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We used a previously validated automated machine learning algorithm based on adaptive boosting to
segment the hippocampi in baseline and 12-month follow-up 3D T1-weighted brain MRIs of 150 cognitively
normal elderly (NC), 245 mild cognitive impairment (MCI) and 97 Dementia of the Alzheimer’s type (DAT)
ADNI subjects. Using the radial distance mapping technique, we examined the hippocampal correlates of
delayed recall performance on three well-established verbal memory tests—ADAScog delayed recall
(ADAScog-DR), the Rey Auditory Verbal Learning Test -DR (AVLT-DR) and Wechsler Logical Memory II-DR
(LM II-DR). We observed no significant correlations between delayed recall performance and hippocampal
radial distance on any of the three verbal memory measures in NC. All three measures were associated with
hippocampal volumes and radial distance in the full sample and in the MCI group at baseline and at follow-
up. In DAT we observed stronger left-sided associations between hippocampal radial distance, LM II-DR and
ADAScog-DR both at baseline and at follow-up. The strongest linkage between memory performance and
hippocampal atrophy in the MCI sample was observed with the most challenging verbal memory test—the
AVLT-DR, as opposed to the DAT sample where the least challenging test the ADAScog-DR showed strongest
associations with the hippocampal structure. After controlling for baseline hippocampal atrophy, memory
performance showed regionally specific associations with hippocampal radial distance in predominantly
CA1 but also in subicular distribution.
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Introduction

Alzheimer's disease (AD) is the most common cause of dementia
among the elderly. At the time when dementia of Alzheimer's
type (DAT) can be clinically diagnosed with current criteria, AD
pathology has already spread and irreversibly destroyed the brain
parenchyma. Thus recent major efforts in AD research have
concentrated on the search for disease-associated biomarkers that
can reliably identify patients in prodromal DAT (e.g., MCI and pre-
MCI) stages and support the expedited evaluation of novel disease-
modifying therapies.
MCI is an intermediate state between normal aging and dementia.
Amnestic MCI patients suffer from memory impairment while still
enjoying functional lifestyles (Petersen, 2007). Most amnestic MCI
patients have the pathological hallmarks of AD-neocortical senile
plaques, neurofibrillary tangles, atrophy and neuronal loss in layer II
of the entorhinal cortex (Jicha et al., 2006; Price andMorris, 1999), but
have not yet progressed sufficiently to meet criteria for DAT. MCI, and
more recently pre-MCI, i.e. cognitively normal elderly who progress
and develop MCI and DAT in the future (Apostolova et al., in press),
have become an intense scientific focus.

Historically, DAT clinical trials have relied on cognitive and
functional outcome measures alone. In recent years, there has been
increased interest in developing laboratory and imaging disease
biomarkers in addition to cognitive and functional endpoints or even
as substitutes for them, i.e., as surrogate markers (Cummings et al.,
2007; Thal et al., 2006). Biomarkers are currently the only feasible
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approach to quantifying disease-associated changes in the pre-
symptomatic AD (pre-DAT) stages (Cummings et al., 2007; Dubois
et al., 2007).

One major international AD scientific effort, the Alzheimer's
Disease Neuroimaging Initiative (ADNI), was established to collect
and evaluate putative clinical, imaging and laboratory AD biomarkers.
The ADNI (Principal Investigator: Michael W. Weiner, M.D., VA
Medical Center and University of California, San Francisco) is a large
multi-site longitudinal MRI and fluorodeoxyglucose positron emission
tomography (FDG-PET) study of 200 elderly controls, 400 subjects
with amnestic MCI, and 200 patients with DAT (Mueller et al., 2005)
(also see http://www.loni.ucla.edu/ADNI and ADNI-info.org).

Hippocampal atrophy remains the best-studied structural AD
imaging biomarker to date. Hippocampal atrophy progresses steadily
throughout the course of AD (Jack et al., 2000, 1998, 1997) and shows
strong correlations with Braak and Braak pathological staging
(Bobinski et al., 1997; Bobinski et al., 1995; Schonheit et al., 2004)
and verbal memory performance (Apostolova et al., 2006b; de Toledo-
Morrell et al., 2000). Hippocampal dysfunction manifests with
memory loss (de Toledo-Morrell et al., 2000; Fleischman et al.,
2005; Mortimer et al., 2004).

The present study uses ADNI baseline and 1-year follow-up
cognitive and imaging data from 490 subjects to examine the
relationships between three memory tests and hippocampal atrophy.
The cognitive portion of the Alzheimer's Disease Assessment Scale
(ADAScog) (Welsh et al., 1994) is one of the most commonly used
cognitive instruments in clinical trials in DAT (Doody et al., 2008;
Mulnard et al., 2000; Rogers et al., 1998;Wilcock et al., 2000) andMCI
(Petersen et al., 2005; Salloway et al., 2004). Its verbal memory
portion is adopted from the Consortium to Establish a Registry for
Alzheimer's Disease (CERAD) battery (Welsh et al., 1994) and a
delayed recall test has been added. The Rey Auditory Verbal Learning
Test (AVLT) and the Wechsler Memory Scale-Logical Memory II test
(LM II) are commonly used by neuropsychologists to assess verbal
memory and have been extensively validated for use in cognitively
normal and demented subjects (Rey, 1964; Wechsler, 1987). LM II
also has been utilized as a screening tool in MCI clinical trials
(Petersen et al., 2005; Salloway et al., 2004).

