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Abstract

IMPORTANCE—The use of anticholinergic (AC) medication is linked to cognitive impairment 

and an increased risk of dementia. To our knowledge, this is the first study to investigate the 

association between AC medication use and neuroimaging biomarkers of brain metabolism and 

atrophy as a proxy for understanding the underlying biology of the clinical effects of AC 

medications.

OBJECTIVE—To assess the association between AC medication use and cognition, glucose 

metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS).

DESIGN, SETTING, AND PARTICIPANTS—The ADNI and IMAS are longitudinal studies 

with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic 

research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the 

baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 

months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 

cognitively normal older adults in the IMAS were included in the present analysis). Participants 

were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the 

IMAS]) or not taking (hereafter referred to as the AC− participants [350 from the ADNI and 41 

from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this 

study was performed in November 2015.

MAIN OUTCOMES AND MEASURES—Cognitive scores, mean fludeoxyglucose F 18 

standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures 
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from structural magnetic resonance imaging were compared between AC+ participants and AC− 

participants after adjusting for potential confounders. The total AC burden score was calculated 

and was related to target measures. The association of AC use and longitudinal clinical decline 

(mean [SD] follow-up period, 32.1 [24.7] months [range, 6–108 months]) was examined using 

Cox regression.

RESULTS—The 52 AC+ participants (mean [SD] age, 73.3 [6.6] years) from the ADNI showed 

lower mean scores on Weschler Memory Scale–Revised Logical Memory Immediate Recall (raw 

mean scores: 13.27 for AC+ participants and 14.16 for AC− participants; P = .04) and the Trail 

Making Test Part B (raw mean scores: 97.85 seconds for AC+ participants and 82.61 seconds for 

AC− participants; P = .04) and a lower executive function composite score (raw mean scores: 0.58 

for AC+ participants and 0.78 for AC− participants; P = .04) than the 350 AC− participants (mean 

[SD] age, 73.3 [5.8] years) from the ADNI. Reduced total cortical volume and temporal lobe 

cortical thickness and greater lateral ventricle and inferior lateral ventricle volumes were seen in 

the AC+ participants relative to the AC− participants.

CONCLUSIONS AND RELEVANCE—The use of AC medication was associated with 

increased brain atrophy and dysfunction and clinical decline. Thus, use of AC medication among 

older adults should likely be discouraged if alternative therapies are available.

Anticholinergic (AC) medications have been linked to impaired cognition1–16 primarily in 

nondemented older adults10,17 and an increased risk for cognitive impairment and dementia 

in older adults.1,3,4,18–20 The biological basis for the cognitive effects of AC medications is 

unknown. However, given the importance of the cholinergic system in cognition, researchers 

speculate that direct impairment of cholinergic neurons may underlie these effects. In fact, 

previous studies21,22 using scopolamine hydrobromide, a cholinergic antagonist, have shown 

transient cognitive impairment in young and older adults. A recent study23 suggested that 

administration of AC medications modulates the association between brain volume and 

cognition. However, to our knowledge, no studies have examined the effects of regular AC 

medication use on neuroimaging measures of brain structure and function in cognitively 

normal (CN) older adults.

The goal of the present study was to assess AC medication use in CN older adults from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). In particular, we sought to evaluate 

whether cognitive performance, brain glucose hypometabolism, structural brain atrophy, and 

clinical progression to mild cognitive impairment (MCI) and/or Alzheimer disease (AD) 

were associated with the use of AC medication. We also completed a similar analysis in an 

independent cohort of CN older adults from the Indiana Memory and Aging Study(IMAS). 

We hypothesized that participants taking AC medications (hereafter referred to as AC+ 

participants) would show poorer cognition, reduced glucose metabolism, brain atrophy, and 

increased clinical decline relative to those not taking AC medications (hereafter referred to 

as AC− participants) and that these effects would be greatest in those with the highest total 

AC burden score.
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Methods

Alzheimer’sDisease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the ADNI (http://

adni.loni.usc.edu; for more information, see the eAppendix in the Supplement,http://

www.adni-info.org, and previous reports24–29). Written informed consent was obtained 

according to the Declaration of Helsinki.30

Indiana Memory and Aging Study

The IMAS includes CN participants, participants with subjective cognitive decline, 

participants with MCI, and participants with AD, but only data from CN participants and 

participants with subjective cognitive decline were used for this analysis. Participants 

provided written informed consent according to the Declaration of Helsinki,30 and the 

procedures were approved by the Indiana University Committee for the Protection of Human 

Subjects.

