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Abstract
Purpose To introduce, evaluate and validate a voxel-based
analysis method of 18F-FDG PET imaging for determining
the probability of Alzheimer’s disease (AD) in a particular
individual.
Methods The subject groups for model derivation com-
prised 80 healthy subjects (HS), 36 patients with mild cog-
nitive impairment (MCI) who converted to AD dementia
within 18 months, 85 non-converter MCI patients who did

not convert within 24 months, and 67 AD dementia patients
with baseline FDG PET scan were recruited from the AD
Neuroimaging Initiative (ADNI) database. Additionally,
baseline FDG PET scans from 20 HS, 27 MCI and 21 AD
dementia patients from our institutional cohort were includ-
ed for model validation. The analysis technique was
designed on the basis of the AD-related hypometabolic
convergence index adapted for our laboratory-specific con-
text (AD-PET index), and combined in a multivariable
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model with age and gender for AD dementia detection (AD
score). A logistic regression analysis of different cortical
PET indexes and clinical variables was applied to search
for relevant predictive factors to include in the multivariable
model for the prediction of MCI conversion to AD dementia
(AD-Conv score). The resultant scores were stratified into
sixtiles for probabilistic diagnosis.
Results The area under the receiver operating characteristic
curve (AUC) for the AD score detecting AD dementia in the
ADNI database was 0.879, and the observed probability of
AD dementia in the six defined groups ranged from 8 % to
100 % in a monotonic trend. For predicting MCI conversion
to AD dementia, only the posterior cingulate index, Mini-
Mental State Examination (MMSE) score and apolipopro-
tein E4 genotype (ApoE4) exhibited significant independent
effects in the univariable and multivariable models. When
only the latter two clinical variables were included in the
model, the AUC was 0.742 (95 % CI 0.646 – 0.838), but
this increased to 0.804 (95 % CI 0.714 – 0.894, bootstrap
p=0.027) with the addition of the posterior cingulate index
(AD-Conv score). Baseline clinical diagnosis of MCI
showed 29.7 % of converters after 18 months. The observed
probability of conversion in relation to baseline AD-Conv
score was 75 % in the high probability group (sixtile 6),
34 % in the medium probability group (merged sixtiles 4
and 5), 20 % in the low probability group (sixtile 3) and
7.5 % in the very low probability group (merged sixtiles 1
and 2). In the validation population, the AD score reached
an AUC of 0.948 (95 % CI 0.625 – 0.969) and the AD-Conv
score reached 0.968 (95 % CI 0.908 – 1.000), with AD
patients and MCI converters included in the highest proba-
bility categories.
Conclusion Posterior cingulate hypometabolism, when com-
bined in a multivariable model with age and gender as well as
MMSE score and ApoE4 data, improved the determination of
the likelihood of patients with MCI converting to AD demen-
tia compared with clinical variables alone. The probabilistic
model described here provides a new tool that may aid in the
clinical diagnosis of AD and MCI conversion.

Keywords FDG . PET . Alzheimer’s disease . Mild
cognitive impairment . Dementia . Prediction

Introduction

The diagnosis of Alzheimer’s disease (AD) is predominant-
ly clinical and is expressed in terms of probability.
International working groups have recently revised the def-
inition of AD by introducing a new lexicon and new diag-
nostic guidelines [1–3] emphasizing the concept that AD
represents a continuum. Additionally, these criteria highlight
the importance of in vivo biological evidence of AD

pathology for enhancing the certainty of AD as the under-
lying cause of symptoms [4].

PET imaging using the most widely available radiotracer
(18F-fluorodeoxyglucose, FDG) has been established as a
sensitive tool for detecting neuronal dysfunction in neocortical
association areas. A recent review of the literature confirmed
the increase in diagnostic accuracy obtained by using FDG
PET in the evaluation of dementia, thus supporting its role as
an effective and useful complementary tool for the early and
differential diagnosis of AD [5]. Furthermore, FDG PET has
been shown to be superior to other potential predictors of
decline in patients with mild cognitive impairment (MCI) over
a follow-up period of approximately 2 years [6]. Nevertheless,
international working groups concur that much additional
work is required to validate the incorporation of imaging
biomarkers, such as FDG PET, in the diagnostic paradigm
for symptomatic patients (MCI and AD). Part of this extensive
work on biomarker standardization should include an agree-
ment on how to obtain reproducible and objective results from
PET images.

