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A B S T R A C T

Biomarkers, quantitatively measurable indicators of biological or pathogenic processes, once validated

play a critical role in disease diagnostics, the prediction of disease progression, and/or monitoring of the

response to treatment. They may also represent drug targets. A number of different methods can be used

for biomarker discovery and validation, including proteomics methods, metabolomics, imaging, and

genome wide association studies (GWASs) and can be analysed using receiver operating characteristic

(ROC) plots. The relative utility of single biomarkers compared to biomarker panels is discussed, along

with paradigms for biomarker development, the latter in the context of three large-scale biomarker

consortia, the Critical Path Predictive Safety Testing Consortium (PSTC), the NCI Early Detection Research

Network (EDRN) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The importance of

systematic optimization of many parameters in biomarker analysis, including validation, reproducibili-

ty, study design, statistical analysis and avoidance of bias are critical features used by these consortia.

Problems including introduction of bias into study designs, data reporting or data analysis are also

reviewed.
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1. Introduction

Biomarkers, where these exist and have been appropriately
validated [1–7] can play a critical role in biomedical research, drug
discovery and development, including:

� Their use as diagnostics to establish the presence of a disease.
� predicting disease progression and the stratification of disease

severity.
� assessing and predicting the clinical benefit(s) or toxicity

resulting from a therapeutic intervention.
� monitoring treatment response, including target engagement

where appropriate.

Biomarkers can be used as part of a personalized medicine
paradigm to customize treatment to the specific disease char-
acteristics of an individual patient. They can also be used to better
understand disease mechanisms and to identify novel disease
targets.

Issues that are addressed in this review include: (i)
biomarker discovery, development and analysis that requires
a combination of careful study design to avoid distorting or
negating results due to bias; (ii) systematic development of
assays; (iii) larger scale collaborations involving multiple
patient populations to develop and refine robust and reproduc-
ible assays and; (iv) for clinical validation [1–7], transparent
data analysis (particularly when large datasets are involved),
with statistical analyses appropriate for the specific use for
which the biomarkers are being developed.

2. Defining biomarkers

Some biomarker definitions are listed in Table 1. These indicate
their scope of use, which can include: application to various stages
Table 1
Definition of biomarker types.

Term Definition

Biomarker objectively measured characteristic evaluated

as an indicator of normal biological or pathogenic

processes, or pharmacological response(s) to a

therapeutic intervention [8]

Surrogate biomarker intended to substitute for a clinically

meaningful endpoint; predicts clinical benefit, harm,

or lack of either; a direct measure of how a patient feels,

functions or survives [8,9]

Clinical endpoint a characteristic or variable reflecting how a

patient feels, functions, or survives [9]

Diagnostic biomarker for the existence of (often asymptomatic)

disease in an individual

Prognostic characteristic predicting disease progression or

outcome in an untreated individual [10,11]

Predictive characteristic predicting patient benefit or toxicity

from a specific intervention [10]

Pharmacodynamic biomarker showing direct pharmacological

effect of an NCE or drug [10]

Efficacy characteristic predicting clinical benefit

Toxicity/safety biomarker predicting clinical risk
of the drug discovery process; characterization of animal disease
models; use in clinical trials to stratify patients; use as diagnostics
or companion diagnostics; or as indicators of therapeutic
response.

Biomarkers, broadly defined, can be a variety of (ideally)
quantitatively measured indicators of biological or pathphysiolo-
gical processes, or the response to therapeutic intervention,
including molecular entities, images or other measured activities
or properties, or their combination as a biomarker panel. They
include proteins, protein modifications, or activities, e.g., enzymes
[12]. DNA-based biomarkers include DNA (e.g., circulating DNA can
be used to diagnose genetic diseases such as Down’s Syndrome in
unborn children [13]), single nucleotide polymorphisms (SNPs),
gene copy number variations (CNVs; DNA insertions, deletions,
rearrangements such as inversions and translocations larger than
1 kb, and insertions/deletions less than 1 kb [14]), mRNA or long
non-coding RNA [15]. Epigenetic biomarkers include methylated
DNA (e.g., fecal DNA tests for detection of colorectal cancer [16]),
microRNA (e.g., a microRNA panel for diagnosis of stage II-IV colon
cancer [17]), or modified histones. Other more traditional
biomarkers include gross phenotypes such as blood pressure,
lung volume, blood sugar and urine volume, cellular metabolites or
lipids and other physical measurements including structural (e.g.,
computed tomography or magnetic resonance) or functional (e.g.,
positron emission tomography) images as used in neuroimaging
[18], or electroencephalograms [19]. Combinations of different
biomarker types (e.g., fluid biomarkers, tissue images, allele
expression [20], clinical imaging, and molecular biomarkers
[21]) may be useful for improved diagnostic accuracy [22,23],
particularly in complex disease states [24], and may be more
effective than individual biomarkers (see Section 4.1).

The NIH Biomarkers and Surrogate Endpoint Working Group [8]
has classified biomarkers into:

� Type 0 (reflects natural history of a disease, correlates with
known clinical indices over the full range of disease states),
� Type I (reflects the effects of therapeutic intervention by the

mechanism of action of a drug), and
� Type II biomarkers (surrogate endpoints, whose change predicts

clinical benefit).

Biomarkers can also be subdivided by their application. A
clinical biomarker is a predetermined, validated characteristic or
variable reflecting how a patient feels, functions, or survives after
treatment [8]. Surrogate markers or endpoints are intended to
substitute for a clinical endpoint, reflect clinical benefit or harm,
and/or directly measure patient function or survival. Definitions
and examples of cardiovascular biomarkers include use of blood
pressure- and/or HDL cholesterol-lowering for cardiovascular
drugs [25,26] and the use of glycated hemoglobin (HbA1c) as a
surrogate endpoint in diabetes [27]. Validation of surrogate
endpoints requires extensive data, including large randomized
clinical trials, that must demonstrate that the surrogate is
prognostic for the true clinical endpoint, and the effect of therapy
on the surrogate predicts its effect on the true endpoint [28]; as a
consequence, such markers are rare.
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Diagnostic markers are biomarkers for the existence of the
disease in an individual; such markers may in some cases be used
to specify stages of disease, in which case they are also prognostic
biomarkers. For diseases for which effective late-stage disease
therapy may not exist, e.g., some of the major cancers, these
markers are most beneficial when detected early in the disease
process.

While such markers are useful if an effective therapy for the
disease exists, in diseases with no current effective therapy, e.g.,
Alzheimer’s disease (AD), diagnostic markers may be more useful
in the context of basic research on the disease process, or for
assessing new chemical entities (NCEs) as potential lead thera-
peutics. Prognostic biomarkers can also be used to predict disease
progression or outcome in untreated individuals [10,11]. Examples
in different stages of development include microRNAs for
predicting the progression of urothelial carcinoma [29], and
commercial multigene diagnostic tests [30], e.g., the Oncotype
DXTM test, that examines a tumor biopsy or surgical resection
panel of 21 genes to predict the 10-year recurrence of estrogen
receptor–positive early-stage breast cancer [31]. Predictive bio-
markers are also useful for predicting patient benefit (or toxicity)
from a specific therapeutic intervention [10] and include
amplification of the HER2/neu oncogene in early stage breast
cancer [32], advanced stage gastric and gastroesophageal junction
cancer [33], and ovarian mucinous carcinomas [34], all predicting
benefit from the anti-HER 2 antibody trastuzumab. Biomarkers are
also useful in assessing the effects of NCEs, with pharmacodynamic
(PD) biomarkers providing evidence of a pharmacological effect of
an NCE, e.g., NCE-induced toxicity, NCE-related changes in patient
physiology, etc. [10].

2.1. Drug targets and biomarkers

Biomarkers can also be classified by their relationship to drug
targets, the majority of which are proteins. In the case that the
biomarker is the putative therapeutic target, biomarker status may
be predictive for a putative drug response, and co-development of
the biomarker (when available) and a putative therapeutic in
clinical trials may in some cases accelerate the drug development
process [35]. In this case monitoring target activity (where
feasible) can allow quantitation of the extent to which the NCE
reaches its intended target [2] that may then allow correlation with
overall NCE efficacy in disease models.

Some examples of cancer biomarkers that are also drug targets,
or which can create a synthetic lethal drug target (BRCA 1 or 2
Table 2
Cancer biomarkers, drug targets, and associated companion diagnostics.