AC Medications

Medication logs from the ADNI and the IMAS were manually curated to identify 

medications with low, medium, or high AC effects as defined by the Anticholinergic 

Cognitive Burden (ACB) scale and other reports.18,31–33 See eTable 1 in the Supplement for 

all medications identified. To be defined as an AC+ participant, participants had to have been 

taking the medication at the baseline visit for a minimum of 1 month. The total AC burden 

score was also calculated using the ACB scale, which uses the literature to guide an expert-

based determination of the adverse cognitive AC activities (low effect = 1, medium effect = 

2, and high effect = 3). The total AC burden score was the sum of ACB scores of all 

applicable medications taken by a participant.4,6,8 See eTable 2 in the Supplement for 

medications included in calculating the total AC burden score.

Participants

A total of 402 CN participants from ADNI 1, ADNI Grand Opportunity, and ADNI 2, 

including 301 CN participants without significant memory concerns and 101 CN 

participants with significant memory concerns, were included in the present analysis. A 

diagnosis was made as previously described34,35 and as in the ADNI 2 manual (http://

www.adni-info.org/Scientists/doc/ADNI2_Procedures_Manual_20130624.pdf). Participants 

were divided by AC medication use into those taking 1 or more medications with medium or 

high AC activity (AC+ participants) and those not taking any such medications (AC− 

participants), resulting in 52 AC+ participants and 350 AC− participants. There was no 

significant difference in the rates of AC use between CN participants with significant 

memory concerns and those without, nor was there a significant effect of diagnosis (with or 

without significant memory concerns) or of the interaction between diagnosis and AC use on 

clinical progression.

The CN participants with or without subjective cognitive decline from the IMAS were also 

evaluated as an independent replication sample. Participants were CN if they had normal 

cognition relative to demographically adjusted norms and no significant self- or informant-
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based cognitive complaints. Participants had subjective cognitive decline if they had normal 

cognition and self- and/or informant-based complaints. From the IMAS, there were 8 AC+ 

participants and 41 AC− participants.

Cognitive Testing

The ADNI participants underwent a comprehensive cognitive and clinical battery. We 

assessed the effect of AC use on executive function (Trail Making Test Part B [TMT-B], a 

composite executive function score36) and memory (Weschler Memory Scale–Revised 

Logical Memory Immediate and Delayed, a composite memory score37).

Participants from the IMAS received a battery of neuropsychological tests and cognitive 

concern questionnaires, most of which have been previously described.38 After pread-justing 

for age, sex, and education, combined z scores (relative to the complete IMAS CN group) 

were generated for 3 domains: executive function, memory, and general cognition. We then 

assessed the effect of AC use on the z scores of these 3 domains.

Fluorodeoxyglucose F 18 Positron Emission Tomography

Preprocessed fluorodeoxyglucose F 18–positron emission tomographic (FDG-PET) scans 

(coregistered, averaged, standardized image and voxel size, and uniform resolution) were 

downloaded from the ADNI Laboratory of Neuroimaging (LONI) site (http://

adni.loni.usc.edu) and processed as previously described.25,34 Mean standardized uptake 

value ratios (SUVRs) were extracted from 2 regions of interest, including a bilateral 

hippocampal region of interest39 and an overall cortical region of interest representing 

regions where CN participants show greater glucose metabolism than participants with AD 

from the full ADNI 1 cohort. Seventy-three participants were excluded from FDG-PET 

analyses for missing data. The IMAS participants did not undergo FDG PET.

Structural Magnetic Resonance Imaging

Baseline structural 3-T magnetic resonance imaging (MRI) scans were downloaded from 

LONI for ADNI 2 participants; ADNI 1 participants were excluded because their scans were 

collected on 1.5-T scanners using a different protocol. Scans were corrected prior to 

downloading as previously described.24 After downloading, we processed the scans using 

FreeSurfer version 5.134,35 to extract target measures of atrophy selected for known 

relevance in cognitive function and AD (temporal lobe, ventricle volume, and total cortex). 