Standard clinical practice in brain FDG PET imaging is
qualitative in nature. However, visual ratings depend heavily
on the observer’s prior experience, and therefore are subject to
interobserver variability. Moreover, mild hypometabolism in
small areas, such as the posterior cingulate or medial temporal
cortex, can be difficult to evaluate without complementary
quantitative analytical techniques. As a result, a strong effort
has been made in this field over the last few years with respect
to the development of different objective automated quantita-
tive methods for FDG PET evaluation. Accordingly, several
global indices of AD-related hypometabolism based on voxel-
by-voxel analysis have been described. Three-dimensional
stereotactic surface projection and NEUROSTAT-based indi-
ces [7], PMOD (PMOD Technologies) Alzheimer discrimina-
tion analysis tool (module PALZ) [8], meta-ROI-based me-
tabolism computation (metaROI) [9], the AD-related
hypometabolic convergence index (HCI) [10], and more re-
cently, independent component analysis [11] are some of the
available techniques.

The diagnostic performance of three of these global indices
(PALZ, metaROI and HCI) has been directly compared in
several independent groups of patients at different stages of
AD taken from the largest FDG PET datasets currently avail-
able [12]. Nevertheless, no global index can be defined as the
best-performing. On the other hand, these indices have been
dichotomized for classification purposes [9, 10, 12, 13], but it
is well known that the severity of an abnormal result may
affect the likelihood or prognosis of AD [3].

Within this framework, the aim of the present study was
to introduce an automated voxel-based analytical method
involving FDG PET imaging that would determine the
likelihood of AD in an individual, and the probability of
conversion of MCI to dementia in a particular individual.
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Specifically, we sought to identify cerebral metabolic abnor-
malities, along with demographic and clinical variables at
baseline in MCI patients that, combined in a multivariable
model, could be relevant predictive factors for conversion to
clinically probable AD. The diagnostic performance of this
technique was evaluated using the dataset of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), and validated using
a cohort of patients and controls recruited at our institution.

Materials and methods

Patients for model derivation

The data used in the preparation of this article were obtained
from the ADNI database (http://adni.loni.ucla.edu). The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies
and nonprofit organizations, as a $60 million, 5-year pub-
lic/private partnership. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessments can be
combined to measure the progression of MCI and early
AD. Determination of sensitive and specific markers in very
early AD progression is intended to aid researchers and
clinicians develop new treatments and monitor their effec-
tiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, of the VA Medical Center and University of
California–San Francisco. ADNI is the result of the efforts
of many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have been
recruited from over 50 sites across the USA and Canada.
The initial goal of ADNI was to recruit 800 adults, aged 55
to 90 years, to participate in the research, consisting of
approximately 200 cognitively normal older individuals to
be followed for 3 years, 400 individuals with MCI to be
followed for 3 years, and 200 individuals with early AD to
be followed for 2 years. For up-to-date information, see
www.adni-info.org.

PET scans as well as clinical and demographic data of
ADNI participants with a baseline FDG PET scan available
on the ADNI web site as of July 2010 were considered for
inclusion in this study. Among the whole dataset, the inclu-
sion criteria for this study were: stable healthy subjects
(HS), MCI and AD patients who maintained their clinical
classification during a 24-month follow-up period, and MCI
patients who converted to AD within an 18-month period
(MCI-C). The AD and HS groups were randomly divided in
two subgroups, paired by age and gender (AD-1, AD-2, HS-
1, HS-2), for method implementation (creation of a map

representing the hypometabolic pattern of AD; AD-1 and
HS-1) and for performance evaluation (AD-2 and HS-2; see
section PET analysis). Finally, 86 HS, and 121 MCI and 67
AD patients were included. The final groups for analysis
and their demographic characteristics are shown in Table 1.

All the ADNI FDG PET images were acquired and
reconstructed with measured-attenuation correction according
to the standardized protocol for each tomograph model (http://
adni.loni.ucla.edu/methods/documents/). Moreover, images
were preprocessed by ADNI PET Coordinating Center
investigators. Briefly, PET images acquired 30 to 60 min
after injection were averaged, spatially aligned, interpolated to
a standard voxel size, intensity-normalized, and smoothed to a
common resolution of 8-mm full-width at half-maximum
(FWHM).

Patients for model validation

An additional population was analysed to validate the pro-
posed methodology. This population was recruited from
patients at Clínica Universidad de Navarra and included 20
HS (vHS), 27 MCI patients (vMCI; six of whom converted
within the 18-month follow-up, vMCI-C) and 21 AD pa-
tients (vAD). The demographic characteristics of these pa-
tients are included in Table 1. All subjects belonged to a
larger cohort of patients and controls participating in a
prospective longitudinal study on AD and MCI at the
Memory Disorders Unit of the Clínica Universidad de
Navarra. The Research Ethics Committee of this institution
approved the study protocol, and written informed consent
was obtained from all subjects.

All subjects included in this study received a thorough
neurological evaluation, including a comprehensive neuro-
psychological evaluation and a full blood examination.
Blood samples were drawn for ApoE analysis. ApoE was
analysed by means of genotyping two single nucleotide
polymorphisms (rs7412 and rs429358) with TaqMan®
Gene Expression Assays as previously described [14]. The
diagnosis of dementia was based on the DSM-IV criteria,
and the diagnosis of probable AD was established according
to the criteria of the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (now known as
the Alzheimer’s Association) [15].

