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Abstract
We describe a computationally efficient biomarker discovery approach, based on a com-
bination of penalised regression and a resampling method, for the identification of lo-
calised brain regions that are highly discriminative between two groups of brain images.
The proposed procedure has been applied for classification of brain images in subjects
with Alzheimer’s disease and mild cognitive impairment using baseline FDG-PET data
and both baseline and longitudinal MRI data. Results of nine independent classification
experiments show that the selected biomarkers are consistent with well-known patterns
of atrophy, hypometabolism and progression of Alzheimer’s disease that have been re-
ported in previous studies. The overall classification performance, which has been as-
sessed for statistical significance, is comparable to related state-of-the-art findings.

1 Introduction

Neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET) can be used to identify diagnostic and prognostic biomarkers of
neurodegenerative diseases. Such biomarkers play a crucial role in the detection of pre-
symptomatic stages of the disease and prediction of its later development. It is well known
that Alzheimer’s disease (AD) is associated with tissue loss over time [Fox et al., 1996], es-
pecially in the hippocampus, hence hippocampal volume [Chupin et al., 2009], shape [Cser-
nansky et al., 2005] or atrophy are often used as biomarkers [Leung et al., 2010]. Extrac-
tion of such biomarkers is based on prior knowledge about the disease and its underlying
∗Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the
design and implementation of ADNI and/or provided data but did not participate in analysis or writing
of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
c© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

http://www.bmva.org/annals/2012/2012-0002.pdf
http://www.bmva.org/w/doku.php?id=annals_of_the_bmva


2 JANOUSOVA et al.: BIOMARKER DISCOVERY FOR SPARSE CLASSIFICATION OF IMAGES
Annals of the BMVA Vol. 2012, No. 2, pp 1–11 (2012)

processes. Data-driven biomarkers, however, do not require any a priori hypotheses about
which structures are involved in the disease process [Hua et al., 2008], and are extracted us-
ing data-driven approaches with the use of whole-brain image data. A recent comparison
of ten MRI-based high-dimensional pattern classification methods [Cuingnet et al., 2011]
reported good accuracies in distinguishing AD patients from healthy controls using whole-
brain approaches. One of the key challenges for data-driven biomarker extraction is the large
number of voxels, which leads to problems for many classical feature selection techniques.

In this paper we propose a simple and computationally efficient approach for data-driven
biomarker extraction using penalised regression combined with a data resampling scheme.
The algorithm selects a small number of spatially localised voxels that are highly discrimina-
tive of the disease. This approach was used in [Janousova et al., 2011] for the classification of
baseline MR and PET images. Here we further apply the method to longitudinal MRI data,
to demonstrate that the approach can be used to monitor disease progression.

2 Methods

2.1 Voxel selection using penalised regression

We assume to have a collection of brain images observed on a random sample of n indepen-
dent subjects. Each image xi·, with i = 1, . . . , n, is represented by a p-dimensional vector
of intensities, one intensity measure per voxel, and the data is arranged in a (n× p) matrix
X = (x1·, . . . , xn·). We also assume that the n individuals have been labelled as one of two
classes, which we denote by D (diseased) and H (healthy controls), with sample sizes of nD
and nH, respectively, and n = nD + nH. The class label for subject i is represented by a binary
variable yi, such that yi = 1 if individual i is in class D and yi = 0 otherwise. We assume
that the vector y = (y1, . . . , yn) is mean centred and the columns of X, x·j, with j = 1, . . . , p,
corresponding to the vector of intensities for each voxel, have zero mean and unit variance.