If 2 MRI scans were available, the values from both scans were averaged. A total of 116 

ADNI participants were excluded from this analysis owing to missing data. The IMAS 

participants underwent structural magnetization-prepared rapid acquisition gradient-echo 

scans on a Siemens 3T Tim Trio using the ADNI sequence. Similar to ADNI, scans were 

processed using FreeSurfer version 5.1 to extract the same atrophy measures. Two 

participants were excluded owing to missing data.

Confounding Effects of Medical History and Medication Use

Because the observed effects may potentially be caused by overall morbidity in AC+ 

participants, we evaluated the effect of the total number of medications, the total number of 

common comorbid conditions, and the presence or absence of each comorbid condition. The 
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comorbid conditions tested included transient ischemic attack, myocardial infarction, cardiac 

surgery, hypertension, hyperlipidemia, diabetes, sleep apnea, other vascular disorders, 

insomnia, depression, anxiety, attention-deficit/hyperactivity disorder, and other psychiatric 

disorders. First, we determined whether there was a difference between AC+ participants and 

AC− participants regarding medical history and medication use (Table). Next, we determined 

whether these variables were associated with the outcome variables. Finally, we included 

those variables that were either different between AC+ participants and AC− participants or 

associated with an outcome in the general linear model assessing the effect of AC 

medication use on cognitive and imaging measures. Only those that were significant within 

the final general linear model were included (covariates reported in the Results). 

Furthermore, we randomly selected samples matched on medical history variables (52 AC− 

participants and 52 AC+ participants) and ran similar analyses.

Statistical Analysis

In the ADNI, cross-sectional measures of cognitive performance, glucose metabolism, and 

brain atrophy were compared between AC+ participants and AC− participants using a 

general linear model preadjusted for age, sex, and Aβ positivity (yes/no; defined using 

previously established cutoffs on either cerebrospinal fluid sample [Aβ1–42 < 192 mg/

mL]40 or cortical florbetapir F-18 SUVR [SUVR≥1.1],41 years of education [included in 

analyses of cognitive variables only], and total intracranial volume [included in analyses of 

MRI variables only] using the residuals of a linear regression model). After checking 

normality, we determined that the TMT-B score, the FDG SUVR in the cortical region of 

interest, and the inferior lateral ventricle and lateral ventricle volumes were skewed. Using 

log transformations, we normalized the TMT-B scores and FDG SUVR in the overall 

cortical region-of-interest variables, while the ventricular volumes were normalized using a 

square root transformation. These transformed variables were used in the statistical analyses 

to test the effect of AC medication use. All other variables were normally distributed, so 

untransformed values are reported. The statistical threshold for significance was set at P < .

05.

Associations between the total AC burden score and cognitive performance, glucose 

metabolism, and brain atrophy measures were evaluated using Spearman correlation models. 

Target cognitive and imaging variables were preadjusted for age, sex, Aβ positivity, 

education, medical history variables (see Results), and total intracranial volume as 

appropriate.

Finally, a Cox regression model was used to determine whether AC medication use was 

associated with clinical progression from CN to MCI and/or AD in the ADNI cohort (mean 

[SD] follow-up period, 32.1 [24.7] months [range, 6–108 months]), covaried for age, sex, 

medical history variables (see Results), and Aβ positivity. We also looked at the interaction 

of AC medication use and Aβ positivity on clinical progression.

Cognitive performance and brain atrophy measures were compared between AC+ 

participants and AC− participants in the IMAS to replicate the results observed in the ADNI. 

All measures showed a normal distribution. A general linear model was used to assess the 

effect of AC medication use in the IMAS, co-varied for age, sex, education, and total 

Risacher et al. Page 6

JAMA Neurol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intracranial volume as appropriate. Associations between the total AC burden score and 

cognitive performance and brain atrophy measures were also evaluated using Spearman 

correlation models. No medical history variables were found to be significant covariates in 

the IMAS.