Methods

Subjects

The ADNI is a 5-year longitudinal study of 800 adults, ages 55–90,
including 400 amnestic MCI, 200 DAT and 200 NC subjects. The
current analyses used all subjects with available baseline and 1-year
follow-up cognitive and imaging data as of September 2008. The
sample consisted of 490 subjects, of whom 97 were diagnosed with
DAT, 245 with MCI and 148 who were cognitively normal elderly
(NC). Diagnosis of DAT was based on the National Institute of
Neurological and Communicative Disorders and Stroke and the AD
and Related Disorders Association (NINCDS-ADRDA) criteria
(McKhann et al., 1984). DAT subjects had Mini-Mental Examination
(Folstein et al., 1975) (MMSE) scores between 20 and 26 and a Clinical
Dementia Rating scale (Morris, 1993) (CDR) score of 0.5–1 at
baseline; they may be considered mild DAT patients. All MCI subjects
had memory complaints but did not meet criteria for dementia. They
scored between 24 and 30 on the MMSE, had a global CDR score of 0.5
and a CDR memory score of 0.5 or greater. In addition, they also
exhibited objective memory impairment on LM II. NC subjects did not
meet criteria for MCI or DAT. Their MMSE scores were between 24 and
30 and their global CDR was 0. Subjects were excluded if they refused
or were unable to undergo magnetic resonance imaging (MRI). Also
excluded were those with other neurological disorders, active
depression or history of psychiatric diagnosis, including major
depression or alcohol or substance dependence, within the past
2 years, and those not fluent in English or Spanish or with less than
6 years of education or were not fluent in English or Spanish. The full
list of inclusion/exclusion criteria may be accessed on pages 23–29 of
the online ADNI protocol (see http://www.adni-info.org/images/
stories/Documentation/adni_protocol_03.02.2005_ss.pdf).

Cognitive measures

We used baseline and follow-up delayed verbal recall scores from
three previously validated cognitive tests—the ADAScog delayed
recall (ADAScog-DR), AVLT 30 minute delayed recall (AVLT-DR) and
LM II delayed recall (LM II-DR). These data are freely distributed to
interested researchers (see http://www.loni.ucla.edu/ADNI and
ADNI-info.org). All three measures were used as continuous variables
in our analyses. In addition, we also included global cognitive scores
from the MMSE and CDR sum of boxes (CDR-SOB) for comparison in
some of the analyses. The 3D hippocampal maps showing these
correlations in the full sample have been previously published
elsewhere (Morra et al., in press; Morra et al., 2009a).

Imaging data acquisition and preprocessing

All subjects were scannedwith a standardized high-resolutionMRI
protocol (http://www.loni.ucla.edu/ADNI/Research/Cores/index.
shtml) (Jack et al., 2008; Leow et al., 2006). Images were obtained
on scanners developed by one of three manufacturers (General
Electric Healthcare, Siemens Medical Solutions, and Philips Medical
Systems). ADNI also collects data at 3.0 T from a subset of subjects, but
to avoid having to model field strength effects in this study, only 1.5 T
images were used. At each visit, two T1-weighted MRI scans were
collected using a sagittal 3D MP-RAGE sequence for each subject. The
TE/TR/TI (echo, repetition, and inversion time) parameters were
optimized for best contrast to noise in a feasible acquisition time. The
raw data had an acquisition matrix of 192×192×166 and voxel size
1.25×1.25× 1.2 mm3 in the x-, y-, and z-dimensions (Jack et al.,
2008). An in-plane, zero-filled reconstruction (i.e., sinc interpolation)
resulted in a 256×256 matrix and a reconstructed voxel size of
0.9375×0.9375× 1.2 mm3 in the x-, y-, and z-dimensions. The image
with higher quality (of two that were obtained identically for each
subject) was selected by the ADNI MRI quality control center at the
Mayo Clinic (in Rochester, MN, USA) (Jack et al., 2008). Phantom-
based geometric corrections were applied to ensure that spatial
calibration was kept within a specific tolerance level for each scanner
involved in the ADNI study (Gunter et al., 2006). Additional image
corrections included GradWarp correction for geometric distortion
due to gradient non-linearity (Jovicich et al., 2006), a “B1-correction”
for image intensity non-uniformity (Jack et al., 2008) and an “N3” bias
field correction, for reducing intensity inhomogeneity (Sled et al.,
1998). The B1-correction (Jack et al., 2008) is different from the N3
bias field correction as it adjusts for image intensity inhomogeneity
due to the B1 magnetic field non-uniformity using calibration scans.
B1 calibration scans are collected to correct the image intensity non-
uniformity that results when RF transmission is performed with a
more uniform body coil but MRI signal reception is performed with a
less uniform head coil. By contrast, the “N3” bias field correction, for
reducing intensity inhomogeneity (Sled et al., 1998), is an image post-
processing routine that is not dependent on calibration scans derived
from the scanner. It essentially adjusts the spatial profile of image
intensities using a multiplicative spline function, to make the
histogram as sharp as possible. It also aims to adjust for the central
bright artifact that can occur due to the dielectric effect. Both the
uncorrected and corrected image files are freely available to interested
researchers at http://www.loni.ucla.edu/ADNI.

