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Abstract
In the current decade, advances in health care are attracting widespread interest due to their contributions to people longer

surviving and fitter lives. Alzheimer’s disease (AD) is the commonest neurodegenerative and dementing disease. The

monetary value of caring for Alzheimer’s disease patients is involved to rise dramatically. The necessity of having a

computer-aided system for early and accurate AD classification becomes crucial. Deep-learning algorithms have

notable advantages rather than machine learning methods. Many recent research studies that have used brain MRI scans

and convolutional neural networks (CNN) achieved promising results for the diagnosis of Alzheimer’s disease. Accord-

ingly, this study proposes a CNN based end-to-end framework for AD-classification. The proposed framework achieved

99.6%, 99.8%, and 97.8% classification accuracies on Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset for the

binary classification of AD and Cognitively Normal (CN). In multi-classification experiments, the proposed framework

achieved 97.5% classification accuracy on the ADNI dataset.

Keywords AD-classification � Convolutional neural network (CNN) � Magnetic resonance imaging (MRI) �
Adaptive momentum estimation (Adam) � Glorot uniform weight initializer

1 Introduction

Alzheimer’s Disease (AD) is a progressive brain disease. It

is a neurological disorder in which the death of brain cells

causes memory loss and cognitive decline. Also, it is

considered the most common type of dementia and has an

incredibly negative impact on the individual and social life

of humans [31, 33, 42]. According to recent statistics, there

are more than 46.8 million people now living with

dementia, 44 million diagnosed with Alzheimer’s. The

number will be increased to 131.5 million in 2050 [31].

Mild Cognitive Impairment (MCI) is a transitional state

from Cognitively Normal (CN) to dementia, which has a

10% conversion rate to AD [11].

AD-related neuropathological markers are investigated

many years before clinical manifestation of memory

symptoms [10, 13, 36], which suggests that AD develop-

ment could be predicted before clinical onset via in vivo

biomarker analysis. PET and MR imaging in addition to

blood or cerebrospinal fluid (CSF) are examples for

biomarkers [4, 17, 26, 38]. MRI is commonly used in AD

diagnosis and classification. MRI measures have many

advantages rather than the compared methods. For exam-

ple, it does not use ionizing radiation, of being noninva-

sive, less expensive, and more widely spread in most of the

medical environments. Besides, MRI markers are capable

of gathering multimodal information within the same

scanning session.

Previous studies for classification of AD patients have

used several machine learning methods applied to struc-

tural MRI [32]. Support Vector Machine (SVM) is the most

commonly used machine learning method [32]. SVM

extracts high-dimensional, informative features from MRI

to build the classification models that automate the AD

diagnosis. Classification research studies that use machine
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learning consists of four steps: feature extraction, feature

selection, dimensionality reduction, and feature-based

classification algorithm selection. This approach has many

drawbacks since it needs complex image pre-processing,

which consumes much time and demands heavy compu-

tations [21]. In addition, the reproducibility of these

approaches is also considered as a challenge’s issue [34].

Deep-learning algorithms have notable advantages

rather than conventional machine learning methods. For

example, they do not need image pre-processing and can

automatically get an optimal representation of the data

from the raw images without requiring prior feature

selection. This leads to having less time consuming, more

objective, and less bias-prone processes [23, 39]. Accord-

ing to the previous discussion, deep-learning algorithms

well suits in dealing with large-scale, high-dimensional

medical imaging analysis [30]. The research studies

showed that Convolutional Neural Networks (CNN), which

is considered a deep-learning approach, outperforms the

existing machine learning approaches [23]. A typical CNN

consists of three main layers, the Convolutional layer, the

Pooling layer, and the Fully connected layer as shown in

Fig. 1.

This paper proposes a CNN based end-to-end frame-

work with detailed steps starting from image acquisition

landing at AD-classification to classify scanned MRI

images to predict whether they have Alzheimer’s or not,

and to which degree, using a machine learning application

with the help of digital image processing. The proposed

framework achieves the following:

• Applying adaptive thresholding in the digital image

processing stage. Most of the state-of-art techniques

used the conventional thresholding operator which uses

a global threshold for all pixels. On the other hand, in

adaptive thresholding, the threshold is dynamically

changed over the image. This can handle the change of

lighting conditions in the image.

• Performing data augmentation to expand the size of a

training dataset by creating modified versions of images

in the dataset. This should improve the trained model if

the available samples are relatively small. It should

increase the accuracy of the framework and decrease

the overfitting.

• Initializing the network weights using Glorot Uniform

weight initializer [15]. This enables initializing the

weights of the network in such a way the neuron

activation functions are not starting in saturated or dead

regions. This leads to achieving quicker convergence

and higher accuracy.

• Using Adaptive Momentum Estimation (Adam) opti-

mizer in the optimization process. It is appropriate for

dealing with neuroimaging data since it perfects match

with sparse gradients in noisy environments. Applying

Adam optimizer in AD images achieves quicker

convergence.

ADNI datasets are used to verify the proposed framework.

