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Abstract Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and

prevention therapies in Alzheimer’s disease. The Alzheimer’s disease DREAM Challenge was de-
signed as a computational crowdsourced project to benchmark the current state-of-the-art in predict-
ing cognitive outcomes in Alzheimer’s disease based on high dimensional, publicly available genetic
and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed
from either data modality, suggesting that alternate approaches should be considered for prediction of
cognitive performance.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

The Alzheimer’s disease DREAM challenge (http://dx.
doi.org/10.7303/syn2290704) was designed to provide an un-
biased assessment of current capabilities for estimation of
cognition and prediction of cognitive decline using genetic
and imaging data from public data resources using a crowd-
sourced approach. The ability to predict rate of cognitive
decline—both before and after diagnosis—is essential to
effective trial design for the development of therapies for Alz-
heimer’s disease (AD) prevention and treatment. Major
collaborative efforts in the field are assessing the association
of genetic loci with ADdiagnosis and the application of struc-
tural imaging for development of early biomarkers of diag-
nosis, but the utility of these approaches to estimate
cognition or predict cognitive decline is not well established.
This project was designed under the advisement of a panel of
experts in the field to evaluate whether these questions could
be meaningfully addressed with current methods given exist-
ing public data sources. To ensure that these questions were
tested across a broad spectrum of the latest analytical
approaches, the study was designed as a crowdsourced,
community-based challenge in which participants were
invited to address one or more of the following three
questions [1]: The prediction of cognitive decline over time
based on genetic data [2]. The prediction of resilience to
cognitive decline in individuals with elevated amyloid burden
based on genetic data [3]. The estimation of cognitive state
based on structural magnetic resonance (MR) imaging data.
2. Results

2.1. Study design and data harmonization

To ensure that predictors were detecting true biological
variation rather than study-specific technical variation, this
project required inclusion of data frommultiple study sources.
Although genetic and imaging data have been generated
withinmany rich longitudinal cohorts across the field, the pro-
curement and harmonization of these data sets were a
nontrivial problem that required solutions to overcome polit-
ical, ethical, and technical barriers. For example, the genera-
tion of whole genome sequencing data across multiple AD
cohorts within theNIH-fundedAD sequencing project has re-
sulted in a powerful resource for genetic analysis in the field
but longitudinal information on cognitive traits is not readily
available in those data sets. Despite limitations on data acces-
sibility, multiple relevant data sources were identified and
used in this project including the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) [1], the Rush Alzheimer’s Disease
Center Religious Orders Study [2], Memory and Aging Proj-
ect (ROS/MAP) [3], and the European AddNeuroMed [4]
study, which is part of InnoMed, a precursor to the innovative
medicines initiative. Data selection and processing were per-
formed based on data availability across these three data sets.
As such, cognition was defined using mini mental state exam-
ination (MMSE) scores [5], genetic data were provided based
on imputation across array-based genotype data, and struc-
tural MR imaging data were reprocessed in each cohort using
a common processing pipeline. Genetic and imaging data
were supplemented with a limited set of covariates including
diagnosis, initial MMSE score, age at the initial examination,
years of education, gender, andAPOE haplotype. Participants
were providedwith data fromADNI to train algorithms over a
4-month period and to ensure that participation was not
limited by access to compute resources, they were offered
use of the IBM zEnterprise cloud to perform analyses. The
challenge generated significant interest with 527 individuals
from around theworld registered to participate. A leaderboard
displayed accuracy of submissions throughout the duration of
the challenge: 1157 submissions were made for question 1,
478 submissions for question 2, and 434 submissions for
question 3. Thirty-two teams submitted final results that
were scored based on prediction and/or estimation of blinded
outcomes within ROS/MAP for genetic predictions and
AddNeuroMed for imaging-based estimations (Fig. 1).
2.2. Genetic prediction of cognitive decline

