ADAS subscores +MMSE+CDR-SB 0.7674

FAQ 0.6874

LDEL: Logical Memory delayed 0.6573

LIMM: Logical Memory immediate 0.6136

MRI (237) 0.7214

Lab tests (18) 0.5348

APOE genotyping 0.5473

TRAA: Trail Making Test: Part A 0.5944

TRAA: Trail Making Test: Part B 0.6187

The numbers in the second column are the leave-one-out AUC score which
may be significantly lower than 0.5. The number in the parenthesis denotes
the number of measurements involved.

Ye et al. BMC Neurology 2012, 12:46 Page 7 of 12
http://www.biomedcentral.com/1471-2377/12/46
13–15 features are included; including any additional
features will not further improve the performance. Our
results demonstrate the effectiveness of stability selec-
tion. To examine the added benefit of integrating MRI
features with various demographic, genetic, and cogni-
tive measurements, we apply sparse logistic regression
with stability selection on MRI features alone. The top
10 MRI features identified by stability selection are listed
in Table 3 (left column), and the AUC score is 0.7877.
Table 2 shows that the combination of 237 MRI features
achieves an AUC score of 0.7214. Sparse logistic
regression with stability selection on the MRI features
significantly improves the performance; the AUC score
improves from 0.7214 to 0.7877 (p-value < 0.05). In
addition, we apply sparse logistic regression with stability
selection on the combination of different demographic,
genetic, and cognitive measurements excluding MRI fea-
tures. The top 10 demographic, genetic, and cognitive
measurements identified by stability selection are listed in
Table 3 (right column), and the AUC score is 0.8111. The
AUC of Biosignature-15 is statistically greater than the
AUCs of the top MRI features and the top 10 demographic,
genetic, and cognitive measurements (p-value <0.05). Most
(top) items in Figure 2 and Table 3 match; the differ-
ences are possibly due to the correlation among differ-
ent measurements, especially the correlation between
the MRI features and various demographic, genetic,
and cognitive measurements.

Integration of CSF and other measurements
We extracted a subset of 160 MCI subjects (74 MCI Con-
verts, 86 MCI Non-converters) with a complete set of CSF
measurements and MRI scans. We first test the ability of
individual CSF biomarkers including t-tau, Aβ42, p-tau,
and two ratios (t-tau/Aβ42 and p-tau/Aβ42) for predicting
the conversion from MCI to probable AD, and the results
are summarized in Table 4. Similar to a previous study [7],
we evaluated the performance of combing individual CSF
biomarkers with the biosignatures included from the larger
data set excluding CSF measurements called Biosignature-
15 (see Figure 2). The results in Table 4 showed that (1) the
CSF biomarkers do not perform as well as Biosignature-15;
and (2) the inclusion of the CSF biomarkers does not im-
prove the performance of Biosignature-15, although the dif-
ference is not statistically significant. Note that the AUC for
Biosignature-15 reported in Table 4 included only the sub-
set of 160 subjects with CSF measurements.

Discussion
These results demonstrate the effectiveness of sparse
logistic regression with stability selection for (1) integrat-
ing various baseline data from ADNI (MRI, demographic,
genetic and cognitive measures) for predicting the conver-
sion from MCI to probable AD; and (2) identifying a small
set of strong predictors.
Many of the selected features in Biosignature-15 have

been identified to be important in characterizing AD.
Biosignature-15 includes 3 ADAS-cog subscores (Q4,
Q1, Q7) in the top 6. These three subscores contribute
the largest weights to the ensemble tree-based predictive
model (Random Forest) in [17] and are primarily tests of
memory, a key cognitive domain affected early by the
disease. Specifically, Q1 and Q4 are memory tests, which
have face validity; Q7 is orientation but involves memory
to recall the date, time of day, and place.
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Figure 2 The top 15 features (included in Biosignature-15) identified by sparse logistic regression with stability selection. The vertical
axis is the stability score multiplied by 100 (between 0 and 100) and indicates the importance of the features. WM indicates White Matter.
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Most of the MRI features in Biosignature-15 are volumes
known to be reduced in AD. The hippocampus and
entorhinal cortex have long been known as the first areas
to be affected in Alzheimer’s Disease, both on histology
and via gross morphological changes visible on imaging
[18–23]. The entorhinal cortex is located in the medial
temporal lobe and functions as a hub in a widespread net-
work for memory and navigation. The hippocampus is also
Figure 3 The AUC Curve of Biomarkers-15 by sparse logistic regressio
located in the medial temporal lobe and plays important
roles in memory, both for registration and recall and
spatial navigation. Changes in the temporal region have
been shown to be a good predictor of the progression of
AD [24,25]. Other studies have also detected a surprising
correlation between cerebellar atrophy and AD, as have
we. It was demonstrated in [26,27] that the atrophy of the
cerebellum, a brain region not associated with the cortical
n with stability selection.