Results

Cognitive Performance

No significant differences in age, sex, education, ethnicity/ race, or APOE ε4 genotype were 

observed between AC+ participants and AC− participants in either sample (Table; see eTable 

3 in the Supplement for the demographic characteristics of the IMAS participants). Of the 

medical variables examined, only the total number of medications, the total number of 

comorbid conditions, anxiety, and depression were different between AC+ participants and 

AC− participants (P < .05). Significant effects of AC medication use on the mean Logical 

Memory–Immediate score (raw mean scores: 13.27 for AC+ participants and 14.16 for AC− 

participants; P = .04 [Figure 1A]), the mean TMT-B score (raw mean scores: 97.85 seconds 

for AC+ participants and 82.61 seconds for AC− participants; P = .04 [Figure 1B], with 

transient is-chemic attack as an additional covariate), and the mean composite executive 

function score (raw mean scores: 0.58 for AC+ participants and 0.78 for AC− participants; P 
= .04 [Figure 1C], with transient ischemic attack, myocardial infarction, and diabetes as 

additional covariates) were found, with AC+ participants showing lower scores than AC− 

participants. The mean Logical Memory–Delayed Memory score (raw mean scores: 12.40 

for AC+ participants and 13.24 for AC− participants; P = .07) and the mean memory 

composite score (raw mean scores: 0.85 for AC+ participants and 0.93 for AC− participants; 

P = .11 [data not shown]) trended toward significance, with AC+ participants showing lower 

scores than AC− participants. In the IMAS, the general mean cognition z score was 

significantly reduced for the AC+ participants relative to the AC− participants (raw mean 

scores: −1.27 for AC+ participants and −0.34 for AC− participants; P = .03 [eFigure 1 in the 

Supplement]).

FDG Positron Emission Tomography

Differences in glucose metabolism between AC+ participants and AC− participants were 

observed, with the AC+ participants showing reduced glucose metabolism in the 

hippocampus (raw mean values: 1.06 for the AC+ participants and 1.08 for AC− participants; 

P = .02 [Figure 1D], with anxiety as an additional covariate) and the global FDG-PET region 

of interest (raw mean values: 1.48 for AC+ participants and 1.52 for AC− participants; P = .

03 [Figure 1E], with concussion and other vascular diseases as additional covariates) relative 

to AC− participants.

Structural MRI

A significant effect of AC medication use on brain structure was also observed. The AC+ 

participants demonstrated reduced total cortical volume (raw mean values: 406134.21 mm3 

for AC+ participants and 423107.01 mm3 for AC− participants; P = .02 [Figure 2A]) and 

larger lateral ventricle (raw mean values: 17880.19 mm3 for AC+ participants and 15620.22 

mm3 for AC− participants; P = .01 [Figure 2B]) and inferior lateral ventricle volumes (raw 
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mean values: 757.25 mm3 for A C+ participants and 571.49 mm3 for AC− participants; P < .

001 [Figure 2C]) relative to the AC− participants. Regional effects were also observed in the 

temporal lobe, with AC+ participants showing a reduced temporal lobe cortical thickness 

(raw mean values: 2.80 mm for AC+ participants and 2.84 mm for AC− participants; P = .02 

[Figure 2D], with concussion as an additional covariate) and a reduced medial temporal lobe 

(MTL) cortical thickness (raw mean values: 3.10 mm for AC+ participants and 3.15 mm for 

AC− participants; P = .02 [Figure 2E], with concussion and cardiac surgery as additional 

covariates) relative to AC− participants. In the IMAS, the AC+ participants had a reduced 

MTL cortical thickness (raw mean values: 2.91 mm for AC+ participants and 3.10 mm for 

AC− participants; P = .01 [eFigure 2A in the Supplement]) and showed a trend toward 

thinner bilateral temporal lobe cortices (raw mean values: 2.69 mm for AC+ participants and 

2.81 mm for AC− participants; P = .05 [eFigure 2B in the Supplement]) compared with the 

AC− participants.