Cancer and biomarker Target and drug/

Breast cancer; ERa levels [36]; ERa is

overexpressed in �50% of cases [37]

ERa; antagonist 

NSCLC; EGF receptor, exon 19 deletion [39];

receptor-activating mutations in �10% of cases [40]

EGF receptor; tyr

erlotinib, gefitini

Colorectal cancer; EGF receptor + activating K-RAS

mutation [43] seen in 35–45% of cases [43]

EGF receptor; mo

panitumumab N

Breast cancer; BRCA1 or 2 inactivating mutations

[44] seen in 5–10% of cases in Caucasian women [45]

PARP; synthetic 

olaparib, velipari

Chronic myeloid leukemia; BCR-ABL fusion

protein, kinase is always active [46];

seen in �100% of cases

BCR-ABL kinase; 

nilotinib, dasatin

Acute PML; PML-RARa fusion protein [48],

seen in �5–8% of PML cases [49]

PML-RAR; all-tra

Breast cancer; HER2/neu proto-oncogene

amplification, seen in �20% of cases [51]

HER2/neu; mono

Metastatic melanoma; B-RAF V600E activating

mutation [53], seen in �30–50% of cases

B-RAF; monoclon

NSCLC; EML4-ALK fusion oncogene [54], seen

in �5% of overall cases [55]

EML4-ALK; kinas
mutations), are shown in Table 2 (see [54,57]). In each case a
specific receptor, its mutation or exon deletion (e.g., estrogen
receptor, epidermal growth factor receptor [EGFR], or retinoic acid
receptor (RAR) fusion with the promyelocytic leukemia [PML]
gene), oncogenic fusion protein (e.g., BCR-ABL, PML-RAR), or
mutations of a defined oncogene (BRCA 1 or 2) can predict
response to a therapeutic targeted to that protein, or in the case of
BRCA 1 or 2, to a key protein (poly ADP ribose polymerase [PARP])
in a redundant second DNA repair pathway, creating a synthetic
lethal target. For many of these cancer biomarkers, companion (to
the therapeutic) diagnostics are available to test for the presence of
the marker, allowing a targeted therapeutic approach to the
particular cancer when the marker is present. Use of the
biomarker-based companion diagnostic with the appropriate
therapeutic agent can improve the response rate for appropriate
patients. For chemotherapy-naı̈ve patients with advanced non–
small cell lung cancer (NSCLC) and sensitizing EGFR mutations,
treatment with the tyrosine kinase inhibitors, erlotinib or gefitinib
was associated with a �70% response rate [41].

2.2. Polypharmacy

Although primary drug targets may be desirable biomarkers
when they exist, cellular proteins that actually bind to a drug may
be more numerous (polypharmacy), potentially affecting the
association of some drug properties with only the putative
primary target. In this case additional experiments may be
necessary to assign particular properties to the putative primary
target (e.g. targeted knockdowns); without these experiments use
of a (putative) primary target as a biomarker of the clinical effects
of drug action can be misleading. For some drug-biomarker pairs,
binding of drug to additional proteins may not have been
examined. The kinase inhibitor, imatinib, the analog nilotinib
(which is 20-fold more potent inhibiting the putative major target,
the fusion BCR-ABL kinase), and dasatinib, which is 200-fold more
potent, are used to treat chronic myeloid leukemia (CML) [58]. In
chemical proteomics experiments in K562 and CML primary cells,
11, 14 and 38 major interacting proteins were identified for
imatinib, nilotinib and dasatinib respectively [58] with all three
binding BCR-ABL, BCR and ABL [59]. In contrast to nilotinib,
dasatinib exhibits clinical side effects including cytopenia and
pleural effusions [60], suggesting that its much larger target profile
of 28 kinases in addition to BCR-ABL and ABL, and major immune
system regulators, may be responsible for the side effect profile.
For nilotinib, the receptor tyrosine kinase, DDR1 (Discoidin
antibody Companion diagnostic example

tamoxifen IHC [38]

osine kinase inhibitors

b

Roche cobas EGFR Mutation Test [41];

Therascreen EGFR29 [42]

noclonals cetuximab,

OT indicated

Lung Cancer Mutation Panel [41]

lethal inhibitors

b

BRAC Analysis [44]

inhibitors imatinib,

ib

RT-PCR; karyotyping [47]

ns retinoic acid + AsO3 Quantitative RT-PCR [50]

clonal trastuzumab FISH [52]

al vemurafenib Roche cobas 4800 RT-PCR assay [42]

e inhibitor crizotinib Abbott Vysis ALK Break Apart FISH; IHC [56]
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domain receptor family, member 1) was inhibited by clinical
concentrations of the drug and identified and validated as a
second major target, which may be associated with side effects
[59]. For gefitinib, the first approved kinase inhibitor targeting the
EGF receptor in NSCLC, 20 previously unknown kinase targets
were discovered using a chemical proteomics approach [61]. Of
these, GAK (Cyclin G-Associated Kinase), which functions as a
negative regulator of EGFR signaling [62], was inhibited
(IC50 = 90 nM), suggesting it might be an undesired target [61].
These experiments illustrate the need for caution when examin-
ing protein biomarkers of drug action without a further
examination of drug-binding proteins using methods such as
chemical proteomics.

3. Biomarker discovery

An initial step in any biomarker project involves defining the
goals for the project. Before starting biomarker discovery, the
intended use of the biomarker(s) should be specified (e.g., early
detection of disease, effect of a drug on disease outcome, target
identification, etc.), as should the tissue source, how the
biomarker will be measured (gene expression microarray,
immunoassay, proteins discovered by mass spectrometry), the
intended patient and control populations, the clinical setting
and clinical endpoint(s) of interest, how the biomarker test will
be interpreted, and whether existing evidence supports the
relevance and potential use of an animal model instead of
patient samples [63]. Concerns may exist, for example, in
translating mouse cancer models to humans [64,65], or the
translation of mouse models of neuropsychiatric diseases
including cognitive endpoints [66–68] to AD patients [6]. Use
of conveniently available samples not specifically collected as
part of a standard protocol for a defined project (‘‘convenience
samples’’) can lead to bias and problems with validation by
independent groups, especially when the diagnosis is not
adequately documented [63,69]. Urine, serum, plasma, saliva
or sputum may be more readily obtained than tissues requiring
biopsy, unless banked clinical tissue samples are available for a
project. Since blood perfuses all tissues it theoretically could be
considered a default biomarker source, but disease-proximity of
the samples obtained for analysis is an important consideration
for enrichment of disease-related molecules. In CNS disease
states cerebrospinal fluid (CSF) can be used for this purpose [70],
while blood may be useful for cardiac diseases, and blood or
urine may be appropriate for metabolic, liver (along with bile),
or kidney diseases. Gastric biomarkers can utilize gastric juice
[71] and oral cancers, saliva [72]. Locally diseased tissue can
utilize interstitial fluid [2], and pulmonary disease can be
accessed via saliva, sputum or breath condensate. In cases where
tissue biopsies are impractical (e.g., live AD patients), samples
collected remote from the primary site of disease can provide
successful biomarkers (e.g., 170 blood RNA probes representing
133 genes are reported to be able to distinguish AD patients
from non-demented controls with 100% sensitivity and 96%
specificity [73]). For sample collection and storage for discovery
experiments, standard operating procedures for specimen
collection and handling are critical, as small differences in
processing or handling can have large effects on the reliability of
analytical assays and their reproducibility [74]. Part of a
biomarker discovery effort should include the analytic validation

of biomarker assays, i.e., how robustly the assay detects or
quantitates the biomarker of interest under different conditions,
as well as verification of abundance changes using a method
different from that used for discovery and initial quantitation of
changes. As an example, Addona et al. [75] included in their
mass spectrometry-based protein biomarker discovery pipeline,
verification of abundance changes in peripheral blood by
Western blotting and ELISA, verification and relative quantita-
tion by multiple reaction monitoring mass spectrometry, and
verification by accurate mass inclusion mass spectrometry.

Rifai et al. [2] point out the utility of ‘‘gold standard’’ tissue
samples for protein biomarkers, selected not only to be disease-
proximal (close to or in direct contact with diseased tissue) to help
overcome the 5–7 orders of magnitude lower abundance of many
protein biomarkers compared to the most abundant serum/plasma
proteins (or to overcome dilution for other biomarker types), but to
provide maximum contrast between the non-diseased control and
diseased states. Individual patients can in some cases be used as
their own controls, with samples collected before and after a
particular therapy, or from contralateral organs if only one is
diseased [2]. While this approach may optimize the discovery of
biomarkers that differ between diseased and non-diseased tissue
as many inter-patient variables are removed, if the disease is a
systems phenomenon rather than completely localized to the
selected tissue, potential biomarkers may be lost. Since all subjects
are diseased, in effect this approach relies on extreme bias in
patient selection. If biomarker discovery experiments utilize a
limited number of patients that are not representative of the
eventual targeted population, translation to the latter (which may
include many non-diseased individuals and/or individuals with
additional confounding factors, e.g., co-morbidities) must be
addressed in later stage studies including large numbers of
patients with adequate statistical power to meet the goals of
the study.