The simulation results show that the classification accuracy

of the proposed framework outperforms the other state-of-

the-art approaches.

1.1 Related work

There are two levels of AD-classification; binary-classifi-

cation in which the technique specifies CN against AD or

MCI and multi-classification which classifies the disease in

which level (CN, AD, MCI,.. etc). Table 1 shows the most

recent techniques in AD-classification, specifying classifi-

cation technique, class, dataset, and accuracy of detection.

Approaches [2, 3, 7, 8, 14, 37, 43] use traditional Computer

vision techniques, while approaches

[1, 5, 19, 24, 25, 29, 35, 41] use deep CNN for achieving

the whole process.

In [43], they proposed a multivariate approach

employing wavelet entropy and predator-prey Particle

swarm for AD-classification. Single-hidden-layer Neural

Network was used as the classifier. They achieved about

92.73% of accuracy for binary classification (AD vs. CN).

In [8] images are segmented into Gray Matter (GM), White

Fig. 1 A typical CNN for image processing
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Matter (WM), and (CSF). Similarity matrices are built

using the GM-segmented Regions of Interest (ROI). The

AD-classification is based on the feature-extraction of the

GM similarity matrix. To improve the accuracy of AD-

classification, the Functional Activities Questionnaire

(FAQ) and SVM are combined. The accuracy achieved is

84.07% for binary classification (AD vs. CN).

Brain dividing based on different atlases and combining

features extracted from these anatomical parcellations is

considered in [3]. They used baselines images of structured

Table 1 Recent AD-classification techniques

Approach Year Technique Dataset Classification Accuracy

%

Zhang et al. [43] 2017 Multivariate Approach OASIS AD vs. CN 92.73

Beheshti et al. [8] 2017 SVM ADNI AD vs. CN 84.07

Beheshti et al. [7] 2017 SVM ADNI AD vs. CN 93.01

pMCI vs. sMCI 75

Sorensen et al. [37] 2017 LDA ADNI, AIBL

CADDementia

CN vs. MCI vs.

AD

62.7

Asim et al. [3] 2018 SVM ADNI AD vs. CN 94

MCI vs. CN 76.5

AD vs. MCI 75.5

Altaf et al. [2] 2018 SVM KNN Decision Tree Ensemble ADNI AD vs. CN 98.4

AD vs. MCI 81.2

MCI vs. CN 86.7

CN vs. MCI vs.

AD

79.8

Duraisamy et al. [14] 2018 based Weighted Probabilistic Neural

Network

ADNI AD vs. CN 98.63

MCI vs. CN 95

AD vs. MCI 96.4

Payan et al. [29] 2015 CNN ADNI CN vs. MCI vs.

AD

85.53

AD vs. CN 95.39

AD vs. MCI 82.24

MCI vs. CN 90.13

Sarraf and Tofighi [35] 2016 CNN ADNI AD-CN 98.84

Wang et al. [41] 2018 CNN OASIS AD vs. CN 96.43

Liu et al. [25] 2018 CNN ADNI AD vs. CN 93.26

MCI vs. CN 74.34

Aderghal et al. [1] 2018 CNN ADNI AD vs. CN 92.5

AD vs. MCI 85

MCI vs. CN 80

Jain Rachana et al.

[19]

2019 CNN ADNI CN vs. MCI vs.

AD

95.73

AD vs. CN 99.14

AD vs. MCI 99.30

MCI vs. CN 99.22

Bumshik Lee et al.

[24]

2019 CNN OASIS ADNI AD vs. CN 95.35

AD vs. CN 98.74

CN vs. MCI vs.

AD

98.06

Basaia et al. [5] 2019 CNN ADNI AD vs. CN 99.2

c-MCI vs. CN 87.1

AD vs. c-MCI 75.4
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MRI (sMRI) and F-fluorodeoxyglucose positron emission

tomography (FDG-PET) to calculate average GM density

and average relative cerebral metabolic rate for glucose

Principal Components Analysis (PCA) was used to reduce

the dimensionality of the features. SVM is used for binary

classification between each couple of statuses with accu-

racies 94% for AD versus CN , 76.5% for MCI versus CN,

and 75.5% for AD versus MCI.

Clinical data alongside with MRI are used to generate a

hybrid feature vector [2]. MRIs are segmented into three

regions GM, WM, and CSF. Texture features are extracted

from both whole and segmented MRIs using different

techniques. Clinical features are extracted using techniques

including FAQ, Neuropsychiatric inventory and Geriatric

depression scale. Both texture and clinical features are

taken as input for AD-classification. Classifiers such as

SVM, Ensemble, KNN, and Decision Trees are used to

carry on binary and multiclass classification. Accuracies

achieved are 98.4% for AD versus CN, 81.2% for AD

versus MCI, 86.7% for MCI versus CN, and 79.8% for

multiclass.

In [14] a combination between Fuzzy C-means and

Weighted Probabilistic Neural Network is used for classi-

fication. The framework begins with extracting ROIs

related to Hippo-Campus and Posterior Cingulate Cortex

from brain images. Suspicious samples are removed from

the training data to enhance classification performance.