All brain scans were linearly registered to the International
Consortium for Brain Mapping (ICBM-53) standard brain template
(Mazziotta et al., 2001) with a 9-parameter (9P) transformation (3
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translations, 3 rotations, 3 scales) using the Minctracc algorithm
(Collins et al., 1994). Globally aligned images were resampled in an
isotropic space of 220 voxels along each axis (x, y, and z), with a final
voxel size of 1 mm3.

Automated segmentation

The hippocampi were segmented with our new automated
machine-learning hippocampal segmentation approach (AdaBoost)
based on a statistical method called adaptive boosting originally
developed by Freund and Shapire (Freund and Shapire, 1997). The
techniquehas been described in detail in several publications byMorra
et al. (2008a,b, 2009a). AdaBoost uses a training set of image data to
developmathematical rules for classifying future data, i.e., for labeling
each voxel in a new image as belonging to the hippocampus or not. The
training set consists of small number of representative images and
theirmanual segmentations (in this case 21 subjects−7NC, 7MCI and
7 DAT subjects) delineated by an expert (A.E.G., inter-rater reliability:
Cronbach's Alpha=0.97, intra-rater reliability: Cronbach's Alpha=
0.98) using a well-established, detailed anatomical tracing protocol
with high inter- and intra-rater reliability. Based on the specific feature
information contained in the positive and negative voxels of the
training dataset (i.e., those belonging and not belonging to the struc-
ture of interest), AdaBoost develops a set of rules and computes the
optimal combination of features for accurate segmentation of
unknown images. Thousands of local features are taken into account,
such as image gradients, local curvature of image interfaces, tissue
classification as gray or white matter, and also statistical informa-
tion on the likely stereotaxic position of the hippocampus. Using
established numerical procedures from the fields of machine learning
and computer vision (Morra et al., 2009b), the training phase
estimates the optimal weighting of these features in a mathematical
formula that computes the probability of being inside the hippo-
campus. The algorithm's performance has been validated in prior
reports, and, when labeling new data previously unseen by the
algorithm, it has been found to agree with human raters as well as
human raters agree with each other (Morra et al., 2008a). Once a
successful classification model is created the AdaBoost algorithm is
applied to the full study cohort (in this case to all 490 baseline and
follow-up scans).

Radial distance mapping

After converting each hippocampal segmentation into a 3D
parametric mesh model, we computed the medial core (a 3D medial
curve threading down the center of each structure). The radial
distance from each 3D hippocampal surface point to the medial core
was computed (Apostolova et al., 2006a,b; Thompson et al., 2004).
This provides a measure of the thickness of the structure at each
surface point. The cognitive scores were then entered as covariates in
a general linear model predicting the radial distance at each surface
point of the mesh models. Associations between cognitive perfor-
mance and hippocampal radial distance were sought in the full
sample (N=490) and separately for the NC, MCI and DAT groups.

Statistical methods

We used one-way Analyses of Variance (ANOVAs) with a post hoc
Bonferroni correction for multiple comparisons for continuous
variables to examine group differences in baseline and follow-up
measures of age, education, MMSE, LM II-DR, AVLT-DR and ADAScog-
DR. A chi-squared test for categorical variables was used to determine
any group differences in gender. Pearson's correlation analyses were
used to investigate possible associations between hippocampal
volume and memory performance in the full sample, and separately
within each diagnostic group.
Linear regression models were used to map the association
between LM II-DR, AVLT-DR, ADAScog-DR and hippocampal radial
distance at baseline and at follow-up in all subjects, and separately
within each diagnostic group, as well as to map the associations
between change in memory performance and hippocampal thin-
ning over the 12-month follow-up period. The 3D statistical maps
were further subjected to multiple comparisons correction by
permutation analyses (permuting the predictor variable in this case
the memory scores) with the stringent threshold of pb0.01.
Permutation tests on maps have been widely used in the brain
mapping literature but there are differences among the approaches.
Other then FDR tests there are 3 types of tests commonly used on
statistical maps—(1) peak height, (2) cluster size, (3) total supra-
threshold volume (total volume of all clusters any size, i.e., set-level
inference). These are described in detail in Frakowiak 1997
(Frackowiak et al., 2007). The approach used here, from Thompson
et al. (2003), differs somewhat from the approach of Nichols and
Holmes (2002), and the two approaches aim to control different
error rates. Some permutation-based approaches, e.g., Nichols and
Holmes (2002), aim to control the family-wise error rate (chance of
one or more false positives in the entire map) based on the
permutation distribution of the image-wise maximum statistic, as
they build an empirically-based null distribution for the image-wise
maximum statistic based on randomizations of the data. The most
extreme 5% of the null distribution for the maximal statistic may be
used to threshold the raw statistical map. This allows one to reject
the null hypothesis at individual voxels while knowing that the
chance of family wise error (FWE) is controlled at 5%. Corrected p-
values for each voxel are obtained by evaluating the percentage of
the permutation distribution for the maximal statistic that exceeds
the voxel statistic. This allows particular points to be declared
significant. In contrast, our approach (Thompson et al., 2003),
determines a single corrected p-value for each map (which is
reported in Table 3), based on the number of points surviving a
particular a priori threshold (which we set to 0.01 in our analyses).
When this is used, one may argue that an overall-significant map
must contain one or more (corrected) significant points, but this
does not allow the interpretation of the p-values at each point as
being corrected. Even so, our approach is akin to set-level inference
in functional imaging, which is more sensitive to a distributed
pattern of weak effects than null distributions based on the
maximum statistic. As one moves from peak height to cluster size
and set-inference approaches ( we use the latter in this and our
other papers) there is a trade off of localization ability for statistical
power as it is easier for the total supra-threshold volume to catch
effects all over the structure even if it does not coalesce into
regions that exceed a pre-set number of voxels. We find this to be
the best-suited approach for weak distributed effects. Overall per-
mutation corrected p-values for our statistical maps are presented
in Table 3, but the maps themselves are illustrated with uncorrect-
ed p-values.