If available, consideration should be given to use of a positive
control (e.g., gold standard therapeutic if examining a new drug
candidate) to allow comparison with existing biomarkers, and to
determine if, for example, observed abundance differences are
meaningful. Another consideration involves discovery of biomark-
ers for diseases known to be heterogeneous, e.g., breast cancer. In
these cases a single biomarker or even panel of biomarkers may not
be predictive for all patients. In such cases studies to identify
biomarkers may require two-fold or larger sample sizes than for
homogeneous diseases, as well as use of different statistical
selection methods [76]. For protein biomarker candidates, the
number of samples analyzed in a non-targeted discovery approach
may be in the range of tens of independent samples; tens of
samples are also used to confirm differential abundance by a
different method(s), while hundreds of samples might be used to
examine candidates in larger population-derived samples; thou-
sands of samples would be analyzed in clinical assay development
and validation establishing biomarker sensitivity and specificity
[2].

Different methods can be utilized to discover biomarkers.
Targeted methods rely on prior information on biomarker
candidates to be examined in discovery experiments. Non-targeted
methods, which may presuppose the category of a potential
biomarker (e.g., protein, metabolite or small chemical, SNP,
microRNA, etc.) but not their identity include for example
proteomics, metabolomics, a variety of imaging methods, gene-
expression profiling, genome-wide association studies (GWASs),
whole genome sequencing, and examination of epigenetics-related
factors such as DNA methylation or microRNA. Some of these are
discussed in detail below.

3.1. Targeted methods

Targeted methods, which are not be covered in detail in this
review, include the use of established assays, e.g., ELISA, to scan for
changes in analytes based on prior knowledge. A strength of this
approach is that discovery can start using a well-established assay.
As an example, Villeda et al. [77] utilized an array of 66 cytokine,
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chemokine or signaling protein ELISA assays to scan for plasma
immune system factor changes in a mouse parabiosis model of
brain aging. Increases in 6 factors, including the chemokine CCL11,
correlated with reduced neurogenesis and impaired learning and
memory. In principle, catalogs of proteotypic peptides (mass
spectrometry (MS)-detectable peptides identifying unique pro-
teins) can be used with multiple reaction monitoring-MS for a
much larger, but still targeted, screen for biomarker discovery [78].
Protein antigen microarrays (in a sense targeted if only a subset of
the proteome is included) can be used to examine potential
autoantibody biomarkers, e.g., as in early-stage cancer [79]. Oka
et al. [80] utilized a solid phase antibody array to screen 274
proteins for biomarkers of acute onset interstitial lung disease,
finding 4 proteins (including matrix metalloproteinase 1 (MMP-1)
and tissue inhibitor of metalloprotease-1 (TIMP-1) increased, and 3
proteins decreased in serum of diseased patients.

3.2. Non-targeted methods

3.2.1. Proteomics: 2D LC/MS/MS

2D LC/MS/MS (two-dimensional liquid chromatography tan-
dem mass spectrometry) generally utilizes two serial orthogonal
capillary columns to fractionate peptides by HPLC for direct
introduction into a mass spectrometer for analysis [81]. The first is
often a strong cation exchange column that can be run offline to
fractionate larger amounts of proteins before their proteolysis to
peptides that can be separated into batches by their isoelectric
point. The second column, e.g., a C18 reversed phase column,
chromatographs peptides from each fraction from the first
column, separating peptides by their hydrophobicity. The
combination of columns can fractionate tens of thousands of
peptides (when present) in a single experiment, with identifica-
tion using tandem MS [82] to identify post-translational
modifications as biomarker candidates. The relative quantitation
for expression differences in biomarker discovery experiments
utilizes: (a) multiplexed stable isotope labeling of the peptides
(e.g., by amine-reactive reagents such as Tandem Mass Tags or
iTRAQ reagents [83] for comparison of up to 6–8 experiments in
one 2D run); (b) incorporation of stable isotope labels directly in
cell culture [84]; or (c) a variety of non-multiplexed label-free
methods [85], including the exponentially multiplied protein
abundance index [86] or spectral counting [87]. Online 2D LC/MS/
MS can be automated or semi-automated and is the method of
choice for simultaneous identification and relative quantitation of
protein expression levels, as well as for deep proteome analysis,
typically identifying and quantitating up to �1000 proteins.
Addona et al. [75] utilized offline 2D LC/MS/MS of samples taken
directly from patient hearts, to identify 121 protein biomarker
candidates that were up-regulated 5-fold or more after planned
myocardial infarction, including over 100 novel candidates and 6
known markers of myocardial injury, for detection of myocardial
infarction. A subset of 83 proteins was subsequently verified in
peripheral plasma, and 52 were prioritized for quantitative assay
development.

With the development of high resolution- and rapid duty cycle-
MS instruments, the number of proteins that can be both identified
with high confidence, and quantitated, has increased to �8000–
11000 in single experiments [88–90]. In the case of estrogen
receptor negative breast cancer primary cell lines, 8750 identified
and 7800 quantitated proteins were identified, with immunohis-
tochemistry verification of a 52-protein signature on tissue
microarrays, leading to stage-specific protein signatures and a
proposed overall survival prognostic marker panel of three
proteins [89]. Analysis of large proteomes should allow discovery
of lower level biomarker candidates and significantly increase the
depth of analysis.
3.2.2. Proteomics: SELDI-TOF, MALDI protein profiling

A second MS-based method in wide use involves surface-
enhanced laser desorption/ionization time-of-flight (SELDI-TOF)
MS [91] also known as MALDI (matrix-assisted laser desorption/
ionization) protein profiling. This approach is higher throughput
and more user-friendly than 2D LC/MS/MS, and involves adsorbing
or fractionating peptides or proteins directly on derivatized sample
plates for analysis. Desorption of peptides from the samples
utilizes a laser and sample matrix, and analysis involves a TOF
analyzer, but in principle can utilize other mass analyzers as well.
Some of the issues with this method include [92]:

(a) peptides or proteins are not identified as part of standard
profiling, thus comparisons involve pattern matching sets of
peaks, removing a layer of bioinformatics analysis useful for
determining potential biological relevance of markers;

(b) profiles feature highly abundant peptides or proteins observed
at the expense of low-abundance species, biasing markers to
acute phase response and inflammation-associated proteins
[93,94], due, in part, to ion suppression [95,96];

(c) the peak content may become unnecessarily complex when
abundant proteins undergo unintended in-source decay [97];

(d) reproducibility of results may be a challenge [98–101],
including difficulties with pre-analytical sample treatment
[102], peak pre-processing [103], peak quantitation and
dynamic range [104], and data analysis.

One of the early studies applying SELDI-TOF analysis to the
diagnosis of ovarian cancer [105] suffered from difficulties with
analytical methodology, bias in sample collection and storage, and
bioinformatics analysis [69,106]. A validation study of use of this
methodology for prostate cancer by the Early Detection Research
Network (EDRN) showed no diagnostic utility [107]. In light of
these issues, the use of SELDI-TOF in biomarker discovery studies
should be carefully evaluated before studies are undertaken.

Mass cytometry, which allows simultaneous analysis of dozens
of different metal isotope reporter-labeled antibodies bound to
single cells, using inductively coupled plasma mass spectrometry
and a TOF detector, may in the future be useful for biomarker
discovery, for example for autoimmune diseases [292].

3.2.3. Metabolomics

Metabolomics-based biomarkers can be accessed using multi-
ple analytical platforms [108], including LC/MS, GC/MS (gas
chromatography/MS), ICP/MS (inductively coupled plasma MS)
for analysis of metals, CE/MS (capillary electrophoresis/MS [109],
and NMR (nuclear magnetic resonance) [110]. Examination of
exhaled volatile organic compounds as metabolites and potential
biomarkers utilizes GC-TOF/MS and ion mobility MS among other
methods [111]. NMR can currently detect low micromolar analyte
concentrations (depending on the number of equivalent protons in
a resonance, spectral region and magnet field strength), but is
approximately 5 or more orders of magnitude less sensitive than
MS, which can detect low to sub-femtomole levels using capillary
columns. Combined with MS and MS/MS, NMR can be important
for metabolite structure determination [112]. NMR can be used in
combination with pattern recognition methods for untargeted
metabolomics analysis; the main steps in sample preparation,
spectral acquisition, data preprocessing and analysis, including
application to biomarker discovery using CSF of multiple sclerosis
patients, have been reviewed [112]. A variety of early candidate
biomarkers, such as elevated lactate and reduced acetate levels,
have been identified in small-scale studies and await analysis in
larger patient cohorts. Untargeted global metabolite profiling
utilizing high resolution mass spectrometry coupled to UHPLC
(ultra high performance liquid chromatography) [113], resulted in
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the identification of over 3000 plasma molecules, almost half of
which resided in a core metabolome (metabolites; environmental,
dietary and endobiome-related chemicals) common to seven
mammalian species [114]. Identification of unknown metabolites
involves: (i) collection of high mass accuracy MS data that can be
useful for determining elemental composition; (ii) MS/MS data
useful for identification and structure determination; (iii) chro-
matographic retention times; (iv) database searching, e.g. METLIN
(Metabolite and Tandem MS database; metlin.scripps.edu), HMDB
(Human Metabolome Database (hmdb.ca), MMCD (Madison
Metabolomics Consortium Database; mmcd.nmrfam.wisc.edu)
and others; (v) additional data from NMR or deuterium exchange
experiments; and (vi) confirmation with commercial or synthetic
standards [115]. Small molecules identified from untargeted
approaches include not only host organism metabolites, but
nutrition-derived molecules, microbiome-related metabolites, and
chemicals from environmental exposure, providing a larger
systems-based view of metabolomics [116,117].

