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Abstract Introduction: It is unknown if risk loci, identified by genome-wide association studies of late-onset
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Alzheimer’s disease (LOAD), are linked to commonmolecular mechanisms through epistatic effects.
Methods: We performed genome-wide interaction studies of five risk variants for LOAD followed
by enrichment analyses to find if there are pathways that simultaneously interact with more than
one variant. This novel approach was applied to four independent cohorts (5393 cases and 3746 con-
trols).
Results: We found enrichment of epistasis in gonadotropin-releasing hormone signaling with risk
single-nucleotide polymorphisms in APOE and MS4A6A (P value 5 3.7 ! 1025, P value 5
5.6! 1026); vascular smooth muscle contraction pathway was also enriched in epistasis with these
loci (P value5 9.6! 1025, P value5 2.4! 1027).MS4A6A risk variant also interacted with dilated
cardiomyopathy pathway (P value 5 3.1 ! 1027).
Discussion: In addition to APOE, MS4A6A polymorphisms should be considered in hormone trials
targeting gonadotropins. Interactions of risk variants with neurovascular pathways may also be
important in LOAD pathology.
� 2016 The Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Gene–gene interactions are widely recognized as a funda-
mental factor in the formation of heritable traits [1].
Although single genetic variants can have great influence
in the variability of specific traits, genes and their products
do not act alone. Genome-wide association studies (GWASs)
have successfully identified single-nucleotide polymor-
phisms (SNPs) associated with late-onset Alzheimer’s dis-
ease (LOAD) [2]. Several SNP–SNP interactions have also
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been reported [3]. However, it remains to establish if risk
SNPs share between themselves epistatic links to molecular
mechanisms relevant for the disease.

Here, we propose to characterize the genome-wide inter-
actions of specific risk SNPs to help identify their epistatic
role within the trait. This naturally suggests the integration
of genome-wide interaction associations with pathway anal-
ysis, which enables the search for pathways that interact with
more than one risk variant, giving a hint on those gene sets
that may couple with risk SNPs to potentiate their additive
effects. In addition, such integration can help to interpret
previous GWAS results as it can reveal links between risk
SNPs at the molecular level. We analyzed the interactions
of five risk variants of LOAD in a total 5393 cases and
3746 controls divided in four independent studies.
ights reserved.
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2. Methods

2.1. Data

Four studies from dbGAP [4] were analyzed. European
ancestry was selected in all four studies: (1) National Insti-
tute of Aging (NIA) study (accession: phs000168.v1.p1)
with 587 cases, 289 controls, and 590,247 SNPs; (2) Gen-
ADA study (phs000219.v1.p1) with 806 cases, 782 controls,
and 349,252 SNPs; and (3–4) Alzheimer’s Disease Genetics
Consortium (phs000372.v1.p1). We kept the two genotyped
batches, ADG12 and ADG3, as two distinct studies. In
ADG12, we analyzed 2686 cases, 935 controls, and
592,652 SNPs and, in ADG3, 975 cases, 578 controls, and
681,273 SNPs.

We analyzed SNPs with minor allele frequency (.1%)
and Hardy–Weinberg equilibrium (Z2 , 16). Genome-
wide principal components were calculated with Bio-
conductors’ SNPStats package first to remove outliers (.4
SD) and afterward to adjust for stratification.

2.2. Selection of risk SNPs

Previous GWASs have identified risk SNPs of LOAD in
dozens of genes [2,5–7]. We selected SNPs whose
AlzGene meta-analysis was based on 10 studies or more
[8] and which were genotyped or imputed with high accu-
racy in all the studies that we analyzed (Supplementary
Table 1). We selected in total 5 SNPs, including rs429358
in APOE, which is the SNP that defines the APOE ε4 allele
and which was independently genotyped in all the studies;
rs744373 (BIN1); rs3818361 (CR1); rs3851179 (PICALM);
and rs610932 (MS4A6A). From all selected SNPs, only
rs610932 was imputed in GenADA with IMPUTE2 with a
quality score of 0.998.