The first challenge question assessed the ability of current
methods to predict change in cognitive examination perfor-
mance based on genetic data. High prediction accuracy
would signal the potential for noninvasive biomarkers of
cognition to have a major clinical impact on early AD diag-
nosis and prevention. Previous efforts to develop predictors
of change in cognitive function have not succeeded in
providing robust and replicable models [6–8]. Genetic
variation has been demonstrated to influence AD status:
rare genetic mutations at several loci are implicated in
familial forms of early-onset disease [9], whereas common
variation contributes 33% to variance in sporadic AD, and
22 loci have been implicated by large-scale genetic associa-
tion analyses [10,11]. However, with the exception of the
APOE ε4 haplotype, there has been little success in
transforming these genetic associations into meaningful
clinical predictions of cognitive decline. For this purpose,
participants were challenged to predict 2-year changes in
MMSE scores based on genotypes imputed from SNP array
data. Participants trained their algorithms with 767 ADNI
samples, and the algorithms’ predictions were evaluated on
a test set of 1175 ROS/MAP samples with blinded outcome
measures. The algorithm with the best predictive perfor-
mance at the midpoint of the challenge did not contain any
genetic features beyond APOE haplotype. As the goal of
this question was to assess genetic contribution to prediction
of cognitive decline, this top-ranked algorithm was openly
shared across teams as an interim baseline on which to incor-
porate additional genetic predictors (http://dx.doi.org/10.
7303/syn2838779). Eighteen teams submitted final predic-
tions. Most methods performed significantly better than a
permutation-based random model prediction (Fig. 2A). A
cluster of six methods performed significantly better than
the others (including the interim baseline model) but were
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Fig. 1. Challenge overview. The top schematic summarizes the three challenge questions on the left column, the training data in the middle, and the test data on

the right, including numbers of subjects. The symbols represent sources of data (demographic, ROS/MAP genetic, and ADNI or ANM brain images and shape

information). The bottom panel provides example brain image labels and shape information derived from the Mindboggle software (http://mindboggle.info)

provided to the participants for question 3. Anatomic labels for left cortical regions are shown on the left and just a couple of the cortical surface shape measures

are shown on the right (travel depth on top and mean curvature below), for both uninflated and inflated surfaces (top and bottom rows, respectively).
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statistically indistinguishable among themselves (Fig. 2D).
Of these, the prediction with the best overall score (team
GuanLab_umich from the University of Michigan) achieved
a Pearson correlation of 0.382 and a Spearman correlation of
0.433 (the overall score was a rank-based combination of
these two measures of performance; see online Supplement
and Supplementary Methods: http://dx.doi.org/10.7303/
syn3383106). However, no significant contribution of ge-
netics beyond APOE haplotype to predictive performance
was observed across any of the submissions. Given the small
sample size, no conclusions can be inferred from this analysis
regarding the existence of genetic loci associated with cogni-
tive decline. Rather, these observations suggest that predic-
tors of cognitive decline developed based on genetic data
will not be useful within the clinical setting.
2.3. Genetic prediction of cognitive resilience

The second question challenged participants to identify
genetic predictors that could distinguish individuals who
exhibit resilience to AD pathology as defined by minimal
change in cognitive function despite evidence of amyloid
deposition [12,13]. Identification of genetic signatures
predictive of cognitive resilience would aid in the
elucidation of mechanisms that may confer resilience,
providing a powerful tool to help advance AD prevention

http://dx.doi.org/10.7303/syn3383106
http://dx.doi.org/10.7303/syn3383106
http://mindboggle.info


Fig. 2. Performance evaluation results. (A), (B), and (C) report the P values (in negative log 10 scale) for intersection union tests investigating which teams per-

formed better than random for questions 1, 2, and 3, respectively. Explicitly, for question 1 (A), we tested the null hypothesis that at least one of the four correlation

coefficients (namely Pearson/clinical, Pearson/clinical1 genetics, Spearman/clinical, and Spearman/clinical1 genetics) is equal to zero, against the alternative

that all four correlation coefficients are larger than zero. Adopting a 0.05 significance level, 26 of the 32 submissions were statistically better than random, after

Bonferroni multiple testing correction for 32 tests (submissions crossing the black vertical line). For question 2 (B), we tested the null hypothesis that balanced

accuracy 5 0.5 or AUC 5 0.5, against the alternative that balanced accuracy . 0.5 and AUC . 0.5. In this case, no model performed significantly better than

random, and, therefore, no best performer was declared. For question 3 (C), we tested the null hypothesis that Pearson’s correlation (COR) or Lin’s concordance

correlation coefficient (CCC) are equal to zero, against the alternative that both COR and CCC are larger than zero. Adopting a 0.05 significance level, all 23

submissions were statistically better than random, after Bonferroni correction. For all three questions, the P values were computed from an empirical null distri-

bution based on 10,000 permutations. (D) and (E) report the bootstrapped assessment of ranks for questions 1 and 3, respectively. Samples were resampled with

replacement from the original data (true outcome and team’s predictions), and the ranks of the different teams were reassessed in each of 100,000 resamplings.