Our aim is to use the n images to identify localised groups of voxels whose intensities
are highly discriminative between the two classes. Ideally, a set S of discriminative voxels
should have cardinality |S| << p. We achieve the desired voxel selection by means of pe-
nalised regression. We treat the class indicator y as a response variable in a linear regression
model whose predictors are given by the voxel intensities. Assuming a least squares loss
function, we aim to estimate the linear regression coefficients β = (β1, . . . , βp) such that
they satisfy two main properties: (a) only the coefficients corresponding to discriminative
voxels in S are non-zero, thus yielding a sparse estimate β̂, and (b) the non-zero coefficients
of correlated voxels should be smoothed towards a common value to allow selection of vox-
els in groups. Both effects are achieved by imposing some constraints on the regression
coefficients. Specifically, we use the elastic net penalty [Zou and Hastie, 2005] which con-
sists of two additive penalty terms: a constraint on the l1 norm of the coefficients, which
is known to induce sparse solutions [Tibshirani, 1996], and a constraint on their l2 norm,
which is known to induce a grouping effect on correlated variables [Zou and Hastie, 2005,
Hoerl and Kennard, 1970]. Accordingly, the elastic net estimates are found by minimising
the following penalised least squares problem

arg min
β

{
‖y− Xβκ‖2

2 + λ ‖βκ‖1 + µ ‖βκ‖2
2

}
(1)

where λ > 0 and µ > 0 are regularisation parameters introduced for the l1 and l2 penalties,
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respectively, and the scaling factor κ = (1 + µ)−1 corrects for the double shrinkage caused
by applying both the l1 and l2 penalties. The free parameters that need to be tuned are λ,
which controls the amount of sparsity (i.e. the number of voxels with non-zero regression
coefficients) and µ, which controls the amount of smoothing imposed on the regression co-
efficients associated with correlated voxels.

To gain further insights into the effects of the penalty terms and regularisation parame-
ters, we re-write the terms to be minimised in Equation (1) as −2y′Xβ + β′κ (X ′X + µI) β +
λ ‖β‖1. Minimising this expression with respect to β provides the solution to an equiv-
alent penalised regression problem having only a constraint on the l1 norm of the coeffi-
cients, whereby the covariance matrix X ′X has been replaced by κ (X ′X + µI). Using this
parametrisation, it can be noted that the l2 regularisation parameter µ acts directly on the
correlations of the predictors and shrinks those by a factor κ. As noted in [Zou and Hastie,
2005], by setting µ to infinity, the number of free parameters is reduced down to only one, λ,
whilst still maintaining the grouping effect. With this choice, the expression to be minimised
is −2y′Xβ + β′β + λ ‖β‖1, which is equivalent to assuming an orthogonal design, whereby
the covariance matrix X ′X has been replaced by the identity matrix, with only an l1 penalty
for voxel selection. This parametrisation is convenient in that it leads to a very computation-
ally cheap estimation algorithm. The optimal β coefficients can be computed one element at
a time by applying a simple soft-thresholding function,

β̂ j = sign(x′·jy)
(
| x′·jy | −

λ

2

)
+

j = 1, . . . , p (2)

where (α)+ is defined as max(0, α).

2.2 Estimation of voxel importance through selection probabilities

The regularisation parameter λ in Equation (2) controls the amount of sparsity, and therefore
determines the set S containing the selected voxels. When λ is exactly zero, no penalty is
imposed and all p voxels enter the set S. As λ increases away from zero, sparser solutions are
obtained, and less voxels are retained. At its maximum value λmax, no voxel is selected and S
becomes the empty set. A common approach to model selection in sparse regression involves
tuning λ, for instance by cross-validating the prediction error obtained for all values of λ ∈
[0, λmax], and then choosing the value of λ that provides the smallest cross-validated error.
However minimising a prediction error does not necessarily lead to the true, underlying
sparsity pattern to be discovered. Moreover, the selection of the optimal λ might suffer from
sampling errors, in the sense that a different λ, hence a different sparsity pattern, might arise
from an independent data set.