We conducted a separate linear regression analysis with
hippocampal radial distance at follow-up as the dependent variable
and memory test scores in follow-up as the predictor variable while
controlling for baseline hippocampal volume in the full dataset and
in each diagnostic groups. To avoid issues about in-sync permuting
in the settings of two linear regression covariates for these maps we
applied a map-wise false discovery rate (FDR) correction (Benjamini
and Hochberg, 1995). These methods are widely used for multiple
comparisons correction in statistical brain maps, and to derive a
statistical threshold (critical value, t) where possible, that controls
the expected proportion of false positive results (FDR) in the map. If
there is such a threshold that controls the FDR at 5%, then the
pattern of results in the map is declared, by convention, to be
significant overall (Benjamini and Hochberg, 1995) . Overall FDR
corrected p-values for our statistical maps are presented in Table 4
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while the maps themselves are illustrated with uncorrected
p-values.

In addition we used the map-wise FDR correction method to
derive cumulative distribution function (CDF) plots of the p-values in
our main regression maps (Figs. 1–3 These cumulative plots of p-
values, or CDFs, allow for direct visual comparisons of the strength of
correlations between each memory measure, MMSE and CDR-SOB
and hippocampal radial distance. CDF plots can be used to rank
statistical maps in terms of their effect sizes. In other words,
statistical maps with CDFs that rise more steeply at the origin also
to have a higher proportion of voxels with effect sizes exceeding any
given fixed threshold. In the CDF plots, the x axis represents any
arbitrary p-value threshold that is applied to the map (between 0
and 1), the y axis shows the proportion of the statistical map (i.e., a
fraction between 0 and 1) showing effects that are more significant
than that chosen p-value threshold. The y=20× line denotes the
allowed 5% false discovery rate, which is the maximum proportion of
false positives that is allowed for a map to be declared significant
overall. If a given CDF function curves above the y=20× line, but
then crosses it again at a point other than the origin, then the map
Fig. 1. 3D significance maps showing the associations between LM II-DR and hippocampal ra
final permutation corrected global p-values are listed in Table 3.
shows statistically significant effect. In general, when effect sizes in
the maps are greater overall, the CDF crosses the y=20× line at a
higher statistical threshold (x value), meaning that a broader range
of statistical thresholds can be applied to the data–and therefore
more voxels reported as significant–while still keeping the false
discovery rate below the conventional 5% (see Fig. 6). In these
graphs, we show the critical value, t, which is the highest threshold
that can be applied to the statistical map while keeping the expected
proportion of false positives below 5%. This is termed the “critical”
value, e.g. the critical uncorrected p-value, which can maintain a
certain, specified FDR.

Results

The results from the Bonferroni-corrected ANOVAs and the chi-
squared test for demographic and cognitive comparisons are
presented in Table 1. There were no group differences in age. The
MCI group had significantly more male subjects (65.3%) than the DAT
(50.5%, p=0.01) and NC (51.3%, p=0.004) groups. The DAT group
had fewer years of education relative to the MCI and NC groups
dial distance. In the significance maps red and white colors denote puncorrectedb0.05. The



Fig. 2. 3D significancemaps showing the associations between AVLT-DR and hippocampal radial distance. In the significancemaps, red andwhite colors denote puncorrectedb0.05. The
final permutation corrected global p-values are listed in Table 3.
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[mean=14.9 years for DAT vs. Mean=15.8 years for MCI (p=0.006)
and NC (p=0.02)]. As expected, all cognitive measures at baseline
and at follow-up were significantly worse in the DAT and MCI groups
relative to the NC group. There were also cognitive differences
between the MCI and DAT groups (all pb0.001 after Bonferroni
correction for multiple comparisons).

Volumetric results

The results of the correlation analyses between overall hippo-
campal volume and the memory tests in the full sample, and within
each diagnostic group, are presented in Table 2. All three verbal
memory measures showed significant correlations with hippocampal
volume in the full sample and in the MCI group. In DAT, LM II-DR was
correlated with both the left and right hippocampus at baseline (left
r=0.33, p=0.001 and right r=0.35, pb0.0001) but only with the
left hippocampus in follow-up (left r=0.21, p=0.044), while
ADAScog-DR was correlated only with the left hippocampus both at
baseline (r=−0.28, p=0.005) and in follow-up (r=0.21, p=0.04).
There were no significant correlations between hippocampal volume
and memory performance in NC.
3D mapping results