Association of Total AC Burden Score With Cognition and Brain Atrophy

Significant associations of the total AC burden score with cognition and brain atrophy were 

observed. Specifically, a higher total AC burden score was associated with a poorer TMT-B 

performance (r = 0.137; P = .01 [Figure 3A], with transient ischemic attack and total number 

of medications additional as co-variates) and greater inferior lateral ventricle (r = 0.126; P 
= .03 [Figure 3B]) and lateral ventricle volumes (r = 0.154; P = .01 [Figure 3C]). The 

inferior lateral ventricle volume remained significantly associated with the total AC burden 

score after excluding participants with a total AC burden score of 0 (r = 0.331; P < .001 

[Figure 3E]). The TMT-B score (r = 0.146; P = .06 [Figure 3D]) and the lateral ventricle 

volume (r = 0.152; P = .10 [Figure 3F]) showed nonsignificant trend associations with the 

total AC burden score after excluding those participants with a total AC burden score of 0.

In the IMAS, the pattern of results was similar, although mostly nonsignificant trends were 

observed owing to attenuated power. Specifically, a higher total AC burden score was 

associated with reduced general cognition and atrophy (eFigure 3 in the Supplement). A 

trend for a negative association between the total AC burden score and general cognition 

across all participants (r = −0.239; P = .10 [eFigure 3A in the Supplement]) was observed, 

which was significant after excluding those with a total AC burden score of 0 (r = −0.625; P 
= .004 [eFigure 3C in the Supplement]). A negative association was observed between the 

total AC burden score and MTL cortical thickness (r = −0.313; P = .03 [eFigure 3B in the 

Supplement]), which only trended toward significant after excluding those with a total AC 

burden score of 0 (r = −0.428; P = .07 [eFigure 3D in the Supplement]).

Association of AC Use With Future Progression

A significant association between AC medication use and future progression of ADNI 

participants to MCI and/or AD was observed (P = .01; hazard ratio, 2.47 [Figure 4A]; with 

total number of medications, cardiac surgery, total number of comorbid conditions, and 

other psychiatric conditions as additional covariates). After evaluating the interaction 

between AC medication use and Aβ positivity, we observed that AC+ participants who are 

Aβ positive showed the highest risk of conversion relative to AC− participants who are Aβ 
negative (P < .001; hazard ratio, 7.73 [Figure 4B]; with cardiac surgery and other psychiatric 
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conditions as additional covariates) or those who are positive for either AC medication use 

or Aβ (P = .001; hazard ratio, 4.24 [Figure 4B]).

Matched Sample

In the matched sample, the AC+ participants showed reduced total cortex volumes (raw 

mean values: 406134.21 mm3 for AC+ participants and 417770.60 mm3 for AC− 

participants; P = .01), increased inferior lateral ventricle volumes (raw mean values: 757.25 

mm3 for AC+ participants and 583.62 mm3 for AC− participants; P = .02), and an increased 

likelihood for clinical conversion (P = .01; hazard ratio, 3.87 [data not shown]) compared 

with the AC− participants. The AC+ participants also showed a trend toward poorer Logical 

Memory–Immediate performance (raw mean values: 13.27 for AC+ participants and 14.42 

for AC− participants; P = .08) and increased lateral ventricle volumes (raw mean values: 

17880.19 mm3 for AC+ participants and 15164.28 mm3 for AC− participants; P = .10 [data 

not shown]) compared with the AC− participants.

Discussion

Use of medications with medium or high AC effects in the ADNI cohort was associated with 

poorer cognition (particularly in immediate memory recall and executive function), reduced 

glucose metabolism, whole-brain and temporal lobe atrophy, and clinical decline. The effect 

appeared additive because an increased burden of AC medications was associated with 

poorer executive function and increased brain atrophy. Similar effects were seen in an 

independent cohort of older adults. These results suggest that medications with AC 

properties may be detrimental to brain structure and function, as well as cognition.

The observed findings support previous reports1–16 regarding the association between AC 

medication use and cognitive impairments, with a significant effect of AC medication use on 

executive and immediate, rather than delayed, memory. We also found that the increased 

clinical progression from CN to MCI and/or AD was associated with AC medication use.