The accuracies achieved are 98.63%, 95.4%, and 96.4% for

AD versus CN, MCI versus CN, and AD versus MCI

respectively.

Convolution Neural Networks (CNN) are used to build a

learning algorithm to classify MRI images [29]. 3D Con-

volutions are applied to the whole MRI image. Classifi-

cation results obtained using a 3-way classifier (CN vs. AD

vs. MCI) with an accuracy of 89.47. Binary classifiers

achieved 95.39%, 92.11%, and 86.84% for AD versus CN,

MCI versus CN, and AD versus MCI respectively. In [35]

deep-learning algorithm is used to classify AD subjects.

Scale and sift-invariant low to high-level features are

extracted from a massive volume of whole-brain data using

CNN architecture. Binary classification (AD vs. CN)

achieved 98.4% of accuracy. A deep-learning approach

based on CNN is proposed to detect AD subjects [41].

Leaky Rectified Linear unit and max pooling are used in

designing the CNN. The approach achieved an accuracy of

97.65% in binary classification (AD vs. CN).

In [25] MRI and PET images are used as input to cas-

caded CNNs to classify AD, MCI, and CN cases. Multiple

3D-CNNs are constructed to extract features from local

brain images. An upper high-level 2D-CNN followed by

softmax layer generates multimodal correlation features

from extracted features. Binary classification is performed

to classify the disease case (AD, MCI) from CN. The

accuracy of (AD vs. CN) is 93.26% and for (MCI vs. CN)

74.34%. Cross-modal transfer learning from structural MRI

to Diffusion Tensor Imaging modality is used for AD-

classification [1]. The combined modalities are taken as

input to multi CNNs to perform the classification process.

The method achieved accuracies of 92.5%, 85.0% and

80.0% for AD versus CN, AD versus MCI, and MCI versus

CN respectively.

Jain et al. [19] proposed a CNN transfer learning

architecture for AD diagnosis. They used the pre-trained

VGG-16 to classify AD. Their experiment results are based

on (ADNI) database. The 3-way classification accuracy of

their work is 95.73% for the validation set.

Lee et al. [24] proposed a deep CNN data permutation

scheme for classification AD using sMRI. They proposed

slice selection to achieve the benefits of AlexNet. Their

experimental results showed that their data permutation

scheme improved the overall classification accuracies for

AD classification. The classification accuracies for both

binary and ternary classification on ADNI datasets are

98.74% and 98.06% respectively on the ADNI dataset.

Basaia et al. [5] used 3D sMRI (T1) and built a CNN-

based technique to predict MCI that will be converted to

AD in a specific period. They showed that their technique

is dataset independent. Additionally, it showed their tech-

nique is capable of differentiating AD, MCI patients from

CN.

The rest of this paper is organized as follows: The

proposed framework is described in Sect. 2. Section 3

presents the experimental results. Finally, in Sect. 4, the

paper is concluded.

2 Materials and methods

This paper proposes an end-to-end framework for AD-

classification based on CNN. The framework consists of

five main layers, as shown in Fig. 2, each layer contains its

steps and algorithms. The layers of the framework are: (1)

Acquisition and Annotation, (2) Preprocessing and Aug-

mentation, (3) Cross-validation, (4) CNN model, and (5)

AD-classification.

The main contributions of this framework are:

• Applying adaptive thresholding in the second layer.

• Performing data augmentation in the second layer.

• Initializing the network weights using Glorot Uniform

weight initializer in the fifth layer.

• Using Adam optimizer in the optimization process in

the fifth layer.

In the first layer, named Acquisition and Annotation, MRI

images are acquired in files with an ’’*.nii’’ extension. Each

one of the 3D images is converted to a set of ’’*.png’’ files
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through format converter. Only images that contain the full

shape of the brain are used and other images are ignored.

Images are then annotated with classes to facilitate future

processing. A sample of the annotation file (10 records) is

shown in Table 2.

The second layer ’’Preprocessing and Augmentation’’

takes the annotated im- ages as input. It starts with gray-

Fig. 2 The proposed framework
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scale conversion then adaptive thresholding. Most of the

state-of-art techniques use the conventional thresholding

operator which uses a global threshold for all pixels. On the

other hand, in adaptive thresholding, the threshold is

dynamically changed over the image. The threshold value

at each pixel location depends on the neighboring pixel

intensities. For each pixel, the threshold value is calculated.

If the calculated value is below the threshold it is consid-

ered as a background value, otherwise, it is considered as

foreground value.

The next digital image processing steps are cropping and

filtration. After the filtration process, gray-scale images of

size (256, 256) are generated. Figure 3 shows a sample

image from the generated images. A transformer is used to

resize the produced images to (128, 128) and (64, 64).

If data augmentation is required then the data augmen-

tation generator is initialized. Among several augmentation

factors, the framework applies horizontal flipping, shear-

ing, shifting, rotating, and zooming. Data augmentation

helps in creating new and different training examples to

improve the trained network. Algorithm 1 is the core

engine in the second layer.