To select highly discriminative voxels that are truly important for prediction and are
more robust against sampling errors, we adopt a data resampling scheme that has been
specifically proposed for sparse predictive modelling [Meinshausen and Bühlmann, 2010].
This procedure aims to obtain a measure of voxel importance by repeatedly fitting the sparse
regression model on random subsets of the data set and keeping track of voxels that are con-
sistently associated to non-zero regression coefficients. Specifically, for λ ∈ [λmin, λmax], we
draw B random sub-samples with replacement, and fit the penalised regression model on

each random sub-sample. For each sub-sample we obtain a sparse estimate β̂
(b)
(λ), where

b = 1, . . . , B. For each estimate, we determine which voxels have non-zero regression coeffi-
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cients by using an indicator variable v(b)j (λ) which is equal to 1 if the coefficient correspond-
ing to voxel x·j is non-zero, or 0 otherwise. Using all B sub-samples, a measure of voxel
importance is finally computed by estimating the selection probabilities

Pj(λ) =
1
B

B

∑
b=1

v(b)j (λ) j = 1, . . . , p (3)

Rather than tuning the regularisation parameter λ, we search for a set of voxels with high-
probability over a range [λmin, λmax]. The upper bound λmax is determined to be the lowest
value of λ that results in the zero vector estimate β̂ = 0, with no voxels selected in the set S.
The final set of voxels to be included in S is obtained by choosing a lower bound λmin and a
threshold π on the selection probabilities, hence we denote by S(λmin, π). The optimal λmin
and π are chosen to minimise a measure of cross-validated classification error.

3 Experimental Results

3.1 Subjects

The penalised regression approach was applied to MRI and [18F]-fluorodeoxyglucose (FDG)-
PET data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
ADNI is the result of efforts of many coinvestigators from a broad range of academic institu-
tions and private corporations, and subjects have been recruited from over 50 sites across the
U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to partici-
pate in the research, approximately 200 cognitively normal older individuals to be followed
for 3 years, 400 people with MCI to be followed for 3 years and 200 people with early AD to
be followed for 2 years.

We used T1-weighted 1.5 T baseline MRI scans from all available 838 subjects: 198 AD
patients, 409 subjects with mild cognitive impairment (MCI) and 231 cognitively normal el-
derly subjects (CN). Within the MCI group, 168 subjects have so far been diagnosed with AD
and are denoted by pMCI (Progressive MCI), whereas the remaining subjects are denoted by
sMCI (Stable MCI). The baseline images of all subjects were aligned with the MNI152 brain
template [Mazziotta et al., 1995] using a coarse non-rigid registration regularised by a 10mm
B-spline control-point grid [Rueckert et al., 1999]. Brain extraction was performed based on
automated tissue classification using SPM52. Image intensities were normalised to the tem-
plate using linear regression prior to performing Gaussian smoothing with a 4mm full width
at half-maximum Gaussian kernel. The small Gaussian kernel was used to enable detection
of discriminative regions in smaller brain structures [Honea et al., 2005]. Follow-up MRI im-
ages acquired 24 months from baseline were available for 510 subjects: 105 AD, 117 pMCI,
123 sMCI, and 165 CN. All follow-up scans were aligned with their baseline scans using a
fine 2.5mm B-spline control-point spacing non-rigid registration [Rueckert et al., 1999]. The
Jacobian determinants extracted from the resulting deformation fields represent intra-subject
development (expansion/contraction) on a voxel basis. The Jacobian maps were then trans-
formed to the reference space using the transformations computed for the baseline scans.
PET images were available for 287 subjects: 71 AD, 62 pMCI, 85 sMCI, and 69 CN. Each

1adni.loni.ucla.edu
2www.fil.ion.ucl.ac.uk/spm
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PET image was converted to a 30-minute static and affinely aligned with the corresponding
native-space MRI. An affine transformation was preferred over a rigid one because it can
account for any scaling or voxel size errors which remain after phantom correction of the
MRI [Clarkson et al., 2009]. The non-linear transformation parameters estimated to map the
baseline MR images to the MNI template were then applied to the MR-space PET images
using a trilinear interpolation. These images were smoothed to a common isotropic spatial
resolution, normalised using a cluster of relatively preserved regions derived from an inde-
pendent dataset [Yakushev et al., 2009], and re-sampled to the higher resolution of the MRI.
1, 650, 857 voxel intensities in the PET images and baseline MRI scans and the same num-
ber of Jacobian determinants representing longitudinal changes in MRI images were used to
perform voxel selection with the proposed method after correcting for age and gender using
a linear regression model.