Metabolomics and small molecule chemical information can be
utilized for pathway mapping utilizing databases such as KEGG
(Kyoto Encyclopedia of Genes and Genomes; genome.jp/kegg),
Metscape (ncibi.org/gateway/metscape.html), MetaCyc (metacy-
c.org), etc. Identification of low level metabolites or chemicals can
be challenging; many detected peaks may not have database
matches; and the lack of authentic standards once a peak is
tentatively identified can make validation impractical. As an
example, plasma levels of the cholesterol metabolite, desmosterol,
and the desmosterol/cholesterol ratio, can be used as AD
biomarkers with a ROC (receiver operating characteristic, see
Section 4) AUC (area under the curve) of 0.80 [118]. Other
examples of metabolites as potential biomarkers in different
cancers, age-related macular degeneration, atherosclerosis, diabe-
tes and AD have been reviewed [119]. As with other discovery
methods, careful attention to sample preparation [120,121] and
data analysis [112,122] is critical to success.

3.2.4. Imaging

A variety of non-invasive (e.g., MRI) and relatively non-invasive
(e.g., PET scan) imaging methods have been utilized for biomarker
discovery, where the image or image-derived information is used
as a ‘‘biomarker’’ or part of a biomarker panel, if there are image-
based reproducible (ideally quantitative) differences between the
patient states being compared. Imaging may be appropriate when
tissue or whole-organ changes are associated with disease
pathology, for comparing diseased and control organs, different
disease stages, or examining changes after therapy. Neuroimaging
has been extensively utilized to examine AD patients, e.g., MRI
imaging to examine brain area (hippocampus, entorhinal cortex,
corpus callosum) losses in volume during disease progression [18].
[18F]-deoxyglucose PET imaging has been used to examine glucose
hypometabolism that correlates with severity of dementia [123]
and as a biomarker to predict clinical decline in AD patients with
mild-to- moderate disease [124]. The [11C]-labeled ligand Pitts-
burgh compound B (PiB) binds to aggregated, fibrillar b-amyloid
deposits with high affinity [125] and can thus image these deposits
in the brain. PiB binding was used as a quantitative phenotype in
gene-association analysis to examine the effects of SNPs in 15
amyloid pathway-associated candidate genes on amyloid fibril
formation [126]. In this study SNPs most highly associated with PiB
uptake were from DHCR24, which codes for 24-dehydrocholesterol
reductase, an enzyme catalyzing several steps in cholesterol
biosynthesis, which is down-regulated in AD [127]. An intronic
SNP resulting in higher gene expression resulted in lower PiB
binding compared to non-carriers, consistent with the involve-
ment of this gene in amyloid fibril formation and, potentially, with
a neuroprotective effect [126]. In a multiparameter study of
familial AD, PiB PET imaging of b-amyloid fibrils was detectable 15
years before expected AD symptoms [128].

3.2.5. Mass spectrometry imaging

A different type of imaging involves use of a laser and MALDI
matrix to desorb/ionize analytes from thin tissue slices [129],
tumor biopsy tissue cores [130], or cells grown on glass slides
[131]. From a single imaging ‘‘pixel,’’ MS spectra can provide
information on hundreds of molecules including (in different
experiments) peptides [132], proteins [133,134], drugs [135],
metabolites [136] and gangliosides [137], while MS/MS spectra
from imaging tandem MSs can identify analytes including peptides
[138], lipids and metabolites [139]. The images themselves, or
components identified from imaging spectra, may serve as
biomarkers [140]. The applicability to larger scale biomarker
analysis has been enhanced by advances in instrumentation and in
the analysis of large numbers of samples [130]. Analyte detection
typically utilizes a TOF mass analyzer on a MALDI-TOF instrument,
but can be part of a quadrupole/TOF [135], TOF/TOF [140], or ion
mobility/TOF [141] instrument. Other useful sources include a
DESI (desorption electrospray ionization) source, that utilizes
solvent charged droplets and ions to desorb/ionize analytes, and a
secondary ion (SIMS) source, which utilizes an ion or cluster beam
to desorb/ionize analytes and has high (sub-micron) lateral
resolution [142]. An infrared laser for laser ablation electrospray
ionization (LAESI) [143] can also be used for imaging [141]. Using
tandem MS, images with improved signal/noise can be obtained by
utilizing an MS/MS peak from a selected precursor ion [135]. High
lateral resolution (�1 m) MALDI imaging has been combined with
UV confocal microscopy [144] and a high resolution atmospheric
pressure imaging source on a Fourier transform instrument,
allowing observation of volatile compounds with high quality
images [145]. MALDI imaging MS has been integrated with MRI for
colon cancer diagnosis [146] and can be extended to whole-body
(e.g., rat) imaging of vinblastine [141]. Registration of serial 2D
tissue section images allows the construction of 3D MALDI tissue
images [147], which can be combined with MRI imaging and
histology to create an organ image, e.g., kidney [148]. Images can
be constructed using MALDI, SIMS (analytes up to 1–2 kDa), DESI
and LAESI, yielding a 3D SIMS image of HeLa cells, and MALDI
mouse and rat brain images [149]. In a MALDI image of a glioma
tumor in mouse brain, two tumor-associated proteins were
localized to the MRI-imaged tumor [150], illustrating the potential
for biomarker discovery in 3D.

The high resolution and mass accuracy of a Fourier transform
ion cyclotron resonance instrument, combined with a high
resolution-imaging source, allows single cell imaging [138] of
metabolites and lipids, with accurate identification, and more
specific images [138]. The use of ion cyclotron resonance or an
orbitrap mass analyzer can overcome mass accuracy limitations
due to samples of variable thickness in TOF analysis that is used for
MALDI imaging [151].

Imaging MS is a useful approach to biomarker discovery for
complex, spatially heterogeneous tissues, e.g., solid tumors, where
principal components analysis and hierarchical clustering of
MALDI imaging spectra can separate tumor tissue from non-
neoplastic mucosa [152] and non-tumor, insulinoma and adeno-
carcinoma tumor types in pancreatic tissue [139]. MALDI imaging
has been used for the analysis/diagnosis of several cancer types
[153] and can locate gliomas and distinguish tumor grades,
utilizing S100B protein [154]. A MALDI imaging-derived 4355 m/z
MEKK2 peptide discriminated prostate cancer from normal tissue
in tissue sections [155] while classifiers based on MALDI imaging
of 171 patient samples distinguished six different adenocarcinoma
types, and identified hepatic cancer and colon cancer metastasized
to the liver [156].

http://www.ncibi.org/gateway/metscape.html
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Critical challenges for MS imaging include: optimization of
sample preparation and cell fixation [131,149]; careful statisti-
cal analysis of the large data sets [157]; workflows for the
analysis of 3D imaging data that are still under development
[148]; and a tradeoff between tissue section imaging spatial
resolution and analyte detection sensitivity [153]. When using a
low-resolution instrument, more than one metabolite precursor
ion can be included in MS/MS spectra, resulting in difficulty
identifying analytes [158]. Also, as noted, some metabolites may
not be in MS databases and cannot be identified using MS and
MS/MS spectra, while ion suppression may limit detection of
lower level peptides or metabolites and larger proteins (above
20–30 kDa).