The third layer in the framework is the cross-validation

strategy used to train the CNN. Data are divided, randomly,

into three sets; training set, validation set, and testing set.

The whole dataset is divided into (95%) training set and

(5%) testing set. The training set is further divided into

(90%) training and (10%) validation sets. The main

objective of cross-validation is obtaining the best values for

training parameters to avoid overfitting.

The fourth layer represents the CNN model used in the

study. The CNN architecture consists of three convolu-

tional layers and max-pooling is performed after each

convolutional layer. Several parameters have an impact on

the model such as activation function, loss function, opti-

mization function, learning rate, and sample size. Different

values of these parameters are used in the experiments.

Table 2 A sample of the

annotation file
Subject ID Sex DX Group Age Description Structure

002_S_0413 F Normal 76.4 MPR; ; N3; Scaled  MPRAGE SENS Brain

002_S_0559 M Normal 79.5 MPR-R; ; N3  MPRAGE SENS Brain

002_S_0559 M Normal 79.5 MPR-R; ; N3  MPRAGE SENS Brain

002_S_0559 M Normal 79.5 MPR; ; N3  MPRAGE SENS Brain

002_S_0559 M Normal 79.5 MPR; ; N3; Scaled_2  MPRAGE SENS Brain

002_S_0559 M Normal 79.5 MPR; ; N3; Scaled  MPRAGE SENS Brain

002_S_0559 M Normal 79.5 MPR; ; N3  MPRAGE SENS Brain

002_S_0816 M AD 71 MPR; ; N3; Scaled  MPRAGE Brain

002_S_0816 M AD 71 MPR; ; N3  MPRAGE Brain

002_S_0816 M AD 71 MPR; ; N3; Scaled_2  MPRAGE Brain

002_S_0816 M AD 71 MPR-R; ; N3  MPRAGE REPEAT Brain

Fig. 3 A sample image from the generated images

Neural Computing and Applications

123



The activation function helps in solving complex prob-

lems via performing non-linear transformation to the input

[28]. Table 3 summarizes the most common activation

functions with their derivatives.

In the proposed framework, activation functions (sig-

moid, tanh, and ReLU) are examined. SoftMax is used for

the output layer to enhance the classification process.

Batch normalization is tightly coupled with activation. It

normalizes the previous activation to improve the perfor-

mance and stability of CNN [18].

The fifth layer is the classification layer. Glorot initial-

izer is used to initialize the network weights to achieve

quicker convergence and higher accuracy. The training

process starts to get the optimal CNN. Optimization

function must be applied to minimize the loss (cost)

function and obtain a robust model.

Loss function plays a major role in the training process

in neural networks. It is used to measure the inconsistency

between the predicted value and the actual value [20]. The

target is to decrease the value of loss function. There are

several loss functions as shown in Table 4. The cross-en-

tropy loss function is used in the proposed framework since

it achieves better performance rather than Mean Squad

Error (MSE).

The decision boundary in a classification task is large (in

comparison with regression). Using Cross-Entropy loss

function after the softmax layer speeds the convergence of

the neural network due to the gradient vanishing problem.

In other words, it is more suitable for classification prob-

lems [16].

The optimization function aims at minimizing the loss

function. It achieves this goal by changing the parameters

(weights) in the model at the training phase. Most of the

optimization functions are enhancements of Gradient

Descent (GD) [9]. GD is a first-order optimization method.