The uncorrected significance maps for each memory measure are
shown in Figs. 1–3. Table 3 lists the global permutation-corrected
significance of the statistical maps shown in Figs. 1–3. In agreement
with the volumetric results, no significant associations between
hippocampal radial distance and verbal memory performance were
detected in NC (see third row images in Figs. 1–3), but significant
associations were detected in the full sample (see second row
images in Figs. 1–3). Significant associations between memory and
hippocampal radial distance were detected in both DAT and MCI. LM
II-DR showed significant associations with hippocampal radial
distance bilaterally in MCI at both time points but more significant
in follow-up (see Table 3 and the fourth row images in Fig. 1). In
DAT, significant associations were seen with LM II-DR bilaterally at
baseline but only on the left in follow-up (see Table 3 and the
bottom row images in Fig. 1). AVLT-DR showed significant associa-
tions with hippocampal radial distance bilaterally in MCI both at
baseline and at follow-up (see Table 3 and the fourth row images in
Fig. 2). DAT subjects failed to show significant associations with
AVLT-DR at both time points probably as a result of floor effect (see



Fig. 3. 3D significancemaps showing the associations between ADAScog-DR and hippocampal radial distance. In the significancemaps, red andwhite colors denote puncorrectedb0.05. The
final permutation corrected global p-values are listed in Table 3.

Table 1
Between-group statistical comparisons of demographic and clinical variables con-
ducted with one-way ANOVA for continuous variables and Pearson's chi-square
analysis for categorical variables.

Variable, mean (SD) NC,
N=150

MCI,
N=245

DAT,
N=97

p value

Age at baseline, years 75.9 (4.9) 74.9 (7.2) 75.8 (7.3) 0.3
Gender, % male 51.3% 65.3% 50.5% 0.004
Education, years 15.98 (2.8) 15.98 (3.0) 14.88 (3.1) 0.005
MMSE at baseline 29.1 (.9) 26.9 (1.8) 23.39 (1.9) b0.001
MMSE at follow-up 29.1 (1.1) 26.3 (3.0) 21.52 (4.4) b0.001
ADAScog-DR at baseline 2.8 (1.7) 6.3 (2.3) 8.5 (1.6) b0.001
ADAScog-DR at follow-up 2.7 (2.0) 6.2 (3.1) 8.2 (3.0) b0.001
ADAScog-DR change −0.1 (1.7) −0.1 (2.6) −0.3 (2.8) 0.8
AVLT-DR at baseline 7.24 (3.6) 2.7 (3.1) 0.9 (1.9) b0.001
AVLT-DR at follow-up 7.95 (3.6) 2.3 (3.2) 0.3 (1.2) b0.001
AVLT-DR change −0.7 (3.3) 0.4 (2.3) 0.5 (1.7) b0.001
LM II-DR at baseline 12.9 (3.4) 3.8 (2.8) 1.3 (1.9) b0.001
LM II-DR at follow-up 13.5 (4.3) 4.3 (4.5) 1.0 (3.0) b0.001
LM II-DR change −0.6 (3.6) −0.5 (3.4) 0.2 (2.8) 0.14
Left hippocampal
volume change mm3

65 (251) 92 (232) 200 (281) b0.0001

Right hippocampal
volume change mm3

0.5 (250) 123 (251 167 (269) b0.0001
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Table 3 and the bottom row images in Fig. 2). ADAScog-DR showed
significant associations with hippocampal radial distance at baseline
on the left hippocampus in MCI and bilaterally at follow-up (see
Table 3 and the fourth row images in Fig. 3). In DAT significant
ADAScog-DR associations were seen only for the left hippocampus at
both time points (see Table 3 and the bottom row images in Fig. 3).
To assess whether naturally occurring hippocampal asymmetry
might lead to the findings above (more bilateral associations in MCI
and more left sided associations in DAT) we conducted a post hoc left
vs. right hippocampal radial distance comparison in each diagnostic
group and in the full sample at each time point. Fig. 4 demonstrates a
very well-conserved asymmetry pattern from normal aging to DAT
with larger posterior CA1 radial distances on the left and larger
subicular and CA2–3 distances on the right. There were no changes
in the asymmetry pattern from baseline to follow-up in any group
and the pooled sample. All left vs. right comparisons across the three
diagnostic groups and in the pooled sample both at baseline and in
follow-up were highly statistically significant (pcorrectedb0.001 for all
maps depicted in Fig. 4).

Our analyses aimed to uncover correlations between hippocampal
thinning over 12-months and 12-month change in verbal memory
performance did not result in statistically significant results.



Table 2
Pearson correlations (r) between hippocampal volume and cognitive measures after correcting for age, gender and education. Significant correlations appear in bold.

Time point Diagnostic group LM II-DR AVLT-DR ADAScog-DR

Left Right Left Right Left Right

Baseline All subjects (N=490) 0.3 pb0.0001 0.3 pb0.0001 0.26 pb0.0001 0.31 pb0.0001 −0.32 pb0.0001 −0.32 pb0.0001
NC (N=198) 0.02 0.01 −0.12 0.02 −0.02 −0.02
MCI (N=245) 0.19 p=0.003 0.13 p=0.045 0.27 pb0.0001 0.3 pb0.0001 −0.2 p=0.002 −0.23 pb0.0001
DAT (N=98) 0.33 p=0.001 0.35 pb0.0001 0.13 0.11 −0.28 p=0.005 −0.13