3.2 Classification results

We report on nine independent classification experiments, whereby we compare two groups
in each experiment: AD vs CN, pMCI vs CN, and pMCI vs sMCI, using PET data and base-
line and longitudinal MRI data. For each experiment, voxel selection was carried out accord-
ing to the procedure described in Section 2. Selection of the most discriminative voxels leads
to linear separability of the pairs of subject groups in training sets, as illustrated in Figure 1.
Since the groups are linearly separable we can use linear discriminant analysis (LDA) to as-
sess the discriminative power of the selected set of voxels, S(λmin, π). LDA does not require
any parameter tuning, therefore there are only two parameters λmin and π to be optimised
which we collect in a parameter vector θ = {λmin, π}.
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Figure 1: Two-dimensional projections of training data points observed on the selected vox-
els (baseline MRI data) show that AD and CN subjects are linearly separable. LDA1 and
LDA2 are the first and the second latent factor extracted using LDA, respectively.

The optimal parameter vector θ∗ was obtained by 10-fold cross-validation of three per-
formance measures: accuracy, sensitivity and specificity. The cross-validated performance
measures are reported in Table 1. Using baseline MRI data, the accuracy index in LDA clas-
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Table 1: Number of selected voxels (vox) and 10-fold cross-validated classification perfor-
mance measures in percentage - accuracy (acc), sensitivity (sen), and specificity (spe) -
using LDA and SVM with Gaussian kernel.

LDA SVM
Data Comparisons vox acc sen spe acc sen spe
Baseline MRI (B1) AD vs CN 221 86.2 82.8 89.2 87.9 84.8 90.5

(B2) pMCI vs CN 386 81.7 76.8 85.3 83.2 76.2 88.3
(B3) pMCI vs sMCI 288 69.7 68.5 70.5 70.4 63.7 75.1

Longit MRI (L1) AD vs CN 11 394 87.0 81.0 90.9 90.3 87.5 92.1
(L2) pMCI vs CN 12 664 83.3 79.5 86.1 86.9 81.2 90.9
(L3) pMCI vs sMCI 10 593 71.3 68.4 74.0 82.1 81.5 82.9

PET (P1) AD vs CN 2 020 87.1 87.3 87.0 87.9 88.7 87.0
(P2) pMCI vs CN 1 178 84.0 80.6 87.0 84.0 82.3 85.5
(P3) pMCI vs sMCI 1 463 70.1 72.6 68.2 72.1 61.3 80.0

sification experiments is between 69.7% (for the pMCI vs sMCI group) and 86.2% (for the
AD vs CN group). Remarkably, only between 221 and 386 high-probability voxels were able
to achieve those classification accuracies. As expected, superior classification performance
is achieved when using longitudinal data, and requires less than 13k voxels in all cases. The
accuracy of classification of PET data using LDA classifier is from 70.1% to 87.1% using less
than 3k selected voxels. In the same table we also report on the classification results ob-
tained using a Support Vector Machine (SVM) classifier with Gaussian kernel [Smola and
Schölkopf, 2004]. The cross-validated performance measures obtained using the non-linear
SVM classifier are slightly higher than those obtained using LDA.

In order to assess the statistical significance of the accuracy index reported in Table 1,
we carried out non-parametric inference using permutation testing. Holding the optimal θ∗

constant, we randomly permuted the elements of the response vector y, and repeated this
procedure K times. Each permutation gave a new response vector y(k), with k = 1, . . . , K.
For each k, we applied the LDA and SVM classifier to the data {X, y(k)}, where X is the ma-
trix containing the selected voxels, and produced the corresponding 10-fold cross-validated
accuracy measures. This procedure approximates the sampling distribution of the accuracy
index under the null hypothesis of no association between the voxel intensities in S(λ∗min, π∗)
and the response, and an empirical p-value can be easily computed. Using K = 1000 per-
muted data sets, all the accuracy results in Table 1 were all found to be highly statistically
significant (p-values < 0.001).