It only takes the first derivatives of the loss function into

Table 3 Summary of common

activation functions
Function Mathematical Derivative

Sigmoid f ðxÞ ¼ r ¼ 1
1þe�x f 0ðxÞ ¼ f ðxÞð1� f ðxÞÞ ¼ e�x

ðe�xþ1Þ2

Tanh f ðxÞ ¼ tanhðxÞ ¼ ex�e�x
exþe�x f 0ðxÞ ¼ 1� f ðxÞ2

ELU
f ðxÞ ¼ x if x[ 0

aðex � 1Þ if x\0

�
f 0ðxÞ ¼ 1 if x[ 0

f ðxÞ þ a if x� 0

�

ReLU
f ðxÞ ¼ x if x[ 0

0 if x� 0

�
f 0ðxÞ ¼ 1 if x[ 0

0 if x� 0

�

LeakyRelu
f ðxÞ ¼ x if x[ 0

ax if x� 0

�
f 0ðxÞ ¼ 1 if x[ 0

a if x� 0

�

SoftMax f ðxÞ ¼ r ¼ exiPk

j¼1 e
xj

f 0ðxÞ ¼ rðxjÞð1� rðxiÞÞ

Table 4 Summary of loss

functions
Function Formula

Mean square error/quadratic loss L ¼ 1
n

Pn
i¼1ðyðiÞ � ŷðiÞÞ2

L2 loss L ¼
Pn

i¼1ðyðiÞ � ŷðiÞÞ2

Mean absolute error L ¼ 1
n

Pn
i¼1

��yðiÞ � ŷðiÞ
��

L1 loss L ¼
Pn

i¼1
��yðiÞ � ŷðiÞ

��
Mean bias error L ¼ 1

n

Pn
i¼1ðyðiÞ � ŷðiÞÞ

Hinge loss/multi class SVM loss L ¼ 1
n

Pn
i¼1 maxð0;m� yðiÞ � ŷðiÞÞ

Squared hinge L ¼ 1
n

Pn
i¼1

�
maxð0; 1� yðiÞ � ŷðiÞÞ

�2
Cross entropy loss L ¼ � 1

n

Pn
i¼1

�
yðiÞ logðŷðiÞÞ þ ð1� yðiÞÞ logð1� ŷðiÞÞ

�
Negative log likelihood L ¼ � 1

n

Pn
i¼1 logðŷðiÞÞ

Poisson loss function L ¼ 1
n

Pn
i¼1

�
ŷðiÞ � yðiÞ � logðŷðiÞÞ

�
Cosine proximity loss function

L ¼ � y�ŷ
jjyjj2 �jjŷjj2

¼ �
Pn

i¼1 y
ðiÞ �ŷðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
yðiÞ
�2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
ŷðiÞ
�2

q
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account. This causes slow convergence and sticking in the

local minimum. GD is given by Eq. 1.

h ¼ h� grJðhÞ ð1Þ

where h is the weights vector, g is the learning rate, r is

the gradient, and J is cost function or loss function.

Another very popular technique that is used along with

GD is called Momentum [27]. Instead of using only the

gradient of the current step to guide the search, it also

accumulates the gradient of the past steps to determine the

direction to go. Momentum is given by Eq. 2.

h ¼ h� grJðhÞ þ cmt ð2Þ

where mt is the gradient retained from previous iterations

and c is the ’’Coefficient of Momentum,’’ the percentage of

the gradient retained every iteration.

The optimization function used in the proposed frame-

work is Adam. It is an optimization algorithm for

stochastic gradient descent for training deep-learning

models [22]. Additionally, it combines RMSprop and

stochastic Gradient Descent with momentum. Also, it gets

the advantage of momentum since it uses the moving

average of the gradient instead of the gradient itself.

Moreover, it adapts the learning rate for each weight of the

neural network by estimating the first and the second

moments of the gradient. So, using Adam optimizer fasten

the convergence process.

It stores an exponentially decaying average of past

squared gradients (mt) along with an exponentially decaying
average of past squared gradients (mt).

mt ¼ b1mt�1 þ ð1� b1ÞrJðhÞ
mt ¼ b2mt�1 þ ð1� b2ÞðrJðhÞÞ2

b1 and b2 are the exponential decay rates, mt and mt are
estimates of the first momentum (the mean) and the second

momentum (the uncentered variance) of the gradients

respectively. The authors of Adam observed that mt and mt
are biased toward zero. They computed bias-corrected

estimates which are used in the Adam update rule Eq. 3:

m̂t ¼
mt

1� b1
t ; m̂t ¼

mt
1� b2

t

htþ1 ¼ht �
gffiffiffiffiffiffiffiffiffiffiffiffi
m̂t þ �
p m̂t

ð3Þ

where � is a small term preventing division by zero.

3 Results

The experiments are performed on Google Colab which

offers GPU backend, 25.51 GB high-speed RAM and 68.40

GB disk for free. The codes are written in Python

programming language and Keras package is used for deep

learning.

The kernel sizes are (3,3) and (2,2) for convolutional

and max-pooling layers respectively. Dropout is optional

and applied after the first and third convolutional layers

with a fraction of 0.2 and after the 64-dense layer with a

fraction of 0.2. ReLU and SoftMax are used for hidden and

output layers respectively.

The classification in the first category of experiments is

a binary classification. The effect of dataset size, batch

size, and the dropout technique is investigated with dif-

ferent image sizes and data augmentation. The classifica-

tion in the second category of experiments is multi-

classification. The effect of sample size, learning rate and

activation function is investigated with different numbers

of instances.

3.1 Dataset

Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). As such, the investi-

gators within the ADNI contributed to the design and

implementation of ADNI and/or provided data but did not

participate in analysis or writing of this report1.

3.2 Experiment category 1

The Experiments in this category measure several perfor-

mance parameters. These parameters can be interpreted

from the confusion matrix. Table 5 shows the confusion

matrix for binary classification. Among these parameters,

accuracy has the most attention. It is the fraction of pre-

dictions the model classified correct as in Eq. 4,

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð4Þ

Recall is the fraction of actual positive predictions classi-

fied correctly, often referred to as sensitivity or true posi-

tive rate as in Eq. 5,

Recall ¼ TP

TPþ FN
ð5Þ

Precision is the fraction of positive predictions as in Eq. 6,

Precision ¼ TPþ TN

TPþ FP
ð6Þ

The receiver operating characteristic (ROC) curve is the

curve resulted form plotting True Positive Rate (TPR)

versus False Positive Rate (FPR) where,

1 A complete listing of ADNI investigators can be found at: ’’http://

adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowl

edgement_List.pdf.’’
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TPR ¼ TP