This study is one of the first, to our knowledge, to examine in vivo brain structural and 

functional differences between CN participants taking medications with medium or high AC 

activity and CN participants not taking these medications. We observed that AC+ 

participants had reduced brain glucose metabolism and increased brain atrophy compared 

with AC− participants. Furthermore, those with the highest total AC burden scores showed 

the most atrophy.

The increased brain atrophy and decreased brain function that we observed may be linked to 

the central effects of AC medications on cholinergic pathways within the brain. Cholinergic 

pathways, especially those extending from the basal fore-brain, are important for 

cognition.42 Studies have suggested that AC medications may affect cognition by altering 

cholinergic inputs, with a study23 showing that AC medication administration leads to an 

uncoupling between brain structure and cognition in older adults. The process by which AC 

medications might lead to neurodegeneration is less clear. Cholinergic receptor antagonists 

have been shown to induce cell death,43 while increased cholinergic neurotransmission 

reduces neurodegeneration in an AD mouse model.44 Decreased cholinergic activity due to 
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AC medications may induce synaptic loss and neurodegeneration in regions with significant 

cholinergic innervation, namely the MTL and cortex.45

In mice, lesioning or damaging cholinergic neurons in the basal forebrain has been shown to 

cause degeneration of the septal-hippocampal and basalo-cortical projections and neurons in 

the hippocampus and cortex.46 Another possibility is that participants taking AC 

medications may be more sensitive to neuronal damage in response to stress. This 

hypothesis centers around the interaction of cholinergic systems and stress because MTL 

cholinergic neurons have been shown to regulate the hypothalamic-pituitary-adrenal axis.47 

Reduced cholinergic activity has been linked to increased plasma corticosterone levels, 

which in turn are linked to increased hippocampal cell death.47 Furthermore, chronic stress 

has been associated with increased Aβ levels, tau hyperphosphorylation and aggregation, 

and neurodegeneration in mouse models through dysregulation of the hypothalamic-

pituitary-adrenal axis.48

Overall, the findings in this study provide a potential biological basis for the reduced 

cognition associated with the use AC medications through the functional and structural 

changes in the brain. However, future longitudinal studies with imaging and other brain 

biomarkers, as well as in animal models, are needed to more fully understand the 

mechanism underlying the effect of AC medications on the brain.

There are a few notable limitations to this study. First, the information on medication use 

was based on self-report rather than directly ascertained through medical/prescription 

records. Self-report could be inaccurate because participants may forget to report specific 

medication use. However, given the normal cognitive status of the participants at baseline, it 

is unlikely that they would have reported taking medications that they were, in fact, not 

taking. Thus, the observed effect is potentially underestimated because some AC− 

participants may in fact have been taking an AC medication. Future studies using medical/ 

pharmacy records, along with imaging and biomarker measures, would help to confirm the 

findings of the present study.

A second limitation is the relatively small sample size of AC+ participants. Future studies 

using larger samples are warranted. A third limitation is the inability to determine the 

causality of the findings because the results may be due to poor health rather than AC 

medication use.49 We did include common comorbid health conditions (eg, vascular and 

psychiatric conditions), total number of medications, and total number of comorbid 

conditions as covariates. However, the only way to determine true causality would be by use 

of a well-controlled prospective longitudinal study.

Another limitation may be the variability in the duration of AC medication use among 

participants. Furthermore, a participant who had taken an AC medication for many years but 

ceased shortly before the baseline visit would not be captured as an AC+ participant. Future 

studies with a better-controlled medication history assessment (ie, using medical/pharmacy 

records and patient self-report) are warranted, as well as studies on the effect of the duration 

of AC medication use on the target outcomes. Finally, only structural MRI and FDGPET 

were assessed in the present report. Future studies examining changes on more advanced 
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imaging measures (ie, diffusion tensor imaging and resting-state or task-based functional 

MRI) would provide additional evidence about the selective effect of AC medications on the 

brain structure and function in specific circuits.