3.2.6. Genome wide association studies (GWASs)

GWASs rely on screening a genome-wide set of hundreds of
thousands to millions of SNPs for many individuals, and
associating individual SNPs with disease phenotypes, thus
defining genes associated with that disease [159]. As of August
2012, over 1700 GWAS studies have been completed on a variety
of disease states [160]. Comparing allele frequencies of variants
in thousands of individuals with and without disease can
provide sufficient statistical power to detect alleles of small
effect. However, with so many SNPs being assayed at one time,
some may appear to cause an effect by chance, thus stringent P-
values between 5e�7 and 5e�8 (or below) must be utilized for
the results to be significant [161]. A more global evaluation of
disease-associated genes involves next-generation (highly mul-
tiplexed) DNA sequencing (NGS) of individual human genomes.
This form of sequencing is �50,000-fold less expensive than the
Sanger sequencing used for the human genome project [159].
Whole genome sequencing not only detects sequence variation
in genes and noncoding DNA, but also copy number variants
(CNVs) which are DNA insertions, deletions or rearrangements,
e.g., inversions and translocations. Approximately 60,000 CNVs,
850 inversions and 30000 indels (an insertion or deletion less
than 1 kb) have been identified in healthy individuals with
several million SNPs differing from published DNA reference
sequences [162]. Identification of functional DNA elements (e.g.
transcription factor binding sites) in human DNA formerly
categorized as ‘‘junk DNA’’ from the controversial ENCODE
(Encyclopedia of DNA Elements) project, as well as tissue
specific intergenic transcripts like lincRNAs (long intergenic
noncoding RNAs [163]) have implications in the development of
disease diagnostics [164].

GWAS has been utilized to examine genes associated with
complex (non-Mendelian) diseases, e.g.,late-onset (>65 years old)
AD (LOAD), with more than a dozen studies implicating the risk
effects of 12 genes for late-onset disease [165]. Except for the
apolipoprotein E e4 allele, for which heterozygotes and homo-
zygotes have 2.5-fold and 15- or 16-fold increased risk of LOAD,
respectively [165,166], the risk effects of the other 11 genes,
clustering to three pathways (immune system function, choles-
terol metabolism, synaptic cell membrane processes), are small
(e.g., allelic odds ratios 1.10–1.20 for increased risk for each altered
gene [167]). Collectively the non-ApoE genes account for about 50%
of LOAD genetics, with ApoE accounting for approximately 60–80%
of the disease risk, the rest being due to environmental factors
[165]. ApoE e4 is thus a useful genetic biomarker for increased risk
for LOAD. In addition to testing for multiplicity in GWAS studies,
other potential issues include: (a) small risk effects of genes
associated with the phenotype of interest; (b) potential differences
between association and causation of phenotype, requiring
additional functional experiments to examine causality; (c)
incorrect mapping of marker SNPs; and (d) misassignment of
genes in the human genome [168].
3.2.6.1. Next-generation DNA sequencing. Targeted resequencing of
GWAS DNA segments using NGS [169] allows detailed mapping for
the identification of high-risk alleles; exome sequencing allows
complete coding region sequencing, while sequencing of the entire
genome includes the exome as well as noncoding DNA, that can
also be involved in phenotypes [159]. NGS has been used in
Parkinson’s disease (PD) [170], a progressive neurodegenerative
disease involving slowness of movement, tremor, muscular rigidity
and loss of dopaminergic neurons. Age is the major risk factor, and
less than 20% of cases follow Mendelian inheritance; alterations in
at least 5 genes have been associated with familial PD [171,172],
while 16 PD gene loci and at least 8 genes have been identified as
contributing to the sporadic disease [173,174]. Exome sequencing
identified mutations in the VPS35 gene, (involved in cellular
transmembrane protein sorting and recycling) in PD neurodegen-
eration [175] and mutations in SPG11 in juvenile PD, which also
contribute to autosomal recessive juvenile amylotrophic lateral
sclerosis (ALS) and hereditary spastic paraplegia [176,177]. NGS
has also identified epigenetic changes in PD promoter DNA CpG
hypermethylation, which controls protein expression via tran-
scriptional silencing of gene expression [178,179]. NGS was used to
identify DNA methylation differences in the promoter and first
intron of a-synuclein (a major risk locus for PD) from different
brain regions of PD patients compared to controls [180] which may
be linked to overexpression. Other studies have identified altered
brain a-synuclein DNA methylation in PD [181–183] but not in
leukocytes (examined as a potential blood biomarker), consistent
with an occasional lack of correlation of DNA methylation patterns
between different tissues [184]. NGS has also been used in support
of the hypothesis that b-secretase (BACE1)-mediated cleavage of
amyloid precursor protein (APP) is involved in AD pathogenesis in
an Icelandic population where a A673T coding mutation in APP
adjacent to the BACE1 processing site protects against AD and

cognitive decline in the elderly without AD [185]. These findings
are consistent with Ab peptides being biomarkers for AD [186–
188].

4. Approaches to analysis

A standard method of analyzing biomarker performance, for a
defined set of samples, is the ROC plot [189]. Using a binary
diagnostic for cancer as an example, the plot y-axis is the true
positive (correctly identified subjects with cancer) rate (sensitivi-
ty), and the x-axis is the false positive rate (subjects without
cancer, incorrectly identified as having cancer) or 1- specificity
(Fig. 1). The corresponding AUC is a measure of the diagnostic
performance of the biomarker; an AUC of 0.5 indicates perfor-
mance no better than chance, while an AUC of 1.0 indicates a
perfect classifier. The AUC allows a comparison of the performance
(when the analysis is done on the same sample set) of different
biomarkers or biomarker panels, and presupposes a separate
method (e.g., gold standard analysis, such as histopathology for
organ toxicity) of accurately determining true positives. ROC plots
have been proposed as part of ‘‘best practices’’ for biomarker
qualification for the Predictive Safety Testing Consortium (PTSC)
[190,191]. The Early Detection Research Network (EDRN) uses ROC
plots as part of a verification process for each individual biomarker
candidate, and then for panels of different combinations of
individual biomarkers.

Along with biomarker sensitivity (the true positive [in this
instance, diseased subjects] rate, or percent of positives correctly
identified as such) and specificity (the true negative rate, or
percent of negatives [non-diseased subjects] correctly identified),
ROC AUC can be evaluated for each biomarker or panel of
biomarkers. For specific contexts of use, the tradeoff between
sensitivity and specificity, obtained from the ROC plot, may need to



Fig. 1. Receiver operating characteristic (ROC) plot of true positive rate vs. false

positive rate. A perfect model of biomarker data has an AUC of 1.0, while model 1,

which separates positives from negatives no better than a random assortment, has

an AUC of 0.5. The performance of model 3 is better than for 2, which is better than

1.
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be explicitly defined. The required sensitivity and specificity for
effective detection of a disease like cancer will vary with the type of
cancer, its frequency in the population being screened, and the
consequences of false positives (unnecessary medical procedures)
and false negatives (failure to detect existing disease) [192].

For ovarian cancer screens in the general population, an upper
limit for the false positive rate might be 2%, while a much higher
false positive rate might be acceptable when the screening
population is females with benign ovarian disease [193]. For 68
ovarian cancer biomarker candidates examined by the EDRN, only
a combination of the existing marker CA125 and HE4 (now an FDA-
approved panel for monitoring for recurrence of ovarian cancer)
had adequate preclinical sensitivity (95%) and specificity (over
50%) in verification studies [193,194].

Another consideration involves estimating the number of
subjects to be analyzed to detect a biomarker effect of a given
size. This is critical for biomarker discovery and for clinical trial
design; sample size determination is necessary to insure adequate
statistical power for making inferences about a large population
from a smaller sample [195]. Many biomarker studies have
examined fewer than 100 specimens and lack the statistical power
needed to associate a biomarker with a particular condition
[1,195]. For a large number of samples, the sample size, n that
needs to be examined to detect a biomarker difference, D in the
population mean, m to guarantee the statistical power 1 � b is
calculated according to equation 1. Here b is the type II error rate
(the probability of failure to reject a false null hypothesis), the
statistical power 1 � b is the probability of correctly rejecting a
false null hypothesis, and a is the type I error rate (the probability
of rejecting a true null hypothesis). Usually the type II error rate b is
at most 0.2 and statistical power is at least 0.80; a is commonly
0.05 [196].

n ¼ ðZa=2 þ ZbÞ
S

D

� �2

(1)

where Za/2 is the z value corresponding to the right tail area of a/2
in a normal distribution, and is equal to [ðX̄ � m1Þ=ðs=ðnÞ0:5Þ]; X̄ is
the population mean, m1 is the lower limit of the 100(1 � a)%
confidence interval, s is the standard deviation, S2 is the calculated
sample variance, and n is the number of examined samples in a
normal distribution. Zb is the cutoff z value corresponding to the
right tail area of b in a normal distribution. The statistical power
and n are normally calculated from pilot studies, and are critical for
clinical trial design [196].