Patients with MCI were subjects with memory com-
plaints who fulfilled Petersen Criteria for amnestic MCI
[16]; that is, a clinical history from the subject, a reliable
informant who confirmed abnormal cognitive deficits and
memory performance below 1.5 standard deviations in at
least one of the three administered verbal memory tests
(delayed recall on the CERAD word-learning test, total
recall on the free and cued selective reminding test, delayed
free recall of the first paragraph from the logical memory
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part of the Weschler Memory Scale-revised). All MCI pa-
tients had a score of 0.5 on the Clinical Dementia Rating and
normal scores on the Yesavage geriatric depression scale
and the interview for deterioration in daily living activities
in dementia (IDDD) scale. Controls were recruited through
an invitation letter to the local association of former blood
donors of Navarra. Control subjects were volunteers older
than 65 years who had no cognitive complaints and scored
above the age- and education-adjusted cut-off in all cogni-
tive tests, including all the three mentioned verbal memory
tests. Exclusion criteria included a diagnosis of major de-
pression, previous history of neurological or psychiatric
disorders or any condition affecting brain structure or func-
tion (e.g. stroke, head trauma, or hydrocephalus). From an
initial sample of 105 HS who volunteered to participate, 53
fulfilled the inclusion criteria and the first 20 consecutively
recruited controls had an FDG PET scan performed.

Additionally, all subjects underwent a brain MRI study
(Symphony 1.5 T; Siemens), and subjects with scores equal
to or higher than 6 on the Age-Related White Matter
Changes Rating Scale of the European Task Force [17] were
excluded from PET investigation.

Patients were imaged on an ECAT EXACT HR+ PET
tomograph (CTI/Siemens). Static emission images of 20-min
duration were acquired 40min after injection of 5.3MBq/kg of
18F-FDG. For attenuation correction, a 5-min transmission
scan was acquired after each emission study using three exter-
nal rotating 68Ge rod sources. Images were reconstructed by
filtered back-projection using a Hanning filter (cut-off frequen-
cy 4.9 mm), a zoom of 2.5 and a matrix size of 128 × 128 [18].

PET analysis

From among previously published techniques for the auto-
matic analysis of individual FDG PET studies, the HCI

index described by Chen et al. [10] was selected for use here.
However, some requirements for HCI computation, such as
the Matlab script, the AD-related map, and the reference
population required for HCI computation were not available.
Consequently, the whole procedure was reproduced and cus-
tomized in our laboratory as described below.

Both ADNI and validation images were processed using
Statistical Parametric Mapping software (SPM8; Wellcome
Department of Cognitive Neurology, Institute of Neurology,
London, UK; http://www.fil.ion.ucl.ac.uk/spm). Briefly,
FDG PET images were spatially normalized (using a custom
FDG template), intensity normalized to the pons region
(predefined over Montreal Neurological Institute space)
and spatially smoothed with a 3-D gaussian kernel with an
8-mm FWHM. Statistical maps were also obtained using the
SPM8 package [19].

Map of cerebral hypometabolism in the AD group: AD PET
pattern

The first step in the analysis was the creation of a map
representing the hypometabolic pattern of AD. To this end,
the groups AD-1 and HS-1 were compared using a two-
sample Student’s t test. Significance was set at p<0.05 after
family-wise error correction, and an extent threshold was set
at 2,000 voxels. This threshold was based on the p values
and the T scores of the clusters highlighted by the SPM
analysis in the whole brain and represented 1.3 % of the
voxels included in the brain mask. The z-score map obtained
is referred to hereafter as the AD pattern [19].

Computation of the individual AD PET index

The next step was the development of an index that would
compute the hypometabolic pattern of each subject of interest.

Table 1 Patient groups and demographic characteristics

Population N Age (years)b Gender
(percent female)

Education (years)b MMSE scoreb ApoE4
(percent of patients)a

ADNI HS-1 43 77 (62 – 86) 79.1 16 (2 – 20) 29 (26 – 30) 25.6

HS-2 43 75 (63 – 86) 74.4 16 (10 – 20) 29 (25 – 30) 25.6

MCI-NC 85 77 (65 – 87) 29.4 16 (7 – 20) 28 (24 – 30) 43.5

MCI-C 36 77 (65 – 89) 41.7 16 (12 – 20) 27 (24 – 29) 66.6

AD-1 34 76 (59 – 88) 64.7 16 (4 – 20) 23 (20 – 26) 76.5

AD-2 33 74 (60 – 88) 72.7 16 (11 – 19) 24 (20 – 26) 66.7

Validation vHS 20 67 (65 – 76) 40.0 8 (8 – 20) 30 (26 – 30) 0

vMCI-NC 21 73 (65 – 82) 33.3 12 (7 – 20) 28 (24 – 30) 38.1

vMCI-C 6 73 (68 – 81) 50.0 15.5 (8 – 20) 27 (25 – 28) 50.0

vAD 21 75 (65 – 82) 61.9 12 (2 – 20) 22 (20 – 28) 60.0

a Presence of at least one ApoE4 allele
bMedian (range)
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For this purpose, a z-score map of individual hypometabolism
was calculated via a two-sample Student’s t test between each
individual and the HS-1 reference group. A probability thresh-
old of p<0.05 (uncorrected for multiple comparisons) was
considered to indicate statistical significance and the extent
threshold was set at 100 voxels.