TPþ FN
;FPR ¼ FP

FPþ TN

The area under ROC curve (AUC) is a principal parameter

in classification performance estimation. Loss is the num-

ber indicating how bad the model classification was. The

cross-entropy loss is recorded in the results, as stated in the

previous section. Dice Similarity Coefficient (DSC) , often

referred to as F1-score, combines both the precision and

recall into a single parameter as in Eq. 7,

DSC ¼ 2� Precision� Recall

Precision þ Recall
¼ 2TP

2TPþ FPþ FN
ð7Þ

Table 6 shows the effect of different dataset sizes and batch

sizes with / without applying Dropout. The image size in

this experiment is (128, 128) with no data augmentation.

Dataset split sizes range from (0.1–0.5). Batch size values

are (18, 32, 64, 128, 256). The accuracies, without Drop-

out, ranges from 99.953–100%. The average accuracy of

all results without applying Dropout is 99.981%. The

accuracies, with Dropout, have the same range, while the

average is 99.987%.

Table 7 shows the effect of different dataset sizes and

batch sizes with / without applying Dropout. The image

size, in this case, is (64, 64) with no data augmentation.

Dataset split sizes range from (0.1 to 0.5).

Batch size values are (18, 32, 64, 128, 256). The accu-

racies, without Dropout, range from 95.96 to 98.26%. The

Table 5 Confusion matrix for

binary classification
Predicted positive (AD) Predicted positive (NC)

Actual positive (AD) True positive (TP) False negative (FN)

Actual positive (NC) False positive (FP) True negative (TN)

Table 6 Performance parameters of the first experiment

Dataset split size Batch size With Dropout Without Dropout

Accuracy Precision Recall AUC Loss DSC Accuracy Precision Recall AUC Loss DSC

0.1 18 99.95 99.95 99.95 1.000 0.001 1.000 100.00 100.00 100.00 1.000 0.000 1.000

32 99.95 99.95 99.95 1.000 0.001 1.000 100.00 100.00 100.00 1.000 0.000 1.000

64 100.00 100.00 100.00 1.000 0.001 1.000 100.00 100.00 100.00 1.000 0.000 1.000

128 100.00 100.00 100.00 1.000 0.000 1.000 99.95 99.95 99.95 1.000 0.001 1.000

256 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

0.2 18 100.00 100.00 100.00 1.000 0.000 1.000 100.00 99.99 99.99 1.000 0.000 1.000

32 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

64 99.95 99.95 99.95 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

128 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

256 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

0.3 18 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

32 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

64 99.95 99.95 99.95 1.000 0.004 1.000 100.00 100.00 100.00 1.000 0.000 1.000

128 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

256 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

0.4 18 100.00 100.00 100.00 1.000 0.000 1.000 99.95 99.95 99.95 1.000 0.002 1.000

32 100.00 100.00 100.00 1.000 0.000 1.000 99.95 99.95 99.95 1.000 0.002 1.000

64 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

128 100.00 100.00 100.00 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

256 99.95 99.95 99.95 1.000 0.000 1.000 100.00 100.00 100.00 1.000 0.000 1.000

0.5 18 99.95 99.95 99.95 1.000 0.002 1.000 99.95 99.95 99.95 1.000 0.001 1.000

32 99.95 99.95 99.95 1.000 0.003 1.000 99.95 99.95 99.95 1.000 0.002 1.000

64 99.95 99.95 99.95 1.000 0.001 1.000 100.00 100.00 100.00 1.000 0.000 1.000

128 99.95 99.95 99.95 1.000 0.001 1.000 99.95 99.95 99.95 1.000 0.001 1.000

256 99.95 99.95 99.95 1.000 0.001 1.000 100.00 100.00 100.00 1.000 0.001 1.000
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average accuracy of all results without applying Dropout is

97.18%.

The accuracies, with Dropout, range from 94.68 to

97.83%. The average accuracy, in this case, is 96.42%. The

proclaimed results show that images with size (128, 128)

have better outcomes in all the experiments.

3.2.1 Data augmentation

The experiments in this section are carried out to examine

the data augmentation effect on the classification process.

Four images are generated from a single image. The total

number of images in the dataset, after augmentation,

reaches 211,655. Data augmentation factors are horizontal

flipping, shearing with a range of 0.2, shifting with a range

of 0.1, rotating with 15 degrees, and zooming with a range

of 0.2. Table 8 shows the effect of different dataset sizes

and batch sizes with / without applying Dropout. The

image size, in this case, is (64, 64). Dataset split sizes range

from (0.1 to 0.5). batch size values are (18, 32, 64, 128,

256).

Figure 4a shows the relation between accuracy and

batch size for different dataset split sizes without applying

Dropout. The chart shows that the accuracy increases with

the increase of batch size until the batch size is 64, then it

starts to decrease once again. The greatest accuracy is

recorded at batch size 64 and a split size of 0.1. The same

observation can be noticed in Fig. 4b. It represents the

same relation but with applying Dropout. The accuracy

increases with the batch size until 64 then decreases. The

accuracy is better in the case of applying Dropout.