Due to the complexity and size of datasets frequently evaluated
for biomarker candidates, multivariate analysis is often utilized
[197], but the details depend on the data structures being
analyzed. When analyzing biomarkers from datasets with a large
number of potential candidates, estimating the number that might
strongly correlate with outcome by chance alone (multiplicity) is
done using a false discovery rate [198]. For analysis of complex
data such as from imaging MALDI (a dataset may contain 5000–
50000 spectra, each with 10000–100000 m/z -intensity values,
with spectra from different locations in 3-D tissue), unsupervised
(applied without prior knowledge of the system) data mining
methods are used for data reduction and include principal
component analysis (reduces data dimensionality, visualizes most
important influences on data variance [199]) or hierarchical
clustering [160,200]. Supervised classification requires at least two
classes to be differentiated (e.g., for a binary classifier, two classes
could be no disease versus disease), utilizes a training set of data
from known (in this example) diseased samples and known non-
diseased samples to learn to discriminate the two groups, and is
then applied to new data to determine their class [200]. The
performance of the classifier can be analyzed using a test set of
data not utilized in training the classifier; ROC plots can be used to
summarize classifier performance. Examples of binary classifiers
include the support vector machine, which has been applied in the
analysis of MS-proteomics data [201] and proteomics-based
biomarker analysis [202]; see Luts et al. for review [203]. Other
classifiers include decision trees [204], random forests (sets of
decision trees) [205] utilized to analyze ADNI serum and plasma
protein biomarker data [206], and artificial neural networks,
utilized to examine ovarian cancer biomarkers [207].

4.1. A single biomarker versus a biomarker panel

A key question in biomarker validation is whether a biomarker
panel can outperform a single biomarker. In a number of cases a
panel outperforms a single marker, but in others one or two
markers may work well for defined goals. The use of multiple
signaling pathways in transformed cells, as well as widespread
tumor heterogeneity in the major epithelial cell-derived cancers
[208], suggests that multiple biomarkers may more adequately
reflect heterogeneous tumor biology and outperform single
biomarker analysis [130]. Likewise, the presence of different
confounding conditions in different patients may make accurate
diagnosis more difficult, requiring a higher information content in
a biomarker panel. However, adding additional markers may
increase sensitivity at the expense of specificity. In the EDRN
protocol developed for biomarker analysis, after blinded biomarker
assay results from the established ‘‘reference data set’’ are
obtained, individual biomarkers are examined for sensitivity and
specificity. Then panels of biomarkers are constructed and
examined using classifiers to see if biomarker performance can
be improved beyond that of any single biomarker, which has
occurred for prostate cancer (two markers to date, see below) and
for ovarian cancer (panel of CA125 and HE4 for prediction of early
recurrence, see below).

The OncotypeDx test for 10-year recurrence of lymph node–
negative, estrogen receptor–positive breast cancer, is based on 21
genes, including 5 reference genes for normalizing expression of
the 16 cancer-related genes, which are related to proliferation,
invasion, HER2, and estrogen action [209]. The predictive power of
the panel was greater than that of individual genes, while
expression of single genes such as HER2 or the estrogen receptor
were only weakly predictive of recurrence risk. The MammaPrint
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test for lymph node–negative breast cancer survival of young
women is based on human DNA microarray-determined [210]
transcription levels of 70 genes, which were selected from 231
genes (of approximately 25,000 human genes examined) that were
significantly correlated with disease outcome for this test (the
appearance of distant metastases within 5 years after diagnosis)
[211]. The 231 genes were rank-ordered based on their correlation
coefficient to disease outcome, and groups of five genes were
added to a supervised two-layer (estrogen receptor signature,
BRCA-1 signature) classifier, including Monte Carlo simulations,
until the combined false positive and false negative error rates
reached a minimum, which occurred at 70 genes [212]. In this
poor-prognosis signature, up-regulated genes were associated
with the cell cycle, invasion and metastasis, angiogenesis and
signal transduction.

AD is complex and heterogeneous in causation, including
potential contributions from genetic polymorphisms such as ApoE
variants, b-amyloid-related genes and Ab42 peptide, pathogen
infection, epigenetic modifications, or environmental insults [213].
Thus it may be expected that biomarker panels are preferred
diagnostics. A panel of 10 serum autoantibodies distinguished AD
from non-diseased controls with 96% sensitivity and 92.5%
specificity in a small study of 50 AD patients and 40 controls;
on average over 1000 autoantibodies were detected per AD serum
sample [214], consistent with the suggested involvement of
autoimmunity in AD [215], and autoantibody-involved pathogen-
esis [216]. A panel of 30 serum proteins, combined with ApoE allele
identity and patient demographics, distinguished AD patients from
controls with 94% sensitivity, 84% specificity and a ROC AUC of 0.95
[217]. CSF Ab42 alone could be used to confirm autopsy-detected
AD with a sensitivity of 96%, specificity of 76% and ROC AUC of 0.91
[187], although a classifier combining clinical scores and [18F]-
deoxyglucose imaging distinguished AD patients from controls
with a ROC AUC of 0.97 [218]. Desmosterol, which is metabolized
to cholesterol, is decreased in AD and as a biomarker has a ROC AUC
of 0.80 [118], consistent with dysregulation of cholesterol
metabolism in AD [219]. Thus for some cases a single biomarker
may have utility as a diagnostic, but for complex diseases, panels of
two or more markers appear to have superior performance.

5. Biomarker qualification and subsequent development

After biomarker discovery, subsequent development involves
careful qualification and analytical validation, and validation in
clinical trials. Due to the multidisciplinary complexity of the effort,
such programs are ‘‘big science,’’ involving consortia of multiple
labs and organizations. Paradigms for all or parts of this extended
process can be found in three large-scale biomarker initiatives.

5.1. Predictive Safety Testing Consortium (PSTC)

The PSTC [220], a collaboration between the FDA and the
Critical Path Institute, was intended to discover and develop
biomarkers for drug safety, including preclinical and clinical
kidney toxicity, liver toxicity, skeletal muscle myopathy and
cardiac hypertrophy, testicular toxicity, vascular injury and
carcinogenicity [221,222]. Qualified biomarkers were intended
for use in predicting a range of toxicities frequently observed in
drug development and in early clinical studies [223]. Here
‘‘biomarker qualification’’ required data that critically assessed
the analytical and biological performance of the biomarker,
including comparison to the existing ‘‘gold standard’’. For renal
toxicity these data included the use of a validated analytical assay
for the biomarker; the biological plausibility of the biomarker
association with renal toxicity; a molecular level understanding of
the mechanism of biomarker response; a strong correlation
between biomarker changes and renal pathology; improved
performance relative to currently accepted biomarkers; a
consistent biomarker response across mechanistically diverse
toxicants, subject sexes, and animal species; dose- and temporal-
response linking the magnitude of biomarker changes to the
severity of the organ injury and the onset/recovery from injury;
identification of early kidney injury; specificity for kidney (versus
other organ) injury; and biomarker accessibility in serum or urine
[223].

The study group selected 7 biomarkers from 23 candidates for
qualification, and based on the performance of individual
biomarkers in rat toxicology studies, proposed, when used alone
or in combination with existing markers (serum creatinine, blood
urea nitrogen content), that single markers or defined combina-
tions be used in rat GLP (Good Laboratory Practice) studies
supporting early clinical trials, as early diagnostic markers for
onset (but not regression) of drug-induced acute kidney tubular or
glomerular alterations resulting in impairment of tubular reab-
sorption [190,223,224]. The markers have not so far been approved
by the FDA for use in human clinical trials for these purposes, but
their voluntary use as evidence additional to traditional biomark-
ers and histopathology in rat studies was allowed [190]. Their use
in human clinical trials to gather additional data supporting their
usefulness as renal toxicity biomarkers may be considered on a
case-by-case basis [190].

5.2. Early Detection Research Network (EDRN)

The National Cancer Institute EDRN focused on biomarkers for
early detection of cancer [194,225], which can be difficult as early
stage tumors are small and biomarkers shed into blood can be
present at low levels [208]. Three hundred biomarkers were
prioritized with procedures for serum and plasma collection being
critical [74,226]. Samples were annotated using the NCI Biospeci-
mens First Generation Guidelines [194]. Five phases of biomarker
development were proposed, the first being preclinical explora-
tion/discovery of biomarkers. Most of the biomarker candidates
did not progress beyond this phase either due to the small changes
observed in cases versus controls or due to substantial variability
in the control population [208]. Subsequent phases involved
development of a robust and reproducible clinical biomarker assay
[226,227] where many biomarker candidates failed due to
insufficient sensitivity or specificity. Of 300 EDRN biomarker
candidates prioritized for additional study, 10 validation trials
were completed, resulting in 5 FDA-approved biomarkers for
various clinical endpoints, e.g., the use of the combination of cancer
antigen 125 and human epididymis protein 4, for monitoring the
early recurrence of ovarian cancer [194].