A metric was then defined to measure the similarity be-
tween the individual hypometabolic maps and the AD pattern.
The similarity between each individual z-score map and the
AD pattern was determined via a voxel-by-voxel product. The
summation across all the voxels in the brain divided by 1,000
was defined as the AD PET index, with the resulting single
number capturing the extent to which a PET image manifests
the AD pattern. The procedure is shown in Fig. 1. This
methodology was used to calculate the AD PET index of each
patient belonging to the HS-2 and AD-2 groups.

Statistical analysis

All analyses were performed using SPSS version 15.0 (SPSS
Inc., Chicago, IL). Normality of the variables was tested by
the Shapiro-Wilk method. Quantitative data are reported as
means ± standard deviation or median (range), depending on
the distribution of the data. A significance level of p<0.05was
set to indicate significance for all comparisons.

Multivariable model for the detection of AD: AD score

Using the ADNI population (HS-2 and AD-2), the informa-
tion provided by PET was integrated into a multivariable
model that included age and gender (Fig. 1). The robustness
of the model was assessed using a bootstrap procedure (k=100
datasets). The logistic model calculated an individual score for
each patient, called AD score, which represented the predicted
probability of AD in an individual.

To estimate the discrimination power of this model for the
presence or absence of AD, AD scores of AD-2 and HS-2
subjects were compared using a box plot and the nonparametric
Mann-Whitney U test. A receiver operating characteristic
(ROC) curve was computed, with the total area under the curve
(AUC), its 95 % confidence interval (CI), and the sensitivity
and specificity at the optimal cut-off according to the Youden
index (maximum of [sensitivity + specificity − 1]) calculated as
indicators of overall goodness of the model. From these data,
AD scores were recoded into sixtiles and the actual observed
percentage with AD in each category was determined.

Multivariable model for prediction of MCI progression
to AD: AD-Conv score

The same diagnostic tool designed for the discrimination
between AD and HS subjects was directly translated to the
ADNI population of MCI patients in order to classify them
into converters and nonconverters to the AD dementia stage.
In a similar manner to the above analysis, information
provided by the individual SPM analysis of the PET images
in each MCI patient against the HS-1 population was inte-
grated into a multivariable model that included age and
gender. The discriminating power of that model was evalu-
ated using the Mann-Whitney U test and the ROC curve of
the predicted probabilities.

Some variations of the model were analysed to adapt the
AD classifier for the prediction ofMCI conversion to AD. The
first variation considered was based on the fragmentation of
the AD PET index into several indexes related to anatomical
brain areas, according to the Automated Anatomical Labeling
cortical map [20]. These volumes of interest were grouped
into five areas: left parietal, right parietal, left temporal, right
temporal and posterior cingulate. The second variation con-
sidered was the inclusion in the model of clinical variables

AD-PET-pattern

Individual hypometabolism

Voxel-by-voxel
product

AD-PET-index

Gender

Age

AD-Score

Σ

Fig. 1 Procedure for calculating the AD PET index and AD score
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such as years of education, as well as the Mini-Mental State
Examination (MMSE) score and apolipoprotein E (ApoE4)
genotype (presence or absence of at least one ApoE4 allele).
Statistical analyses were conducted to study which of these
independent variables was especially relevant for discriminat-
ing MCI converters from nonconverters. For each possible
independent variable considered (cortical regions and clinical
variables), univariable and multivariable logistic regression
was applied to search for relevant predictive factors. The
criteria for possible inclusion in the multivariable model were
a univariable p value <0.25 and a multivariable (adjusted) p
value <0.05 [21]. The final model is constructed with the
significant variables in the previous analysis adjusted for age
and gender, with the obtained predicted probability labelled as
AD-Conv score. The discriminating ability of this score, spe-
cifically adapted for predicting conversion from MCI to AD
within 18 months, was evaluated using the Mann–Whitney U
test and the AUC of the predicted probabilities. Paired AUC
values from different possible models were compared using a
bootstrapping procedure (k=100,000 samples) [22].

As with the AD model, AD-Conv scores were recoded
from these data into sixtiles and the actual observed percent-
age of conversion to AD in each category was determined.