Figure 2 shows coronal slices with voxels in S(λ∗min, π∗), in yellow, for all comparisons
in Table 1. As an illustration, the insets show the whole range of selection probabilities
Pj(λ

∗
min) for all voxels, without any thresholding. It can be noted how the l2 penalty enforces

group selection. In the AD vs CN, pMCI vs CN and also pMCI vs sMCI comparisons, using
baseline MRI images, the selected voxels form connected regions in both hippocampus and
amygdala. In the case of longitudinal MRI data, the most discriminative voxels are clus-
tered in the hippocampus and lateral ventricles. In experiments using PET data, the selected
voxels form clusters in posterior cingulate gyrus and superior parietal gyrus.
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Figure 2: Coronal slices showing the voxels selected by penalised regression (in yellow) in
the whole brain; the selection probabilities Pj(λ) of all voxels are shown in the insets.
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4 Discussion and Conclusion

We have presented a penalised regression approach using the elastic net penalty, for the se-
lection of voxel intensities that are highly discriminative between two groups of MR images.
A measure of voxel importance is obtained by employing a data resampling procedure. For
a two-class classification problem, it is known that treating the binary response as a contin-
uous variable and minimising the least squares error is equivalent (up to a scaling factor)
to the solution obtained by linear discriminant analysis (LDA) [Duda et al., 2001]. In this
respect, our method provides a sparse LDA solution. The resulting estimation algorithm
has very low computational complexity which makes it suitable for voxel-wise whole-brain
studies.

The methodology has been applied to the sparse classification of ADNI images. The
classification performance measures obtained using LDA and SVM with Gaussian kernel
are comparable to findings documented in the literature. For instance, for the AD vs control
group, typical classification accuracy has been reported to vary from 85% to 95% [Fan et al.,
2008, Klöppel et al., 2008, Batmanghelich et al., 2009], whereas for the pMCI vs control group
comparison the accuracy varies between 70% and 81.8% [Fan et al., 2008, Batmanghelich
et al., 2009] and for the pMCI vs sMCI between 70% and 81.5% [Misra et al., 2009]. Our
results compare favourably to a recent meta-analysis [Cuingnet et al., 2011] of classification
methods on ADNI data. While our results for AD vs CN classification are comparable to
the best results reported in this study, we achieve better results for progressive MCI vs CN
classification and for the clinically most interesting discrimination of progressive from stable
MCI subjects (sMCI vs pMCI).

The estimated performance measures obtained using the non-linear SVM classifier are
only slightly higher than those obtained using LDA. This observation supports the suitabil-
ity of the linear classifier for the assessment of the discriminative power of the selected sets
of voxels in our experiments. If SVM with Gaussian kernel was used for the selection of the
optimal parameter vector θ∗, there would be two additional parameters to be optimised ,σ
and C, which are the kernel width and the regularisation parameter of the SVM classifier,
respectively, which would introduce much more computational complexity in our experi-
ments.

The selected voxels form connected regions in hippocampus and amygdala in the base-
line data and in posterior cingulate gyrus and superior parietal gyrus in the PET data. In the
longitudinal data, the selected voxels reflect hippocampus atrophy and ventricular enlarge-
ment. These findings are fully consistent with patterns of AD atrophy and hypometabolism
demonstrated in previous neuropathological and morphological studies [Braak et al., 1999,
Cuingnet et al., 2011, DeKosky et al., 2011]. Both hippocampus and amygdala are among
the first structures in the brain which are affected by Alzheimer’s disease [Braak and Braak,
1991]. The selected voxels in the longitudinal data are also highly meaningful because hip-
pocampal atrophy and ventricular enlargement over time has been shown to correlate with
disease progression [Jack et al., 2004]. The results also show that the patterns of brain atro-
phy and hypometabolism in baseline time-point and brain morphological changes during
follow-up are the same in both AD patients and MCI subjects.

Longitudinal FDG-PET data were not used in classification experiments as there are only
221 subjects with follow-up FDG-PET scans available in the ADNI database and the number
of individuals in AD, sMCI, pMCI and CN groups is too small for the presented method.
Ongoing work on the method is focused on modification of the approach for multi-class
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classification and combination of image modalities.
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