2.3. Genome-wide interaction study

We performed genome-wide interaction associations for
the five risk SNPs selected in NIA, GenADA, ADG12, and
ADG3. Fixing a risk SNP, genome-wide P values were ob-
tained from the likelihood ratios, c2 (1), between the logistic
models
y 5 SNP ! riskSNP 1 SNP 1 riskSNP 1 covariates and
y 5 SNP 1 riskSNP 1 covariates, where y was case-
control status, SNP with genotypes coded (1, 2, 3) varied
over the genome, and the covariates were sex, age of diag-
nosis if available, genome-wide principal components, and
the principal components times the risk SNP. Q-Q plots
were computed with SNPStats to verify correct adjustment
by population stratification. All models were fitted with
arm, an R-package for Bayesian regression which was robust
for SNP interactions with low frequency.

2.4. Enrichment of epistatic effects for each risk SNP

For each risk SNP and study, we looked for enriched
pathways with iGSEA4GWAS-v2 [9] that allows the
simultaneous use of multiple data sources, like Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways,
KEGG diseases, and BioCarta. The method is easily
adaptable to genome-wide interaction study (GWIS) re-
sults as its input is genome-wide P values. We mapped
genes to SNPs within 100 Kb distance and performed
pathway analyses for the GWAS and five GWIS within
each cohort. We then identified the pathways that signifi-
cantly interacted with more than one risk SNP. Fig. 1 illus-
trates the workflow. We set a stringent control for false-
positive findings by (1) performing meta-analyses over
studies at the pathway level and thus accounting for
between-cohort variability and (2) setting two types of
criteria for statistical significance and one criteria for
repeatability. First, we computed Fisher combined proba-
bility test over the studies for each pathway uncorrected
P value (e.g., combination of uncorrected P values) and
set Bonferroni’s significance threshold at 2.0 ! 1024 to
account for the 240 pathways tested. Second, we
computed Fisher test over studies for corrected P values
(e.g., combination corrected P values) and set the signifi-
cance threshold at .05. Third, we selected pathways with
repeatable nominal significance at each and every study.

We also performed comprehensive simulations to deter-
mine the power and false discovery rate for the enrichment
of epistatic effects under realistic scenarios (Supplementary
Methods).
3. Results

3.1. GWAS and enrichment of individual SNP effects

Supplementary Table 2 shows the most significant results
of the GWAS where a region in high linkage disequilibrium
(LD) with APOE, including TOMM40, was clearly associ-
ated with LOAD for the NIA, ADG12, and ADG3 studies
(Supplementary Figs. 1-4).

We performed enrichment analysis for the GWAS
results of each separate study by testing a total of 240 path-
ways from KEGG and BioCarta (Supplementary Table 3).
We observed four significant pathways for the combination
of uncorrected P values. Although our results validated
T cell receptors, neurotrophin and Wnt signaling pathways,
recently found to be significantly associated with LOAD in
an enrichment analysis of a GWAS meta-analysis [5], none
showed full repeatability over all the four studies.

3.2. GWIS and enrichment of epistatic effects of risk loci

GWIS analyses are shown in Supplementary Table 4 and
Supplementary Figs. 1-4. We observed one significant SNP–
SNP interaction at genome-wide level in one cohort.
rs610932 interacted SNPs within NEDD4, a gene previously
associated with dementia severity [10].