Submissions were sorted according to themedian of their bootstrapped average ranking distributions. The black horizontal line represents the posterior odds cutoff

from the Bayesian analysis. Teams above the black line are statistically tied to the top-ranked model, according to a posterior odds threshold of 3.
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strategies and treatment development. Eleven teams
submitted predictions of resilience based on a training set
derived from 176 ADNI subjects. Evaluations were made
using data derived from 257 individuals from the ROS/
MAP data. Despite using the largest such public data set
assembled to date, participants were unable to develop
algorithms with predictive performances significantly
better than random (see Fig. 2B, online Supplement and
Supplementary Methods in Synapse: http://dx.doi.org/10.
7303/syn3383106). Although it is likely that the study
was underpowered due to small sample size and trait het-
erogeneity, this result suggests that information about
cognitive resilience is not easily discoverable from SNP
analysis.
2.4. Structural imaging-based estimation of cognition

The third question challenged participants to estimate
cognitive state using structural brain image data (Fig. 1, lower
panel). Brain imaging has emerged as a powerful method for
monitoring neurodegeneration, and there is a great enthu-
siasm in the field tomake use of images for diagnosis and pre-
diction. There have been many attempts in the past to
correlate changes in brain shape with disease progression
and/or diagnosis, conventionally using measures of volume
for a given brain region [14,15]. More detailed shape
measures of image features including cortical thickness,
curvature, and depth have also been found to be relevant to
a variety of neurologic conditions [16]. Participants were
challenged to estimate MMSE scores based on structural
brain images, or shape information derived from these im-
ages. Participants trained algorithms using ADNI data
(N 5 628) and were evaluated using AddNeuromed data
(N 5 182) for which they were blind to outcome measures.
To engage as many participants as possible from both within
and beyond the neuroimaging community, the data were pro-
vided both as raw MR images and as tables containing shape
measures (volume, thickness, area, curvature, depth, and so
forth) for every labeled brain region. Thirteen teams submit-
ted estimates for final evaluation, and all teams performed
better than a random model (see online Supplement and Sup-
plementary Methods in Synapse: http://dx.doi.org/10.7303/
syn3383106). Three teams performed significantly better
than the others (teams GuanLab_umich from the University
of Michigan, ADDT from the Karolinska Institute and Pythia
from the University of Pennsylvania; Fig. 2C) but were statis-
tically indistinguishable from one another and tied for top
average rank (Fig. 2E). The algorithm that generated the
best absolute mean combined rank (Team GuanLab_umich)
achieved a concordance correlation coefficient of 0.569 and
Pearson’s correlation of 0.573 (the overall score was a
rank-based combination of these two measures of perfor-
mance). The most common features that contributed heavily
to the MMSE estimates across the algorithms were hippo-
campal volume and entorhinal thickness, corroborating prior
work [17–19]. The top three teams also found that inclusion
of shape measures of the entorhinal cortex (volume,
curvature, surface area, travel, and geodesic depth)
improved overall estimation. Other features that contributed
to predictions within the top three teams’ results included
volume of inferior lateral ventricle and amygdala (see
online Supplement and Supplementary Methods in
Synapse: http://dx.doi.org/10.7303/syn3383106). These
results validate an established relationship between
structural imaging data and cognition. However, the
correlative performance of these estimators was low
suggesting that their application in the clinical setting may
not be sufficient to inform patient care.
3. Discussion

The AD DREAM challenge provided a formalized
assessment of the ability to develop meaningful predictions
of cognitive performance from public genetic or imaging
data using contemporary state-of-the-art predictive algo-
rithms. Predictive performance across all three of the
questions was modest, and most methods performed roughly
equivalently. Given this uniform performance, we do not
expect that the presented results are a failure of current
modeling methods. A more likely explanation is that the
data used to address these questions were inadequate to sup-
port these tasks. We also note that most research teams that
participated in this challenge did not have expertise in the
field of AD. Although the few teams that did possess this
knowledge did not do better than the others, there remains
the possibility that performance would have been improved
by the inclusion of more domain experts.
3.1. Use of genetic information for cognitive prediction