Figure 5 shows the relation between accuracy and

dataset split size in both cases (with and without Dropout).

The figure shows that the accuracy decreases with the

increase of Dataset split size. The best accuracy is obtained

at split size 0.1. The accuracy achieved in the case of

applying Dropout is better than achieved without Dropout.

Table 7 Performance parameters of the second experiment

Dataset split size Batch size With dropout Without dropout

Accuracy Precision Recall AUC Loss DSC Accuracy Precision Recall AUC Loss DSC

0.1 18 97.61 97.61 97.61 0.995 0.105 0.976 97.54 97.54 97.54 0.997 0.119 0.975

32 97.85 97.85 97.85 0.995 0.090 0.978 97.33 97.32 97.32 0.997 0.121 0.973

64 98.26 98.26 98.26 0.996 0.056 0.983 97.83 97.82 97.82 0.998 0.095 0.978

128 98.16 98.16 98.16 0.996 0.066 0.982 97.59 97.59 97.59 0.998 0.111 0.976

256 98.18 98.17 98.17 0.996 0.053 0.982 96.91 96.91 96.91 0.997 0.131 0.969

0.2 18 97.71 97.71 97.71 0.996 0.131 0.977 96.48 96.47 96.47 0.997 0.162 0.965

32 97.71 97.71 97.71 0.996 0.090 0.977 96.89 96.89 96.89 0.997 0.137 0.969

64 97.83 97.83 97.83 0.996 0.083 0.978 97.35 97.35 97.35 0.997 0.112 0.974

128 97.81 97.81 97.81 0.996 0.077 0.978 97.22 97.22 97.22 0.997 0.113 0.972

256 97.94 97.94 97.94 0.996 0.079 0.979 97.64 97.63 97.63 0.997 0.092 0.976

0.3 18 96.98 96.98 96.98 0.995 0.116 0.970 96.11 96.11 96.11 0.997 0.193 0.961

32 97.45 97.44 97.44 0.995 0.087 0.974 96.45 96.45 96.45 0.996 0.167 0.964

64 97.41 97.41 97.41 0.995 0.094 0.974 96.89 96.89 96.89 0.996 0.145 0.969

128 97.17 97.16 97.16 0.995 0.096 0.972 96.70 96.70 96.70 0.996 0.138 0.967

256 97.05 97.05 97.05 0.995 0.099 0.970 96.27 96.26 96.26 0.996 0.160 0.963

0.4 18 97.08 97.08 97.08 0.995 0.106 0.971 95.90 95.90 95.90 0.996 0.179 0.959

32 96.75 96.75 96.75 0.994 0.118 0.967 96.34 96.34 96.34 0.995 0.151 0.963

64 97.08 97.08 97.08 0.994 0.104 0.971 96.57 96.57 96.57 0.995 0.136 0.966

128 96.76 96.75 96.75 0.994 0.119 0.968 96.11 96.11 96.11 0.995 0.155 0.961

256 96.96 96.96 96.96 0.994 0.104 0.970 96.30 96.29 96.29 0.995 0.158 0.963

0.5 18 96.09 96.08 96.08 0.994 0.157 0.961 94.68 94.68 94.68 0.995 0.231 0.947

32 96.53 96.53 96.53 0.994 0.175 0.965 95.59 95.59 95.59 0.994 0.202 0.956

64 96.42 96.42 96.42 0.993 0.125 0.964 95.52 95.52 95.52 0.994 0.225 0.955

128 95.96 95.96 95.96 0.993 0.138 0.960 95.60 95.60 95.60 0.994 0.193 0.956

256 96.32 96.32 96.32 0.993 0.136 0.963 95.47 95.47 95.47 0.994 0.193 0.955
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3.2.2 Ablation study

An ablation study is the scientific examination of a

machine learning system by changing its hierarchy. In the

proposed framework, the study is carried out by examining

two other models. Table 9 shows the different models

along with their layer hierarchy, shape, and filters.

The experiments are carried out on (64, 64) images

without dropout with a batch size value of 256 and a split

value of 0.5. The weight initializer used is the Glorot

Uniform algorithm. Figure 6 shows the accuracies of the

different models used in the Ablation study. The

chart shows that the proposed model surpasses the other

models.