We assessed which pathways were enriched in epistatic
effects with the five risk SNPs considered. We thus conduct-
ed an enrichment of GWIS. Results are shown in Table 1. For



Fig. 1. Integration of genome-wide interaction study (GWIS) of risk variants with pathway analysis.We consider risk single-nucleotide polymorphisms (SNPs)

that have been found and validated in previous studies. A GWIS is performed for each risk SNP followed by its corresponding enrichment analysis. Conse-

quently, each risk SNP has an associated list of pathways enriched with epistatic effects. Pathways can have enriched epistasis with more than one risk SNP.
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combined uncorrected P values, we found five significant
pathways interacting with rs429358 (APOE), one with
rs744373 (BIN1), four with rs3851179 (CR1), three with
rs3851179 (PICALM), and 11 with rs610932 (MS4A6A).
Many of the pathways have been reported with enrichment
Table 1

Pathways enriched in interactions with selected risk loci for LOAD

Variant (gene) Pathway CU

rs429358 (APOE) ! KEGG: GnRH signaling pathway 3.7

KEGG: Long-term potentiation 1.6

KEGG: ARVC 2.9

KEGG: Calcium signaling pathway 1.1

KEGG: Vascular smooth muscle contraction 9.6

rs744373 (BIN1) ! KEGG: Focal adhesion 2.3

rs3818361 (CR1) ! KEGG: Spliceosome 1.0

KEGG: Type II diabetes mellitus 1.0

KEGG: Tight junction 1.0

KEGG: Axon guidance 1.4

rs3851179 (PICALM) ! KEGG: Cardiac muscle contraction 8.2

KEGG: Pentose and glucuronate

interconversions

1.0

KEGG: ARCV 2.6

rs610932 (MS4A6A) ! KEGG: Phosphatidylinositol signaling

system

1.0

KEGG: Dilated cardiomyopathy 3.1

BioCarta: HDAC pathway 6.4

KEGG: Vascular smooth muscle

contraction

2.4

KEGG: GnRH signaling pathway 5.6

KEGG: Hypertrophic cardiomyopathy HCM 1.0

BioCarta: NKT pathway 1.7

KEGG: Galactose metabolism 8.6

BioCarta: PGC1A pathway 1.6

KEGG: Long-term depression 1.4

Abbreviation: ARVC, arrhythmogenic right ventricular cardiomyopathy

NOTE. The table shows (1) all significant associations at Bonferroni level (,2.0

corrected P values (CC P value), where corrected P values are gene-set false dis

nominal P value in all the four studies in bold in the last four columns. Pathway n

Pathway names in italics are in epistasis with more than one SNP only under CU
analysis of individual SNP effects [5,11], enlarging our
previous list of enriched pathways for GWAS. We found
three interacting pathways that consistently replicated in
all four studies and were significant for the combined
corrected P values; most notably, gonadotropin (GnRH)
P value CC P value ADG12 ADG3 GENADA NIA

8E25 .02 0.001 0.046 0.025 0.033

3E25 .02 0.001 0.10 0.15 0.001

8E25 .04 0.001 0.20 0.00 0.15

2E24 .06 0.01 0.09 0.16 0.001

6E25 .07 0.001 0.27 0.22 0.002

3E25 .24 0.002 0.01 0.89 0.001

7E24 .03 0.04 0.003 0.004 0.31

9E24 .07 0.02 0.002 0.12 0.02

7E24 .08 0.38 0.001 0.09 0.004

7E24 .19 0.13 0.03 0.06 0.001

4E25 .01 0.07 0.44 0.001 0.003

8E24 .03 0.52 0.005 0.001 0.05

6E25 .08 0.002 0.04 0.001 0.30

2E24 .009 0.01 0.001 0.03 0.36

2E27 .02 0.001 0.01 0.010 0.001

9E26 .02 0.15 0.001 0.002 0.02

0E27 .03 0.01 0.008 0.001 0.001

0E26 .05 0.01 0.009 0.010 0.004

5E24 .07 0.004 0.13 0.25 0.001

5E24 .11 0.20 0.06 0.02 0.001

3E25 .12 0.005 0.01 0.79 0.002

9E24 .14 0.41 0.03 0.02 0.001

3E24 .15 0.02 0.01 0.02 0.07

! 1024) for the combined uncorrected P values (CU P value); (2) combined

covery rates as given by iGSEA4GWAS; and (3) significant associations at

ames in bold face are significant under all the three criteria for significance.