Follow-up All subjects (N=490) 0.33 pb0.0001 0.36 pb0.0001 0.3 pb0.0001 0.38 pb0.0001 −0.32 pb0.0001 −0.3 pb0.0001
NC (N=198) −0.05 0.02 −0.04 0.04 −0.04 −0.05
MCI (N=245) 0.27 pb0.0001 0.25 pb0.0001 0.24 pb0.0001 0.31 pb0.0001 −0.2 p=0.002 −0.17 p=0.008
DAT (N=98) 0.21 p=0.044 0.08 0.17 0.11 −0.21 p=0.04 −0.08
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The results from the linear regression analyses of the relationship
between follow-up memory performance with follow-up hippocam-
pal radial distance while controlling for baseline hippocampal volume
in the pooled sample are shown in Fig. 5 while the supplemental
figure on the journal’s website shows the results in each diagnostic
group separately. Fig. 5 shows that after controlling for pre-existing
atrophy memory performance shows strong regionally specific
correlations in areas corresponding to the CA1 hippocampal subfield
and parts of the subiculum. After applying FDR correction the pooled
sample maps for all three verbal memory measures as well as the LM
II-DR maps for the DAT group remained statistically significant (see
Fig. 5 and the supplemental figure on the journal's website as well as
Table 4 listing the highest p-value threshold (critical value, t) that
keeps FDR at 5%).

CDF plots

We used CDF plots to objectively compare and rank the
associations between the three memory measures, MMSE and CDR-
SOB and hippocampal radial distance, as well as to demonstrate which
of the cognitive tests showed the best linkage with hippocampal
atrophy within each diagnostic group (Fig. 6). In agreement with the
results presented so far, Fig. 6 showed no significant associations
between memory test score and hippocampal radial distance in NC,
while the strongest associations were between AVLT-DR and
hippocampal radial distance in MCI and between ADAScog-DR and
hippocampal radial distance in DAT. MMSE and CDR-SOB were less
sensitive than the memory measures in all three diagnostic groups.

Patterns of correlations between memory measures and
hippocampal subregions

As seen in Figs. 1–3, the associations between memory perfor-
mance and hippocampal structure are not uniformly distributed. In
MCI and DAT, there is consistently a strong relationship between
delayed recall performance and the lateral hippocampal area closely
corresponding to the CA1 subfield. The inferior hippocampal surface,
which captures most of the subiculum region, is another subregion
Table 3
Permutation-corrected global significance of the maps shown in Figs. 1–3.

Time point Diagnostic group LM II-DR

Left

Baseline All subjects (N=490) 0.0001
NC (N=198) 0.7
MCI (N=245) 0.05
DAT (N=98) 0.005

Follow-up All subjects (N=490) 0.0001
NC (N=198) 0.6
MCI (N=245) 0.0004
DAT (N=98) 0.03

Follow-up controlling for
baseline hippocampal volume

All subjects (N=490) b0.0001
that shows significant associations with memory performance in MCI
and DAT. CA2 and CA3, or the top medial part of the hippocampus,
show a correlation inMCIwith AVLT-DR at baseline and follow-up, LM
II-DR at follow-up and ADAScog-DR at baseline.

Discussion

DAT is already an epidemic among the elderly in the US and
worldwide. To address the pressing need to better understand and
treat AD, many researchers are focused on developing and validating
AD-related biomarkers—quantitative AD-associated measures that
serve as an indirect metric of disease severity. In the present study, we
analyzed the relationship between memory loss–the most pervasive
AD symptom–and hippocampal atrophy, the most established AD
imaging biomarker. We examined how well hippocampal radial
distance, a measure of hippocampal thickness, correlates with one
task that assesses delayed recall for short stories (LM II) and two tests
of delayed recall of a list of unrelated words (AVLT and the verbal
memory test from the ADAScog) across the full sample (N=490,
consisting of 148 NC, 245 MCI and 97 mild DAT subjects) and
separately within each diagnostic group. We used a newly developed
high-throughput hippocampal automated segmentation technique
that has been previously applied in MCI and DAT (Morra et al., 2008a,
b, 2009a). As this method shows promise as a potential analytic tool
for clinical trials, we wanted to explore the associations between
hippocampal morphology and several of the memory measures that
have been repeatedly used as screening tests or as primary and
secondary outcomes in MCI and DAT clinical trials.

None of the three verbal memory measures showed significant
associations with hippocampal volume/morphology among cogni-
tively normal elderly. In MCI, all three measures showed significant
associations with atrophy in both the left and right hippocampi, with
AVLT-DR showing the strongest linkages. One explanation for this
finding is that subjects with mild cognitive problems find AVLT more
challenging than the other two tasks. AVLT consists of a list of 15
words, whereas the ADAScog list consists of only 10 words. In
addition, AVLT requires subjects to learn a distractor list following
learning of the to-be-remembered words, which can interfere with
AVLT-DR ADAScog-DR

Right Left Right Left Right

0.0001 0.0001 0.0001 0.0001 0.0001
0.4 0.9 0.2 0.5 0.9
0.03 0.0003 0.0001 0.02 0.0017
0.08 0.1 0.2 0.0015 0.2
0.0001 0.0001 0.0001 0.0001 0.0001
0.5 0.5 0.7 0.7 0.5
0.0002 0.002 0.0001 0.009 0.03
0.09 0.1 0.1 0.04 0.4

b0.0001 b0.0001 b0.0001 b0.0001 b0.0001



Fig. 4. Left vs. right asymmetry maps for each diagnostic group and the pooled sample.
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Fig. 5. 3D significance maps showing the associations between follow-up memory test
scores and 12-month hippocampal radial distance while controlling for baseline
hippocampal volume in the full sample. The maps of the associations in each diagnostic
group can be seen in the Supplementary material section on the journal's website. In
the significance maps, red and white colors denote puncorrectedb0.05. The final FDR
corrected global p-values are listed in Table 4.