Prospective tool and validation of the proposed methodology

Models derived from the ADNI population, the AD score and
the AD-Conv score were used to implement an automated
calculation for prospective analysis (Microsoft Excel 2010).
The calculation uses the estimated coefficients in the logistic
model to determine the parameter score and to allocate the
patient into a probability group according to the cut-off scores
determined previously. The calculation was then used to eval-
uate each participant in the validation population. The AD
score was determined for the vHS and vAD groups while the
AD-Conv score was determined for the vMCI population,
which included 22 vMCI-NC and 7 vMCI-C subjects. The
AUCs for both diagnostic situations were estimated. Each
patient was classified on the basis of his/her score calculated
from the logistic model. The observed probabilities in the
validation population were compared with the expected prob-
abilities according to the ADNI cohort.

Results

AD PET pattern

Brain regions with a significant reduction in glucose metab-
olism in patients with AD compared with the those in the
HS are shown in Fig. 2. Of particular note is the significant
hypometabolism observed in the bilateral parietal cortex, the
posterior cingulate, and the bilateral temporal cortex.

Multivariable model for detection of AD dementia: AD score

Patients with AD showed a median AD PET index of 78.7
and HS had a median value of 0.96. When age and gender
were considered in the model, the median AD scores were
0.86 in AD patients and 0.18 in HS (Fig. 3). The Shapiro-
Wilk test showed that normality was not fulfilled, while the
Mann-Whitney U test showed statistically significant differ-
ences between the AD and HS groups (p<0.001). The AUC
was 0.879 (95 % CI 0.797 – 0.962) (Fig. 3). The predicted
probabilities generated with the bootstrapping procedure
had a similar AUC (0.883, 95 % CI 0.787 – 0.958), thus
attesting to the robustness of the model.

The optimal cut-off value calculated in terms of the
maximum Youden index was 0.28 providing a sensitivity
of 81.8 % (95 % CI 65.5 – 91.4 %), a specificity of
86.0 % (95 % CI 72.7 – 93.4 %), a positive predictive
value of 82 % and a negative predictive value of 86 %.
Several probability groups were defined instead of using
dichotomized groups (HS and AD). The observed prob-
ability of a patient being correctly classified as AD was
thus 8 % in the first sixtile, 15 % in the second, 23 % in
the third, 38 % in the fourth, 77 % in the fifth, and
100 % in the sixth (Fig. 3).

Multivariable model for prediction of MCI progression
to AD: AD-Conv score

The AUC for hypometabolism in all cortical regions was
0.739 (95 % CI 0.641 – 0.838). However, according to the
univariable and multivariable models performed to select
the best discriminant cortical regions within the AD pattern,
only hypometabolism in the posterior cingulate area was
significant in the multivariable model (Table 2). Moreover,
among the clinical variables evaluated, ApoE4 genotype
and MMSE score had a significant effect in both the
univariable and multivariable models, while education level
did not show a significant independent effect (Table 2).

When the MMSE score and ApoE4 genotype (age and
gender) were considered in the model, the AUC was 0.742
(95 % CI 0.646 – 0.838). However, when posterior cingulate
hypometabolism was also included in the model, the AUC
improved significantly to 0.804 (95 % CI 0.714 – 0.894,
bootstrap p=0.027,). Therefore, the final model for predic-
tion of MCI conversion to AD dementia included
hypometabolism in the posterior cingulate area together
with the ApoE4 genotype and MMSE score (age and gen-
der). The combination of these variables yielded a parameter
called AD-Conv score. The procedure for calculating the
discrimination score is shown in Fig. 4.

The optimal cut-off AD-Conv score to classify MCI
patients into converters or nonconverters was 0.28, which
yielded a sensitivity of 91.7 % (95 % CI 78.2 – 97.1 %), a
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specificity of 62.4 % (95 % CI 51.7 – 71.9 %), a positive
predictive value for conversion of 51 %, and a negative
predictive value of 95 %.

In a similar manner to the AD protocol, classification in
terms of risk group was preferred rather than the use of two
dichotomized conditions. Due to the very similar probabil-
ities in consecutive groups, the initial sixtiles of the distri-
bution were merged into four categories called very low
(first and second sixtiles), low (third and fourth sixtiles),

medium (fifth sixtile) and high (sixth sixtile). The observed
probabilities of conversion were 75 % in the high group,
34.1 % in the medium group, 20 % in the low group and
7.5 % in the very low group (Fig. 5).