Figure 4 The change of the AUC score when the number of selected features varies.
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pathology of AD or typically thought to have a role in cog-
nition and generally believed to be involved only late in
AD, was found to be significantly correlated with clinical
severity of the disease. One study [28] suggested that me-
tabolism in areas such as cerebellum was correlated with
deficits in neuropsychological function. Finally, it has been
shown previously that the rostral anterior cingulate is
affected in AD [5,29]. The anterior cingulate cortex is
cytoarchitectonically and functionally divided into parts;
the rostral division has connections to limbic and paralim-
bic structures including the amygdala and hippocampus.
The atrophy of the caudal portion of the anterior cingulate
was shown to be predictive of conversion to AD in mem-
ory impaired subjects, suggesting that this structure might
be affected relatively early in the course of the disease
[30,31]. All four cingulate regions were shown to be sig-
nificantly smaller in AD cases compared with controls; the
atrophy in th e posterior cingulate region was significantly
greater than that in other cingulate regions [29]. Several
previous studies [4,25,32] also achieve good prediction
Table 3 The top 10 MRI features (left column) and demograp
identified by sparse logistic regression with stability selection

MRI

Volume (WM Parcellation) of Left Hippocampus

Volume (Cortical Parcellation) of Left Entorhinal

Surface Area of Left Rostral Anterior Cingulate

Volume (Cortical Parcellation) of Right Inferior Parietal

Cortical Thickness Average of Left Isthmus Cingulate

Volume (Cortical Parcellation) of Left Cuneus

Volume (WM Parcellation) of Right Amygdala

Cortical Thickness Average of Right Entorhinal

Volume (WM Parcellation) of Left Amygdala

Cortical Thickness Average of Left ParsOrbitalis

WM indicates White Matter.
performance; however, in all these studies, the classes
(MCI Converts and MCI Non-Converts) were stratified by
age, and thus age was also predictive. In several other
studies, as in ours, age does not stratify the two classes,
and thus is not a relevant predictor. Querbes et al. (2009)
developed a normalized thickness index which was com-
puted using the subset of regions (right medial temporal,
left lateral temporal, right posterior cingulate) and
achieved an AUC score of 0.76 [33]. There were 122 MCI
subjects used in this study including 50 MCI Non-
converters and 72 MCI Converters (the conversion was
considered over the course of a 2-year time period). In
their study, age, years of education, MMSE, and Trail
Making test B achieved an AUC score of 0.52, 0.53, 0.64,
and 0.72, respectively. Misra et al. (2009) used MRI scans
to predict the short-term conversion from MCI to AD and
achieved an AUC score of 0.77 [34]. There were 103 MCI
subjects used in that study including 76 MCI Non-conver-
ters and 27 MCI Converters. In comparison, we
achieve a higher AUC score (0.8587) with a larger sample
hic, genetic, and cognitive measurements (right column)
are ordered in decreasing order of stability scores

Demographic, genetic, and cognitive

FAQ: Activities of Daily Living

APOE genotyping

LDEL: Logical Memory delayed

ADAS-cog subscore 4

ADAS-cog subscore 1

ADAS-cog subscore 7

ADAS-cog subscore 5

TRAA: Trail Making Test: Part A

ADAS-cog subscore 10

Years of Education



Table 4 Prediction performance of various baseline CSF
measurements and the combinations of CSF
measurements and Biomarkers-15 in terms of the AUC
score

AUC score

CSF t-tau 0.616

CSF Aβ42 0.612

CSF p-tau 0.628

CSF t-tau/Aβ42 0.631

CSF p-tau/Aβ42 0.634

Biomarkers-15 0.830

Biomarkers-15+CSF t-tau 0.826

Biomarkers-15+CSF Aβ42 0.827

Biomarkers-15+CSF p-tau 0.827

Biomarkers-15+CSF t-tau/Aβ42 0.826

Biomarkers-15+CSF p-tau/Aβ42 0.827

Note that the AUC score for Biosignature-15 reported in this table included
only the subset of 160 subjects with CSF measurements.
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size (319 MCI subjects) and a larger number of baseline
measurements.
The combination of demographic, genetic, and cognitive