496 L.G. Apostolova et al. / NeuroImage 51 (2010) 488–499
consolidation of the first list. It is known that memory consolidation is
highly dependent upon hippocampal functions. Further, the twoword
list tests (AVLT and ADAScog-DR) are comprised of unrelated words,
in which it would be more difficult for subjects to utilize memory
mnemonics (e.g., drawing associations among the words). In contrast,
a short story (as used in LM II) provides both a context and built-in
associations. Subjects are more readily able to recall the information
content of short stories as opposed to lists comprised of unrelated
words as they can more easily utilize memory strategies, such as
retaining the theme of the story and using pictorial rehearsal.

The observed stronger associations between LM II-DR and
hippocampal atrophy in MCI at follow-up is another interesting
observation. It could be due to two separate processes. First for some
Table 4
Highest p-value threshold (critical value, t) that keeps FDR at 5% in the linear
regression analyses of the relationship between follow-up memory performance
with follow-up hippocampal radial distance while controlling for baseline hippo-
campal volume (NS—not significant).

Verbal
measure

ALL NC MCI AD

Left Right Left Right Left Right Left Right

LM II-DR 0.01 0.01 NS NS NS NS 0.001 0.0008
AVLT-DR 0.01 0.01 NS NS NS NS NS NS
ADAScog-DR 0.009 0.01 NS NS NS NS NS NS
MCI subjects it could reflect disease progression where the progres-
sive loss of the ability to compensate by means of these memory
strategies results in a tighter hippocampal-memory performance
association. On the other hand many MCI subjects demonstrated a
learning effect (i.e., had improved LMII scores in follow-up, see Table 1).
Perhaps the ones benefiting most were the subjects with the least
amount of atrophy, which in turn further strengthened the association
between memory performance and hippocampal radial atrophy.

The DAT subjects were the only group where differences were
detected in one hippocampus. They showed predominantly left sided
hippocampal-memory recall associations. The greatest effect was
observedwith the cognitive test specifically designed for DAT subjects
—the ADAScog. This task is the easiest of the three and showed higher
performance levels in DAT subjects. DAT subjects showed better
performance on LM II-DR at baseline and a significant LM II-DR
association with the hippocampal formations. However, this associ-
ation became nonsignificant at follow-up as most DAT subjects
remembered only one information unit on average (floor effect, see
Table 1). AVLT-DR, the most challenging memory test of the three,
showed no associations with hippocampal volume or radial distance
in DAT, likely due to a floor effect (DAT subjects recalled an average of
less than 1 word, see Table 1).

We used two different criteria to assess whether a map was
significant after multiple comparisons correction, as both tests are
somewhat prevalent in the brain mapping literature, although not
always applied to the same data as they are usually considered as
alternatives. First, the total supra-threshold surface area (with p-
values more extreme than 0.01) was used and a corrected p-value
was given for its rank in a null distribution obtained by randomi-
zation. And second, we used FDR theory to see if there was a
statistical threshold that could be applied to the map that controlled
the false discovery rate at the conventional 0.05 level. These are
slightly different criteria and they are not always true in the same
situations; they agreed for control and DAT groups but permutation
gave slightly more powerful results in MCI. These two tests, which
have different definitions, are generally true at the same time (i.e.,
they generally declare the same maps as significant), but for some
effects one of the tests may work and the other may not. There is a
point of connection between the CDF plots used in the FDR theory
and the permutation tests, in that one could look up whether the
map, thresholded at p=0.01, controls the FDR. By contrast,
permutation tests find out the null distribution for this suprathres-
hold area by randomization. For the memory scores in the MCI
subjects, the CDF plots show that the suprathreshold area for map
thresholded at p=0.01 is around 30 times higher than that which
would be expected by chance for AVLT-DR, but only 5–10 times
higher than that which would be expected by chance for the other
memory scores. This number has to exceed 20 for the FDR to be
considered to be controlled at 5% when the data are thresholded at
p=0.01, i.e., 20% of the map has to be significant at p=0.01. By
contrast, the permutation tests establish a non-parametric distribu-
tion for the suprathreshold area. As seen in Table 3, it was rare (less
than 1 in 20 occurrences) for the suprathreshold area in randomized
(null) data to exceed that seen by chance. It has to be concluded that
permutation tests at the 0.01 threshold were sometimes more
powerful in detecting effects than an FDR test applied at the same
threshold. Even so, FDR is adaptive and considers all possible
thresholdings of the data, so some effects in MCI, and all effects in
DAT, had critical values lower than 0.01. As such they passed FDR as
there was some threshold that controlled the false discovery rate.