Prospective tool and validation of the proposed methodology

A simple calculation was implemented for the prospective
analysis and used for automated discrimination in the validation

Fig. 2 Voxel-based analysis of group differences between the HS-1 and AD-1 groups from ADNI (p<0.05; family-wise error-corrected; 2,000
voxels). Overlain on MR images. Representative axial sections and render maps. The colour maps indicate the scale for the T-statistic

AUC: 0.879

ADHS

A
D

-
S

co
re

0

20

40

60

80

100

P
ro

ba
bi

lit
y

(%
)

1- Specificity
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

I II III IV V VI

0

20

40

60

80

100

P
ro

ba
bi

lit
y

(%
)

AUC: 0.948

A
D

-S
co

re

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

ADHS

S
en

si
tiv

ity

b

a

I II III IV V VI

1- Specificity

Fig. 3 Statistical results of the AD discrimination tool obtained for the
derivation ADNI population (a), and the validation population (b). Box
plots and ROC curves of the AD score to discriminate individually

between AD patients and HS and the distribution of probabilities
among sixtiles I to VI according to the score
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population. The median AD scores were 0.178 and 0.679 in the
HS and AD patients, respectively (p<0.001, Mann-Whitney U
test; Fig. 3). The AUC was 0.948 (95 % CI 0.625 – 0.969) and
the observed probabilities were 10% for the first sixtile, 0% for
the second and third sixtiles, 70 % for the fourth sixtile, and
100 % for the fifth and sixth sixtiles. All AD patients studied
except one were assigned to a probability greater than 70 %.

On the other hand, the Mann-Whitney U test also demon-
strated statistically significant differences in the AD-Conv
scores between the MCI-NC and MCI-C patients (MCI-NC
0.161, MCI-C 0.451; p<0.001; Fig. 5). The AUC was 0.968
(95 % CI 0.908 – 1.000), and the probabilities of conversion
were 100 % in the high group, 28.6 % in the medium group,
and 0 % in both the low and very low groups. Therefore, for
both discrimination tools, AD vs. HS and MCI-C vs. MCI-
NC, the performance observed in the validation population
was better than that in the ADNI cohort, thus confirming the
power of these tools for use in different series of patients.

Discussion

In the present study, we defined and validated two probabi-
listic parameters obtained from an automated analysis of
single-subject baseline FDG PET scans, these being the
AD score and the AD-Conv score. The AD score measures
the probability that a patient will suffer from AD dementia,
and the AD-Conv score measures the probability that a
patient with MCI will develop dementia due to AD within
the next 18 months. Specifically, the combination of demo-
graphic data (age, gender) and clinical data (ApoE4 geno-
type, MMSE score) and posterior cingulate hypometabolism
(AD-Conv score) yielded the best multivariable model for
predicting which subjects with MCI would convert to AD.

In this study a probability or risk was calculated for each
patient instead of a dichotomized result. In general, FDG PET
global indices described in the literature classify each patient as
“positive” or “negative” for AD according to a threshold value
[9, 10, 13]. However, the application of a fixed cut-off to a
biomarker continuum as represented by FDG PET can be
questioned. In many patients, FDG PET quantification can be
clearly normal (far below the threshold) or clearly abnormal (far
above the threshold), but there is an intermediate range of
values around the cut-off whose interpretation might be ambig-
uous [3]. Therefore, the assignation of probabilities is especially
appropriate for these uncertain cases where the classification
could better allocate individual patients into groups according
to the likelihood of converting to AD (either AD dementia, or
MCI conversion to AD dementia) associated with the
hypometabolism observed in the PET image. This design has
not been previously used and is well suited to the clinical
complexity of AD, in which a prodromal phase precedes the
development of dementia, and dementia severity progresses
over time. The observed probability distribution pattern among

Table 2 Results of the univariable and multivariable logistic regres-
sion analyses determining the independent variables relevant for MCI
conversion discrimination

Univariable p value Multivariablea p value

Left parietal 0.002 0.810

Right parietal 0.004 0.651

Posterior cingulate <0.001 0.026

Left temporal 0.001 0.410

Right temporal 0.005 0.877

ApoE4 0.022 0.021

MMSE score 0.005 0.030

Years of education 0.617 0.511

a Adjusted for gender and age

AD-PET-pattern

Individual hypometabolism

Voxel-by-voxel
product

MCI-PET-index

MMSE

Age

AD-Conv-Score
APOE

Gender

Σ

Fig. 4 Procedure for calculating the MCI PET index and AD-Conv score
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the studied ADNI dataset confirms the continuous character of
FDG PET as a biomarker of AD. Moreover, the distribution of
probabilities of the AD-Conv score for predicting MCI conver-
sion to AD dementia showed the complementary usefulness of
this new tool. The baseline clinical diagnosis of MCI (using the
strict criteria applied by ADNI) demonstrated a probability of
conversion of 29.7 % (36 patients out of 121MCI patients after
18 months). Therefore, the addition of baseline FDG PET data
to clinical data would increase the probabilities to 75 % and
34.1 % in patients with a high risk and medium risk, respec-
tively, according to the AD-Conv score. On the other hand, in
patients with a low and very low risk the clinical probabilities of
progression would decrease to 20 % and 7.5 %, respectively.
An important advantage of this probabilistic detection of pa-
tients at different stages of prodromal AD could significantly
improve the design of trials for new drugs targeting progression
to dementia in subjects with MCI due to AD.