The modest performance observed in the 3 questions
focused on genetic analysis demonstrated that contemporary
algorithms were not able to leverage genetic signal to make
useful predictions for cognition. These results support the
prevailing expectation that genetic variants of moderate to
high frequency will not support viable biomarker develop-
ment in AD [9–11]. Although heritability estimates and
linkage studies have demonstrated that there is a
considerable estimated genetic contribution to AD onset
and progression [11,20,21], evidence both within the AD
field and across other complex disease [22] traits has indi-
cated that this overall genetic contribution is the aggregated
compilation of a large number of loci with small—indepen-
dent or epistatic—effects. Historically, this type of signal is
difficult to capture in predictive models and unlikely to be
useful in a diagnostic setting [23]. Furthermore, cognition
is highly influenced by a host of nongenetic factors relating
to lifestyle choices and accumulated exposures that were
not represented across all these data sets and, in fact, are
not fully captured in most cohorts [24–27]. Nongenetic
contributions to cognitive performance may themselves
provide an important base for successful predictions.

http://dx.doi.org/10.7303/syn3383106
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Within the context of genetic analysis, the absence of these
factors from models confounds the ability to detect real
genetic signal and impacts the ability to accurately model
state-specific genetic contributions. As such, future inquiry
into the use of genetic testing for prediction of cognitive per-
formance and AD risk assessment may be better served by
focusing on the contribution of rare genetic variation.
Recently discovered disease-associated rare variants have
larger effect sizes than common variants and confer 2- to 5-
fold greater risk or protection in carriers relative to the general
population [28–30]. Ongoing large-scale sequencing ana-
lyses will identify additional associated rare risk variants.
In sufficient numbers, the aggregate prevalence would sup-
port the development of a genetic diagnostic containing a li-
brary of rare variants.
3.2. Use of structural imaging data for cognitive
estimation

Although the inexpensive and noninvasive nature of ge-
netic testing make this approach amenable to population-
level disease screening, the resource-intensive nature of
image-based testing is better positioned for careful evalua-
tion of high-risk individuals. As such, these approaches are
needed to provide a higher confidence estimate of cognitive
performance. Although a variety of methods developed
within the context of this challenge were able to success-
fully estimate cognition, none of these methods were suffi-
ciently accurate to merit clinical consideration. These
observations support previous work in the field [17,19]
and highlight the imperfect relationship between brain
structure and function. Newer imaging modalities that
focus on brain function and/or pathology—such as FDG-
PET [31] or tau imaging [32]—may prove more successful
for assessing cognitive dysfunction.
3.3. Effective performance of meta-analysis across diverse
cohorts

A major consideration for any meta-analysis is the issue
of appropriate harmonization of data across disparate sour-
ces. Despite leveraging several of the most deeply pheno-
typed cohorts in the field, this challenge limited analysis to
those traits that were in common across cohorts. Although
this approach to data harmonization is standard practice
for meta-analyses [10], it greatly reduced the depth of the in-
formation available for modeling and influenced the selec-
tion of cognitive measures for use as prediction outcomes.
Because each cohort had performed a battery of study-
specific tests, this greatly limited the ability for finer grained
assessment across cognitive processes. A more sensible
approach for future analyses may be to focus effort on
more sophisticated methods to calibrate disparate cognitive
phenotypes across cohorts [33]. Another undesirable conse-
quence of the focus on traits measured in common was the
inability to incorporate into model development the full
spectrum of nongenetic and nonimaging factors that are
known to influence cognitive performance [24–27]. This
suggests the need for development of different approaches
for integrating heterogeneous data and/or assessing
replication across cohorts. Alternatively, smaller scale
analyses that prioritize phenotypic depth over sample size
may afford a more refined view of disease.

In summary, this challenge demonstrated that predictions
of cognitive performance developed from genetic or struc-
tural imaging data were modest across a diverse set of
contemporary modeling methods. Future efforts to identify
clinically relevant predictors of cognition will benefit from
a focus on alternative data sources and methods that work
to incorporate greater phenotypic complexity.
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RESEARCH IN CONTEXT

1. Systematic review: Extensive literature searches us-
ing PubMed establish this as the largest study to
date using demographic, clinical, imaging, and ge-
netic data to predict cognitive decline and the first
major instance of crowdsourcing analysis in AD.

2. Interpretation: Over 500 scientists worldwide in the
analytical portion of the challenge, demonstrating
the viability of crowdsourced approaches in AD
research. Unfortunately, we were unable to detect
meaningful predictors of either cognitive decline or
resilience through this effort.

3. Future directions: This experiment in crowdsourcing
AD analyses is an invaluable first-of-its-kind
contribution that provides a snapshot of both the
strengths and limitations in big data analytics in AD
research. The relative inaccessibility and heteroge-
neity across data sources severely limits formalized
integration. Mandates on data sharing, consider-
ations of standardized data collection, and mecha-
nisms to integrate heterogeneous data are necessary
to address these issues. We anticipate that this work
will initiate those discussions across the community.
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