An example of the process focused on 108 biomarker
candidates used with prostate-specific antigen (PSA) to improve
prostate cancer screening. Only 58 of these gave reproducible
results, and five were selected for further validation [63]. Gene
expression profiling analysis of prostate cancer RNA identified
chromosomal translocations of ETS (erythroblastosis virus E26
transformation-specific) transcription factors in �50% of prostate
cancer patients, with fusion of the ERG (v-ets erythroblastosis
Virus E26 oncogene homolog) transcription factor with the
androgen-responsive promoter, TMPRSS2 (transmembrane prote-
ase, serine 2) representing �90% of ETS fusions occurring in
prostate cancer [228,229]. The gene fusion was both tissue-specific
and cancer-specific, and was involved in cancer progression. To
overcome the lack of sensitivity of this single biomarker, it was
combined in a panel with other biomarkers, e.g., the long
noncoding RNA PCA3 [230], overexpressed in over 90% of prostate
cancers [231]. The ROC plot AUC of the combined markers, both
measured in urine, of 0.71–0.77 was better than either alone and



Fig. 2. One model of AD progression based on [242]. Biomarker types are in black

text; functional changes are in blue text. Different biomarkers change at different

times during disease progression; this can vary with different patients. CSF Ab1-42

levels may begin decreasing 25 years before the onset of symptoms in dominantly

inherited AD [243]. Progression includes 3 stages: a period of normal cognition,

MCI, and dementia, followed by death an average of 4–8 years later [244].

Combinations of biomarkers can be used to help define the stage of disease for

individual patients, and may allow stage-targeted treatments in the future. ADNI

datasets have been useful for testing this model [240,245,246]. (For interpretation

of the color information in this figure legend, the reader is referred to the web

version of the article.)
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also better than the standard diagnostic PSA (ROC AUC = 0.60–
0.61) [232].

The EDRN has also initiated examination of circulating tumor
cells (CTC) as potential biomarkers. These reflect formation of
metastases and are potentially useful for prognosis of melanoma
[233], lung [234], ovarian, breast, prostate, colon and other cancers
helping guide therapy of individual cancer patients as ‘‘liquid
biopsies’’. They have been integrated into over 400 clinical trials
[235]. Due to their genetic instability and a flexible genetic
response to therapy or tumor microenvironment, tumors can be
heterogeneous within a single patient, differing in gene expression
and properties between the primary tumor and metastatic sites, or
even within a single tumor at a primary or metastatic site [293].
Thus CTCs may also be heterogeneous. This has been observed for
HER2 status, where discordance between the primary tumor, CTCs
and disseminated tumor cells has been observed in breast cancer
patients [294]. In a separate study, a subset of patients with
advanced breast cancer had HER2-negative primary tumors but
HER2-positive CTCs, suggesting this change may occur during
tumor progression [295]. Thus use of CTC properties as biomarkers
should be carefully studied.

5.3. Alzheimer’s Disease Neuroimaging Initiative (ADNI)

The ADNI [236–238] is a longitudinal study, initiated in 2004, of
200 elderly controls, 200 subjects with mild cognitive impairment
(MCI), 400 subjects with mild-to-moderate AD, and (more
recently) 100 subjects with early MCI, to develop biomarkers for
early (pre-dementia) AD diagnosis for tracking disease progres-
sion, to support clinical trials, and in a secondary phase (ADNI-2) to
identify subjects at risk for AD [238]. Potential biomarkers
included neuroimaging, using [8F]-deoxyglucose (FDG) and
[18F]-florbetapir and MRI structural imaging to measure changes
in glucose, amyloid deposition and brain volume, respectively
[239], genetic profiles, and blood and CSF biomarkers including
Ab42 peptide and tau protein [238].

The five most studied AD biomarkers - CSF Ab42, CSF tau,
amyloid-PET and FDG-PET imaging and structural MRI imaging
were examined [240] as a function of cognition using the MMSE
(Mini-Mental State Examination [241]). The time courses were
complex and deviated from baseline values as the MMSE scores
worsened. Evaluation of an AD progression score (ADPS), derived
from seven AD biomarkers [hippocampal volume, CSF Ab42, CSF
tau, MMSE score and three other measurements of cognition/
dementia, namely ADAS (Alzheimer’s disease assessment scale),
CDRSB (clinical dementia rating sum of boxes score) and RAVLT 30
(Rey auditory verbal learning test 30 min recall)] fit a sigmoidal
function with the temporal order of biomarker changes (Fig. 2)
being similar to those reported by Jack et al., [242], with the
exception that the RAVLT30 change preceded changes in all the
other biomarkers [245]. Changes in the time course of four
biomarker classes (CSF Ab1-42, CSF tau, neuroimaging data
[hippocampal volume, brain ventricular volume, FDG-PET] and
memory (RAVLT30) and executive function (ADNI-EF (executive
function) test) during AD progression supported the hypothesis
that earlier biomarker changes [244] had a causal role in later
changes, with the exception that CSF Ab42 and CSF tau changes
were independently associated with brain structural and func-
tional changes, and changes in CSF tau and brain neuroimaging had
an independent relationship with cognition [246]. The time course
of biomarker changes in familial AD patients (representing 1% of
the AD patient population) showed that decreased CSF Ab42 began
25 years before symptom onset. b-amyloid deposition, CSF tau,
and brain atrophy began 15 years before expected symptoms, and
cerebral hypometabolism and impaired episodic memory began
changing 10 years before symptom onset. Cognitive impairment,
measured by MMSE score and the CDR scale, was detected 5 years
before symptom onset, with patients meeting diagnostic criteria
for dementia 3 years after symptom onset [243]. It remains unclear
that these results are applicable to patients with sporadic AD. ADNI
biomarker data has also been used to study the transition from MCI
to AD [247–250].

6. Biomarker validation

Beyond biomarker assay validation [3], biomarker validation is
intended to address whether a biomarker achieves its purpose in a
carefully defined clinical setting and population of interest, better
than the current gold standard [2,4,63]. For a diagnostic biomarker,
does it predict disease in (often asymptomatic) individuals? For a
prognostic biomarker, does it predict disease progression or
outcome in an untreated individual? For a predictive biomarker,
does it predict patient benefit or toxicity from a specific
therapeutic intervention?

The predictive nature of the biomarker, which may be added to
an existing panel to improve performance, is addressed in terms of
sensitivity and specificity (see [251]) in multiple populations.
Cross-validation studies by two or more groups independent of the
one submitting initial studies for FDA review have been proposed
[252].

Clinical trial design is important for biomarker validation, and
can be complicated by the heterogeneity of human disease [253].
For prospective randomized case-control clinical studies, stan-
dards for diagnostic or prognostic biomarker study design (e.g. for
patient and control subject selection) confounding variables, study
performance criteria and study size are discussed [192]. Matsui
[254] discusses biomarker clinical validation and clinical utility
criteria, including randomizing patients on standard-of-care or on
new biomarker-determined treatments. In enrichment designs,
appropriate when patients without the biomarker likely will
receive no benefit from the new treatment, biomarker-positive
patients randomly receive either the new treatment or a control
treatment. In a randomize-all or all-comers design, appropriate
when there is no strong evidence that a new biomarker predicts
treatment effects, patients are randomized with respect to the
presence of the biomarker candidate, or stratified based on the
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presence of the predictive biomarker [255]. In adaptive designs,
that are useful when multiple treatment options or multiple
biomarker-defined subgroups exist, clinical trial parameters are
modified during the trial based on accumulated data [255].

7. Challenges

Additional challenges to biomarker development include the
following.

7.1. Most published biomarker candidates do not enter clinical

practice

The vast majority of candidate biomarkers are eventually
abandoned [63,69,256–257]. In 2010 over 20,000 papers docu-
mented biomarker investigations, including 8000 potential cancer
biomarkers, 600 of which were thought to be useful for early
detection [63]. To date, relatively few (ranging from 0–2 per year
from 1996–2003) newly-characterized plasma protein biomarkers
(for example) have been approved [258]. From an estimated
150,000 papers documenting thousands of claimed biomarkers,
fewer than 100 have been validated for routine clinical practice [1].

The factors that contribute to the attrition of biomarker
candidates include:

(i) the need for sustained efforts to translate initial research
results to FDA approval [63];

(ii) the need for ‘‘big science’’ to analyze and develop biomarkers
for complex and heterogeneous diseases e.g., cancer or AD
[1,259];

(iii) an effective team process [256,260] with collaborations from
multiple laboratories to standardize protocols, examine
biomarker reproducibility, independently analyze data, con-
duct independent validation [69] and large scale (e.g.
randomized) clinical trials [261];

(iv) bias, e.g. from inappropriate study population selection, the
methodology/technology used for analysis [98,256] or from
data overfitting [262].

Early biomarker candidates from individual labs have often
been fragmented and disconnected from subsequent validation
and analysis with assays often not being reproducible and having
questionable generalizability [258], with most biomarker candi-
dates not progressing beyond the discovery stage due to
insufficient sensitivity or specificity [208].