Detection of AD dementia (AD score)

Our study confirms the high diagnostic accuracy of FDG PET
in detecting AD at the dementia stage. The AUC obtained using
the ADNI population was 0.879 and the observed probability
of AD dementia in the six groups ranged from 8 % to 100 % in
a monotonic trend. Although a cut-off value was not used for

the final diagnosis, sensitivity and specificity were computed
for comparative purposes, with values of 81.8 % and 86 %,
respectively. Similar results were obtained by Landau et al.
using the metaROI global index in a similar ADNI population
(AUC 0.88, sensitivity 82 %, specificity 70 %) [6].

The discrimination between AD patients and HS has been
extensively studied, with a recently published review of related
literature from 2001 to 2010 by Bohnen et al. [5]. According to
this review of cross-sectional case-control studies, FDG PET
revealed an overall sensitivity ranging from 80% to 100%, and
a specificity ranging from 60 % to 100 % depending on the
diagnostic reference standard used (clinical assessment, longi-
tudinal clinical follow-up or post-mortem diagnosis). The AUC
observed in the present work with the ADNI population was
less than the 0.978 found by Caroli et al. [12] using an imple-
mentation of HCI, but similar to the 0.948 obtained in our
validation population. Caroli et al. [12] found differences in
all the FDG PET global metrics evaluated according to the
dataset explored. Our methodology differed from the HCI in
the selected population from the ADNI dataset and the AD
pattern, which was computed in our imaging laboratory. Even
though it was not the goal of this study to directly compare our
results with those techniques described in the literature, differ-
ences in the number of subjects or in thresholding of the z-score
maps might underlie the differences between our results and
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validation population (b). Box plots and ROC curves of the AD-Conv

score to discriminate individually between MCI converters and
nonconverters and the distribution of probabilities among the stratified
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those of others. However, the bootstrapping procedure
performed in this study demonstrated the robustness of the
model. Moreover, the AD score in our validation population
showed that most of the AD patients had a 100% probability of
being correctly classified as AD. For further analysis, this tool
is available and can be downloaded at: http://www.cun.es/la-
clinica/servicios-medicos/departamento/medicina-nuclear/ad-
and-mci-analysis-tool.

Prediction of MCI progression to AD dementia (AD-Conv score)

Different biomarkers or combinations of biomarkers have
recently been studied with the aim of predicting cognitive
decline or conversion to dementia in patients with MCI [6,
23, 24]. Predictors associated with conversion have been
defined as those biomarkers that probably reflect disease
severity or the proximity of an individual to a significant
clinical transition [6]. In the logistic regression models
performed in our study, ApoE4 genotype, MMSE score and
FDG PET hypometabolism in the parietal, temporal and pos-
terior cingulate areas were significant predictors of conversion
in the univariablemodel. In themultivariable model predicting
conversion, ApoE4, MMSE score and posterior cingulate
hypometabolism had a significant independent effect.

A number of previous studies have shown that HS, and
MCI and AD patients who are ApoE4 carriers have reduced
cerebral glucose metabolic rates in the same brain regions,
and ApoE4-carrier patients with probable AD have smaller
hippocampal volumes and increased whole brain atrophy
rates than noncarriers [25–28]. However, in our study,
ApoE4 genotype and PET hypometabolism in the posterior
cingulate cortex showed significant independent effects and
consequently were included together in the model for pre-
diction of MCI conversion to probable AD. Moreover, there
was a significant improvement in performance when the
posterior cingulate index was added to the model of clinical
variables (ApoE4 and MMSE score). These results are con-
sistent with those of studies examining the combination of
FDG PET and ApoE4 genotyping in the early stratification
of patients [29, 30]. Additionally, it has also been shown that
MRI combined with ApoE4 genotyping is also useful for
predicting conversion to AD [31].

It is not surprising that a measure of cognitive impairment
could improve the performance of the model, as this has also
been reported when cerebrospinal fluid biomarkers and volu-
metric MRI data are added to memory impairment [11, 32,
33]. Inclusion of the MMSE score was considered in the
PALZ global index described by Herholz et al. [8], but in a
different manner. The AD pattern from which the PALZ PET
score was derived was identified in a cross-sectional sample
by correlating hypometabolism in FDG PET images with the
MMSE score, and therefore it was not directly added to the
hypometabolic score (sensitivity 57 %, specificity 67 %,

positive predictive value 45 %, negative predictive value
77 %, AUC 0.75). Contrary to our results, the addition of
the MMSE score did not decrease the misclassification rate of
MCI converters as was seen in the study by Shaffer et al. [11].