measurements outperforms MRI alone for predicting the
MCI to AD conversion. These demographic, genetic, and
cognitive measurements can potentially be used to pre-
screen a large number of participants for large-scale
AD studies. In addition, stability selection provides a
small subset of candidate demographic, genetic, and
cognitive measurements (see Table 3) for effective and
efficient screens. In a recent study [17], an ensemble
tree- based predictive model (Random Forest) was built
to predict MCI Converters within 1 year. Their results
show that the addition of MRI features to the cognitive
markers did not achieve performance gain. However,
our results show that the integration of demographic,
genetic, and cognitive measurements and MRI features
using sparse logistic regression with stability selection
achieves a much higher AUC score (AUC= 0.8587) than
MRI markers alone. The result demonstrates the bene-
fit of integrating MRI features with various demo-
graphic, genetic, and cognitive measurements for the
prediction. In our study, we assume that various types
of baseline data (MRI, demographic, genetic and cogni-
tive measures) are available in deriving Biosignature-15.
However, this may not be case in clinical practice.
The results in Table 4 showed that the CSF biomarkers

are not very effective for the MCI-to-AD prediction.
Shaw et al. (2009) showed that CSF measurements are the
most informative markers for distinguishing AD patients
from normal controls and the differences between MCI
Converters and MCI Non-Converters are significant [6].
However, their analysis is based on a total of 37 MCI sub-
jects. It is mentioned in the paper: “Because of the small
numbers of subjects, it is important to be cautious about
drawing any definitive conclusions from these subjects.” A
recent study [7] conducted by the same group showed
that MRI and CSF achieved the best AUC score of 0.734,
the CSF biomarkers performed slightly worse than MRI
features, and the combination of MRI and CSF achieved a
lower AUC score than MRI. In [35], mixture modeling
approaches were used to apply the CSF measurements in
the diagnosis of AD. The proposed approach showed 100%
sensitivity in 57 patients with MCI who were clinically pro-
gressing towards dementia over the course of a 5-year time
period. However, no specificity result was reported. We find
that while in the current ADNI cohort, all MCI Converters
show an aberrant CSF signature (defined as high p-tau i.e.
>23 pg/mL and low Aβ42 i.e. <192 pg/mL), such a CSF sig-
nature is also present in many MCI Non-converters. It has
been surmised that the subset with the CSF signature will
likely convert to AD in the future. However, ADNI is an
on-going study, and based on the data currently available,
CSF markers do not show enough specificity to discrimin-
ate between MCI to AD Converters and Non-converters.
Our findings are consistent with several recent reports

in the literature. In [36], no association between MMSE
change and change in levels of CSF biomarkers was
reported, whereas brain atrophy was predictive of MMSE
change. Vemuri et al. (2009) investigated the relationship
between baseline MRI and CSF biomarkers and subse-
quent change in cognitive and functional abilities, which
were modeled as average CDR–SB and MMSE scores over
a 2-year period [37]. Their results showed that MRI
biomarkers were better predictors of subsequent cog-
nitive/functional change than CSF biomarkers. In a
recent study [8], it was shown that baseline MRI
morphometry was more related to clinical change as
indexed by CDR-SB than were CSF biomarkers.
These studies suggest a stronger association between brain
atrophy measured by MRI and progression of clinical
symptoms measured by CDR–SB and/or MMSE than
between CSF levels and progression of clinical symp-
toms. The results presented in this paper are consist-
ent with these observations.

Conclusions
In this paper we have demonstrated the application of
sparse logistic regression and stability selection for integrat-
ing various baseline ADNI data (MRI, CSF, demographic,
genetic, and cognitive measures) for predicting the conver-
sion from MCI to probable AD and identifying a small sub-
set of biosignatures for the prediction. Sparse logistic
regression with stability selection combines the strengths of
two approaches well-known in the literature to yield a
robust set of biosignatures, called Biosignature-15. We fur-
ther show that sparse logistic regression with stability selec-
tion achieves very good predictive performance, with an
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AUC of 0.8587, which is higher than previous known
results using data that, similar to ours, are not age-stratified.
It is important to note that ADNI is single homogeneous
sample of highly educated and motivated volunteers. Add-
itional studies are required to test the generalization ability
of Biosignature-15. In addition, further analysis is needed to
determine whether the combination of various baseline
measurements can predict the time-to-conversion. Fi-
nally, we plan to examine the influence of other common
comorbidities on the prediction model such as cardiovas-
cular risk factors disease and depression, family history of
dementia, prior head trauma etc.
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