Our regression analyses assessing associations between the
change in memory scores and change in hippocampal radius were
not significant. This may be due to the relatively short follow-up
interval of only 12 months. Over such a short period of time, the
changes in measures of disease progression such as memory scores
and hippocampal volumes or thickness can be quite noisy. Table 1



Fig. 6. Cumulative distribution function (CDF) plots. These plots based on the FDR method objectively compare and rank the associations between each memory measure and
hippocampal radial distance; the higher a function crosses the purple diagonal line (the y=20× line), the greater its significance. If a function does not cross the y=20× line at any
point other than the origin then pattern of effects in the statistical map used to generate the plot was not greater than what is expected by chance alone under the null hypothesis
(i.e., b5%). The intersection of the CDF and the diagonal line is here called the critical value, denoted here by t, i.e., the highest threshold that can be applied to the statistical map
while keeping the expected proportion of false positives below 5%.
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shows that these measures show (1) very small mean changes over
12-month period, and (2) quite large standard deviations. In
combination these make it hard to detect significant associations.
We plan to repeat these analyses with the 2- or 3-year follow-up data
once enough follow-up scans become available.

Once we controlled for baseline hippocampal volume in all
subjects we uncovered highly significant regionally specific associa-
tions between follow-up memory test performance and hippocampal
radial distance predominantly in CA1 distribution. The CA1 subfield is
known to be very susceptible to Alzheimer's type pathology. It is one
of the first regions to be affected and throughout the disease course
consistently shows the highest pathology burden (Bobinski et al.,
1997, 1995; Schonheit et al., 2004; Zarow et al., 2005). The observed
linkage between CA1 atrophy and verbal memory is in strong
agreement with our previous report (Apostolova et al., 2006b) as
well as with recent data from another research group (Fletcher et al.,
2008). In addition an association between CA1 and the global
ADAScog score tapping more broadly into global cognitive function
has also been reported (Csernansky et al., 2005a).

Most studies that have investigated the associations between
memory performance and hippocampal atrophy to date have
conducted their analyses on either a mixed samples of demented
and nondemented subjects or in DAT subjects alone. Only a few
studies have separated DAT and NC subjects in their analyses, and
among those several reported a lack of or even a negative correlation
between memory performance and hippocampal volume in cogni-
tively normal elderly (Chantome et al., 1999; Foster et al., 1999;
Kohler et al., 1998; Ylikoski et al., 2000). One recent study extracted
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hippocampal volumes from postmortem MR images and sought
possible correlations between hippocampal volume and verbal
memory performance within 1 year of death (Mortimer et al.,
2004). The authors reported a weaker association between memory
performance and hippocampal volume in nondemented vs. demented
individuals. These reports are in line with our findings. Even though
the hippocampus plays a crucial role for memory encoding and
consolidation in NC, age-associated memory decline depends less on
hippocampal and more on extra-hippocampal (e.g., white matter)
integrity (Grady, 2008). Therefore, even thoughwe found associations
among the hippocampi and memory in the entire sample of controls,
MCI, and DAT subjects, our data indicate the importance of analysing
specific subgroups separately, as the correlations for the whole
sample were driven by the MCI and DAT data.

The observed bilateral hippocampal/memory association in MCI is
in agreement with our previous report (Apostolova et al., 2006b). We
also observed a pronounced left-sided laterality effect in DAT as
already documented by de Toledo-Morrell et al. (2000). It has also
been reported that atrophy of the left but not the right CA1 subfield
was predictive of future progression from cognitively normal
(CDR=0) to early DAT (CDR=0.5) (Csernansky et al., 2005b). We
do not have a good explanation for this bilateral to unilateral shift
from MCI to DAT but one could perhaps hypothesize that in the MCI
stage, subjects have greater compensatory capabilities and it takes
bilateral disruption of the hippocampal networks for verbal memory
impairment to manifest itself. As AD pathology increases and the
ability to employ complex, higher order compensatory strategies
dissipates (i.e., in the DAT stage), the associations between memory
and the hippocampus may become detectable on the left side of the
brain where the majority of language processing takes place. Another
plausible explanation is that the substantially larger MCI group
sample size gives us sufficient power to uncover right-sided verbal
memory associations although admittedly our first report of bilateral
hippocampal verbal memory associations in MCI came from a much
smaller sample size (Apostolova et al., 2006b).

To our knowledge this is the largest study investigating the
correlations between verbal memory and hippocampal structural
integrity. The strengths of this study are its large size, the detailed
subject assessment, the unified MRI protocol across multiple sites
and its meticulous data quality control. Additional strengths are the
advanced pre-processing and 3D modelling techniques used to map
discrete structural–functional correlations from normal aging to
dementia. One limitation of the study stems from the limited
generalizability. The ADNI study uses rigorous exclusion criteria, as
it was designed to closely resemble a clinical trial population. As
such, it does not necessarily represent the general elderly
population and its findings should be generalized with caution.
Another weakness is the etiologic/pathologic uncertainty in the MCI
stage. At least 30% of amnestic MCI have been found to harbor non-
AD pathology (Jicha et al., 2006). Such subjects if present in ADNI
could be reducing our power to find statistically significant
associations. Another limitation is that the link between an inward
movement of the hippocampal surface and volumetric atrophy of
the underlying subfield is yet to be validated. Such validation is
difficult to do with 1.5T magnetic field strength. High-field and
ultra-high field structural imaging can potentially provide us with
enough resolution for subfield tracing and allow for such validation
to take place.

In summary, our findings highlight the importance of the use of
hippocampal atrophy as a biomarker by showing significant and
robust relationships with the most pervasive symptom of AD,
memory loss. Complex measures such as the AVLT-DR seem to be
well suited for the MCI population and show strong association with
hippocampal radial distance while DAT subjects may require less
challenging verbal memory recall measures such as LM II-DR and
ADAScog-DR.
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