The posterior cingulate region is consistently described in
the literature as an area of rapid change in the course of AD
[34–37]. Therefore, this region has been consistently included
in the set of derived ROIs reflecting an AD hypometabolism
pattern and, more recently, in the FDG PET components
extracted using independent principal component analysis to
identify future decline in subjects with MCI [9]. However, the
individual contribution of every single cortical region to pre-
dict the conversion to AD dementia in MCI patients from the
ADNI dataset has not been explored. According to our results,
it might be hypothesized that the hypometabolism in regions
other than the posterior cingulate cortex do not have a signif-
icant independent effect and do not add more information to
the model for the prediction of MCI conversion to AD.
Moreover, it has also been reported that only posterior cingu-
late hypometabolism reaches significance when MCI patients
who develop AD dementia after 1 year are compared to
patients still classified as stable MCI [38]. In this respect, it is
noteworthy that metabolic reductions in the posterior cingulate
may be explained in part by the dysfunction of hippocampal
output pathways due to AD pathology [39]. Additionally,
Morbelli et al. [40] concluded that reduced metabolic connec-
tions both in hypometabolic and nonhypometabolic areas in
patients with prodromal AD indicate that metabolic disconnec-
tion may predate remote hypometabolism as an early sign of
synaptic degeneration.

Taking the hypometabolism of all cortical regions into
account (global index; AUC 0.739), our results are consis-
tent with those of previous studies showing the predictive
value of FDG PET in the series of MCI patients from ADNI
[6, 13]. However, these findings did not differ from those
obtained when only clinical variables (MMSE score and
ApoE4) were used in the multivariable model studied here
(AUC 0.742). It is remarkable that addition of the posterior
cingulate index to the clinical variables (AD-Conv score)
significantly increased the AUC of the multivariable model
to 0.804. Moreover, the AUC obtained in our prospective
validation population reached 0.968, reflecting better pre-
dictive performance than in the ADNI population. One
possible explanation for this finding may be related to the
characteristics of the control group. This group in our vali-
dation sample was highly selected because only subjects
with normal scores in three out of three verbal memory tests
were recruited. These criteria may explain the surprisingly
low proportion of ApoE4 carriers in this group. The inclu-
sion of these “supernormal” controls may have contributed
to improving the performance of the AD-Conv score in the
validation process. Nevertheless, Caroli et al. found an AUC
of 0.926 using the HCI global index [12] to compare MCI
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converters and HS. Thus, a predictive biomarker of conver-
sion to AD dementia should be tested on the entire popula-
tion of MCI patients initially at risk and not only on those
who finally convert.

Limitations

There were several limitations to this study that warrant
comment. First, we included as a reference population the
entire cohort of healthy controls available in the ADNI
dataset in whom an FDG PET scan had been performed at
baseline and who met the criteria described in the section
Materials and methods (86 subjects). However, it is possible
that a subgroup of HS positive in amyloid PET studies could
have been included, and who consequently might have had
preclinical AD. This could have affected the results by
underestimating the performance of the method for
predicting and detecting AD.

Second, the population studied here (especially MCI
converters) consisted of a relatively small number of sub-
jects and, therefore, the results obtained should be con-
firmed prospectively in a larger series of patients in a
multicentre study. Nevertheless, the validation performed
confirms the robustness and comparability of the FDG
PET scores used as they worked even better in this popula-
tion than in the model derivation series.

Third, the performance of the AD-Conv score in our
study could have been limited by the addition of an overly
general measure of cognitive impairment (MMSE score) to
the model. As such, the model might benefit from the use of
a more specific measure such as episodic memory. In this
regard, it was shown that MCI patients with an abnormal
FDG PET scan and low episodic memory performance on
the auditory verbal learning test were almost 12 times more
likely to convert to AD dementia than individuals who were
normal on both measures [6].

Finally, we proposed a probabilistic method for the com-
plementary diagnosis of clinical AD, but the clinical signifi-
cance of categorizing patients with MCI as at medium or high
risk of developing AD dementia, and the correlation of this
categorization with time to conversion, has to be established.

Conclusion

Once a diagnosis of amnestic MCI is firmly established on
clinical grounds and other aetiologies have been adequately
ruled out, posterior cingulate hypometabolism, when com-
bined in a multivariable model with age and gender as well
as MMSE score and ApoE4 data, improved the determination
of likelihood of patients with MCI converting to AD com-
pared to clinical variables alone. In contrast to the interpreta-
tion of a biomarker as being positive or negative for AD, the
probabilities rendered by the AD score and AD-Conv score

are more appropriate for reflecting the slowly progressive
nature of this pathology and the clinical manifestations of
AD. Therefore, the proposed methodology could help to
implement the new criteria for MCI due to AD set down in
the National Institute on Aging/Reagan Institute of the
Alzheimer Association Consensus Recommendations [3].
Moreover, this methodology provides the advantage of prop-
erly detecting patients at different stages of prodromal AD and
as such could complement inclusion criteria for clinical trials.
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