3.2.3 The effect of Glorot algorithm

In the proposed framework, the Glorot uniform algorithm

is the main weight initializer. Other initialization tech-

niques are examined to encounter the performance of the

Glorot algorithm. The techniques examined are zero ini-

tialization (Zeros), one initialization (Ones), and Random

normal. The experiments are carried out on (64,64) images

without dropout with a batch size value of 256 and a split

Table 8 Accuracies of the third experiment

Dataset split size Batch size

18 32 64 128 256

Train Test Train Test Train Test Train Test Train Test

Without dropout 0.1 98.131 94.501 98.485 94.066 99.658 97.817 99.642 97.524 99.655 97.562

0.2 98.149 94.217 98.520 94.198 99.728 97.260 99.714 97.194 99.558 97.354

0.3 98.036 93.291 98.588 93.423 99.675 96.797 99.653 96.475 99.558 96.891

0.4 98.118 92.138 99.596 96.664 99.614 96.220 99.681 96.702 99.526 96.154

0.5 98.144 92.318 99.584 95.994 99.549 95.720 99.607 95.398 99.701 94.690

With dropout 0.1 95.522 95.380 96.394 95.436 99.452 98.337 99.475 97.893 99.439 98.091

0.2 95.316 94.538 96.069 95.578 99.405 97.940 99.494 97.950 99.162 97.581

0.3 95.320 94.472 96.131 94.907 99.172 97.846 99.346 97.458 99.310 97.430

0.4 95.451 94.189 99.152 97.156 99.337 96.967 99.458 96.646 99.292 97.335

0.5 94.419 92.932 98.965 96.050 99.269 96.390 99.216 96.428 99.118 95.937

Fig. 4 The effect of different batch sizes on accuracy

Fig. 5 Effect of different split sizes on accuracy
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value of 0.5. Figure 7 shows that applying Glorot initial-

ization leads to higher accuracy.

3.3 Experiment category 2

Several experiments are performed in this category. These

experiments aim to study parameters such as sample size,

learning rate, and activation function. The first parameter to

study is the sample size and its effect on accuracy. In this

experiment, the other parameters are fixed. The activation

function used is Sigmoid and the learning rate is fixed at a

value of 0.1. Figure 8 shows that accuracy is inversely

proportional to the sample size.

The second experiment studies the learning rate and its

effect on accuracy. Different learning rates are applied in

two different scenarios. The first scenario has a sample size

of 200 instances and Sigmoid activation function. The

second one has a sample size of 500 instances and Sigmoid

activation function. Figure 9 shows that among the learning

rate ranged from 0.05 to 0.15, the best accuracy gained at a

learning rate of 0.1.

The third parameter to study is the activation function.

The experiments are carried out with two different sce-

narios each with different sample sizes (500 and 1000

instances). The experiments examine three different func-

tions (Sigmoid, Tanh, and ReLU). Figure 10 shows that

Tanh function gives higher accuracy than the other in case

of a large sample size. In a small sample size, Sigmoid

function achieves better performance than the other two

functions.

Table 10 shows the comparison between the proposed

model and the state-of-the-art models. The proposed model

outperforms other state-of-the-art models. The accuracy,

precision, and recall enhanced respectively

The accuracy, precision, and recall enhanced respec-

tively by 0.78%, 0.98%, and 0.98% above the highest

values listed.

Table 9 Layer hierarchy of the tested models

Layer Shape Filters

Proposed model

CONV 64 9 64 32 (3 9 3)

CONV 64 9 64 32 (3 9 3)

MAX_POOL 32 (2 9 2)

CONV 64 9 64 32 (3 9 3)

CONV 64 9 64 32 (3 9 3)

MAX_POOL 32 (2 9 2)

FLATTEN

DENSE 128

DENSE 64

DENSE 2

Testing model 1

CONV 64 9 64 32 (3 9 3)

MAX_POOL 32 (2 9 2)

CONV 64 9 64 32 (3 9 3)

MAX_POOL 32 (2 9 2)

FLATTEN

DENSE 128

DENSE 2

Testing model 2

CONV 64 9 64 32 (3 9 3)

CONV 64 9 64 32 (3 9 3)

MAX_POOL 32 (2 9 2)

FLATTEN

DENSE 128

DENSE 64

DENSE 2

Fig. 6 Accuracies of the models of the Ablation study

Fig. 7 Accuracies of the models with different weight initializers

Fig. 8 Sample size effect
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4 Discussion

This paper proposed an end-to-end framework for AD-

classification based on CNN. The framework consists of

five layers, the first layer is responsible for the MRI

acquisition. In the second layer, the adaptive thresholding

and data augmentation are used to enhance the training

datasets. In the third layer, the cross-validation strategy is

used to train the CNN. The cross-validation obtains the best

values for the training parameters to avoid overfitting. In

the fourth layer, the CNN model is applied. The CNN

architecture consists of three convolutional layers and max-

pooling is performed after each convolutional layer. The

convolutional layers are followed by two fully connected

layers. In the fifth layer, the classification process is done

through many different algorithms.

The Glorot Uniform weight initializer is used to prevent

neuron activation functions from starting in saturated or

dead regions resulting in substantial quicker convergence

and higher accuracy. Also, Adam optimizer in the opti-

mization process is used to achieve quicker convergence.

The effect of applying different values of sample size,

activation function, and the learning rate is addressed

though experiments. The experiment results showed that

the classification accuracy of the proposed framework

outperforms the state-of-art compared techniques for both

binary and multi-classification.

As future work, more experiments should be conducted

in the multi-classification category. Models of transfer

learning should be investigated to improve modeling. Other

directions represent a promising future direction, such as

prediction of the incidence of AD.
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