P value.
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signaling interacted with both rs429358 and rs610932.
Vascular smooth muscle contraction also interacted with
rs610932 and rs429358, whereas dilated cardiomyopathy
interacted only with rs610932.

As expected, simulations showed that power increases
with number of genes involved in the pathway, sample
size, and odds ratio (OR) of interaction (Supplementary
Figs. 5-9). The method is well powered to detect epistatic in-
teractions with pathways with number of genes .46, num-
ber of subjects .1000, and interaction OR .1.1
(Supplementary Fig. 6).
4. Discussion

Hormonal processes underlying LOAD are gaining re-
newed interest [12,13], as GnRH function in the brain has
been recently linked to aging [14]. A recent study has shown
that increasing levels in plasma of luteinizing hormone,
whose secretion is regulated by GnRH, increment brain am-
yloid burden, which depended on the presence of APOE ε4,
i.e. rs429358 [15]. Our assessment of enriched epistasis re-
vealed that GnRH signaling robustly interacts with
rs429358 providing genomic support to this observation.
Notably, LOAD associations with GnRH pathway have
also been reported for genomic and gene expression data
[5,16]. Our results also validate those previous findings.
As leuprolide acetate, a GnRH agonist, has been recently
tested in a phase 2 clinical trial of LOAD [17], our results
suggest that both APOE and MS4A6A polymorphisms
should be considered in the assessment of treatment
response.

A genomic pathway analysis of an imaging endopheno-
type for LOAD showed a significant association with
vascular smooth muscle contraction [11]. Brain-blood bar-
rier damage can impair amyloid beta clearance from the
brain, whereas cerebral blood flow reduction has been asso-
ciated with the APOE ε4 allele in undemented individuals
[18,19]. Our results underline the need to test other risk
variants in addition to rs429358 (APOE), such as rs610932
(MS4A6A), in the evaluation these effects. We also found
that the MS4A6A risk locus significantly interacted with
dilated cardiomyopathy signaling, for which a missense
mutation in PSEN1 shows complete penetrance [20]. Stron-
ger enrichment associations of epistasis could be obtained
with a broader selection of risk SNPs.

We found a number of pathways with both repeatable in-
teractions in all cohorts and statistical significance under
multiple comparisons. Adoption of repeatability criteria
can help in identifying the most consistent observations,
not governed only by few strong associations. Although
we adopt the conservative approach of full repeatability,
on yet nominal associations, other measures of repeatability
should be investigated. We also found that the enrichment of
epistasis has greater power compared with enrichment of
single SNP associations in cohorts smaller than
5000 (Supplementary Fig. 9) and increased the number of
associated pathways (Supplementary Tables 3 and 4).
Although these properties remain to be seen in other imple-
mentations of enrichment algorithms, an important gain of
this novel analysis approach is that it links specific risk var-
iants to gene pathways, helping to study the role of risk SNPs
in the etiology of the disease through epistasis.
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RESEARCH IN CONTEXT

1. Systematic review: We used the catalog of published
GWAS to look for the studies that have reported the
strongest SNP associations with LOAD. We also
used PubMed and Google Scholar to search for arti-
cles under the terms “GnRH” and “Alzheimer’s.”
Relevant studies involving our findings are cited.

2. Interpretation: Enrichment of epistatic effects, here
implemented, can identify molecular pathways that
interact with more than one risk locus. We observed
that risk variants within APOE and MS4A6A
converged with their interactions in GnRH signaling,
a current target for pharmacologic interventions for
LOAD. Evaluation of such trials should consider po-
tential interactions with both APOE and MS4A6A
polymorphisms.

3. Future directions: Deepening our understanding of
the role of GnRH signaling in LOAD could inform
which individuals would respond best to targeted
hormone treatments. Enrichment of epistatic effects
can be an important tool to interpret previous
GWAS findings, helping to link risk variants at
pathway level.
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