7.2. Problems with selection of preclinical samples

The selection of preclinical samples used for biomarker
discovery, for example for screening/early detection of ovarian
cancer, is critical [263]. While many biomarkers have been
proposed in this case, the gold standard remains CA125, a
membrane-associated mucin family glycoprotein. In two studies
[264,265] comparing CA125 with other candidate biomarkers
and biomarker panels, the inclusion of samples from symptom-
atic patients, including those with advanced disease, was
problematic in view of the need to screen for biomarkers to
detect disease in advance of symptoms, with samples ideally
being collected 6–12 months prior to cancer diagnosis. A
comparison of results from unblinded samples obtained at the
time of clinical diagnosis, with blinded samples acquired prior to
clinical diagnosis, suggested that systematic bias led to prior
exaggerated reports of biomarker performance [263], and
suggested that the PRoBE ‘‘prospective-specimen-collection-
retrospective-blinded-evaluation’’ protocol [192] could circum-
vent such problems.
7.3. Sample storage and handling

Biomarkers and their analysis can be affected by differences in
sample storage time and conditions, e.g., a negative correlation of
SELDI-TOF peak intensities with time of storage [106]. Repetitive
freeze-thaw cycles can have a dramatic effect on enzyme activity
[266], seminal plasma protein levels [267], and protein denatur-
ation [268,269]. Sample collection should thus follow a rigorous
protocol, including the documentation of factors that might
influence biomarker values (e.g., freeze-thawing), and of the
diagnosis associated with the sample. Samples from multiple
centers should be analyzed and sample blinding and randomiza-
tion should be implemented [226].

7.4. Pooling samples

While pooling individual samples prior to analysis can shorten
analysis times and generate more total sample amount for a single
analysis, interindividual covariance and variation in biomarker
candidate levels can be lost or minimized. Detection of outliers and
misclassified samples can also be challenging, and transcript
changes identified in individual samples may not be identified in
pooled samples [270]. Data can also be lost in proteomics
experiments, with 50% of SELDI-TOF peak clusters detected in
individual samples being lost after pooling, with the loss being
greatest for low-intensity peaks, potentially limiting detection of
lower level biomarker candidates [271]. With simulated gene
expression data, increased sample pooling also increased predic-
tion error [272].

7.5. Biomarker dynamic range

In plasma or serum proteomics, proteins exist in a dynamic
range of �12 orders of magnitude and are dominated by �22
abundant proteins, which make up approximately 99% of the total
protein mass [273], making the detection of lower abundance
proteins difficult. One approach to solving this problem involves
chromatographic immunodepletion using immobilized antibodies
raised against the most abundant 7–14 proteins, and optionally
against �50 medium-abundance proteins, for which tested
columns appear reproducible [274]. However in one report,
non-targeted plasma proteins were enriched an average of
approximately 4-fold by the top-14 immunodepletion, and the
50 most abundant remaining proteins accounted for approximate-
ly 90% of MS/MS spectral counts, leaving a restricted capacity for
examination of lower abundance proteins for biomarker candi-
dates [275]. This suggests the need for additional fractionation
(and likely lower overall throughput).

For hypothesis-driven (targeted) protein biomarker discovery,
selective reaction monitoring of predefined (proteotypic) peptides
from targeted proteins may allow examination of lower level
biomarker candidates [276]. In light of the distinct possibility that
low abundance proteins (which may include specific biomarkers)
may bind to column resins, immobilized antibodies or immobi-
lized antibody-antigen pairs, all fractions of the columns need to be
examined.

Plasma or serum biomarker discovery studies may not include
immunodepletion to simplify and speed up the analysis. The
tradeoff is that specific markers of particular disease processes that
are present in low relative abundance are greatly diluted [2] while
identified biomarker candidates in unfractionated plasma may
include a number of relatively abundant acute phase response
proteins, e.g., albumin, transferrin, serum amyloid A, serum
amyloid P, haptoglobin, a2-macroglobulin, fibrinogen, a-1-acid
glycoprotein and ceruloplasmin. Subsequent to the acute phase
response, complement activation, protease inhibition, clotting,
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opsonization and other changes occur [277]. Over 200 acute phase
proteins exist [278,279], are part of the innate immune response,
and are activated by trauma, infection, stress, cancer, and
inflammation [277]. Acute phase proteins and proteins down-
stream from this process are thus highly unlikely by themselves to
be specific biomarkers.

7.6. Data analysis and bias

7.6.1. Batch effects

Batch effects are groups of measurements that have qualita-
tively different behavior across conditions unrelated to biological
variables in a study [280]. They are widespread, may be larger than
a biological effect, and occur when biomarker data collection is
affected by operational issues, e.g., personnel changes, reagent lots,
lack of instrument calibration, misalignment of data in some but
not all datasets, different sample processing, or changes in lab
conditions that lead to incorrect conclusions [280,281]. In such
instances, upon principal components analysis or clustering,
samples might cluster by time, processing group [280] or another
non-biological variable. Batch effects have been implicated for
example in analysis of ovarian cancer proteomic patterns [105] and
in the use of microarrays to obtain genomic signatures for ovarian
cancer [282]. Batch effects can be corrected by careful study design
(e.g. randomizing biological groups, such as cases and controls,
across batches).

7.6.2. Selective data reporting, incomplete validation and forensic

bioinformatics

Selective reporting or non-reporting of data can bias the
reported strength of biomarkers [283]. A meta-analysis of 18
studies on the use of the tumor suppressor p53 as a prognostic
factor for head and neck squamous cell cancer found that when 13
additional published studies were included, as well as unpublished
data retrieved directly from investigators, the statistical signifi-
cance of the association between p53 status and mortality
disappeared [283]. Data and analysis errors can also cause
problems. The use of gene expression signatures to predict
response to chemotherapeutic drugs [284] was subsequently
retracted [285] due to incomplete documentation of the data used
for analysis. The analysis process itself obscured numerous errors
that included errors in data labeling, such as reversal of cell line
labels as drug-sensitive or drug-resistant in numerous cases,
incorrect labeling of test data, analysis of genes for which no
microarray data existed, off-by-one gene indexing errors, batch
effects due to use of different array scanners with different
datasets, use of three different rules for calculating the probability
of sensitivity to a particular drug treatment, and mistakenly
assigning the gene signature for one drug to another drug [286].
Solutions from this forensic bioinformatics analysis of high-
dimension data include the proposal to supply all raw data, the
computer code used for analysis, exact instructions for each step of
data analysis, and labels for all of the experiments being analyzed,
to allow an independent investigator to reproduce each step as
well as the final results of the analysis [287]. Inadequate validation
can also bias results. Examination of the seven largest published
DNA gene expression microarray studies by inclusion of multiple
random test datasets observed that genes identified as predictors
of cancer outcome were highly unstable, with gene signatures
depending on patient selection in the training sets. Five of the
seven studies did not classify patients better than chance [288].

7.7. Study design

Issues with study design can also bias study outcome [69]. For
one study of exoprotease-generated peptide patterns for diagnosis
of prostate cancer, cases were all males while a large fraction of
controls were females; the average age of cases was 60 years, while
the average age of controls was 40 years, at which age prostate
cancer is rare [69]. Another study reported that plasma lipoprotein
lipid (including triglycerides) proton NMR line widths could
distinguish a variety of cancers from non-cancer control subjects
[289]. However plasma lipid composition is associated with age,
sex and diet, none of which were matched between cases and
controls. When cases and controls were matched for age and sex,
the distinction between patients with and without cancer
disappeared [290,291].

8. Conclusions

Effective biomarkers exist in clinical practice, e.g., CA125 for
early diagnosis of ovarian cancer, serum creatinine as an indicator
of renal function, and elevated serum cardiac troponin as an
indicator of cardiac injury [69], but their development has
required many years and a large scale, multidisciplinary effort.
Fewer than 1% of published cancer biomarkers, enter clinical
practice [256].

Many factors can contribute to the failure to validate the clinical
utility of a published biomarker: optimized standard operating
procedures for a variety of steps may not be in place; clinical
samples studied for biomarker discovery or validation may not be
appropriate for the disease being examined; and assays used for
validation may not be reproducible, tested externally in indepen-
dent labs, or on independent samples.

Compared to biological variability in target clinical popula-
tions, only small biomarker differences may exist between cases
and controls. Clinical studies may have inadequate statistical
power to demonstrate biomarker utility. Statistical analysis may
be insufficient. Bias from many sources may not be adequately
controlled. Data analysis may not be systematic or reproducible
and may contain many errors. Information sufficient to allow an
outside investigator to completely reproduce data processing
and analysis results, including computer code and raw data, may
not be available, and this may obscure problems with data
analysis. Care needs to be taken in all of these areas as problems
in a single area can compromise the validity of biomarkers that
have taken years to develop.
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