Conclusions

In summary, we observed that CN older adults taking medications with medium or high AC 

activity showed poorer cognition, reduced cerebral glucose metabolism, increased brain 

atrophy, and increased clinical decline compared with those not taking these medications 

and that these symptoms were greatest in CN older adults with the highest total AC burden 

scores. These findings highlight the importance of considering the cognitive adverse effects 

of AC medications before using them to treat older adults at risk for cognitive decline in a 

clinical setting, as well as in therapeutic trials.
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Key Points

Question

Is use of anticholinergic medication associated with poorer cognition, brain 

hypometabolism, brain atrophy, and/or increased risk of clinical decline in cognitively 

normal older adults?

Findings

In this longitudinal study of 2 cohorts of cognitively normal older adults, use of 

medications with medium or high anticholinergic activity was associated with poorer 

memory and executive function, brain hypometabolism, brain atrophy, and increased risk 

of clinical conversion to cognitive impairment. This finding was greatest for those taking 

drugs with the most anticholinergic activity.

Meaning

Use of medication with significant anticholinergic activity should likely be discouraged 

in older adults if alternative therapies are available.
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Figure 1. Association of Anticholinergic (AC) Medication Use With Cognition and Glucose 
Metabolism Among Participants From the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Cognitively normal older adults taking 1 or more medications with medium or high AC 

activity (referred to as AC+ participants [n = 52]) showed poorer cognition than those not 

taking these medications (referred to as AC− participants [n = 350]), including a lower score 

on the Weschler Memory Scale–Revised Logical Memory Immediate Recall (P = .04 [A]), 

the Trail Making Test Part B (TMT-B) (P = .04 [B]), and an executive function composite (P 
= .04, with transient ischemic attack, myocardial infarction, and diabetes as additional 

covariates [C]). Glucose hypometabolism, as measured by the fluorodeoxyglucose F 18–

positron emission tomographic (FDG-PET) standardized uptake value ratio (SUVR), was 

also observed in the bilateral hippocampus (P = .02, with anxiety as an additional covariate 

[D]) and in a global cortical region of interest of AC+ participants (n = 43) relative to AC− 

participants (n = 286), generated from an analysis of cognitively normal participants who 

show greater glucose metabolism than participants with AD from the full ADNI 1 cohort (P 
= .03, with other vascular conditions and concussion as additional covariates [E]). Error bars 

indicate SD.
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Figure 2. Effect of Anticholinergic (AC) Medication Use on Brain Atrophy Measures
Cognitively normal older adults taking 1 or more medications with medium or high 

anticholinergic activity (referred to as AC+ participants [n = 35]) showed more brain atrophy 

than participants not taking these medications (referred to as AC participants [n = 251]). 

Reduced total cortex volume (P = .02 [A]), increased bilateral lateral ventricle volume (P = .

01 [B]), and increased inferior lateral ventricle volume (P < .001 [C]) were observed in AC+ 

participants relative to AC participants. Furthermore, reduced bilateral temporal lobe (P = .

02, with concussion as an additional covariate [D]) and medial temporal lobe (P = .02, with 

concussion and cardiac surgery as additional covariates [E]) cortical thicknesses were also 

observed. Error bars indicate SD.
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Figure 3. Association of Total Anticholinergic (AC) Burden Score and Brain Atrophy
The total AC burden score was significantly associated with both cognition and brain 

atrophy. Specifically, a higher total AC burden score was associated with poorer 

performance on the Trail Making Test Part B (TMT-B) (r = 0.137; P = .01, with transient 

ischemic attack and total number of medications as additional covariates [A]) and greater 

inferior lateral ventricle (r = 0.126; P = .03 [B]) and lateral ventricle volumes (r = 0.145; P 
= .01 [C]). Inferior lateral ventricle volume was still significantly associated with the total 

AC burden score after excluding participants with a total AC burden score of 0 (r = 0.331; P 
< .001 [E]). The TMT-B score (r = 0.146; P = .06 [D]) and lateral ventricle volume showed 

nonsignificant trend associations with the total AC burden score after excluding those with a 

total AC burden score of 0 (r = 0.152; P = .10 [F]).
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Figure 4. Effect of Anticholinergic (AC) Medication Use on Clinical Conversion
A, A significant association between AC use and future progression of Alzheimer’s Disease 

Neuroimaging Initiative participants to mild cognitive impairment and/or Alzheimer disease 

was observed (P = .01; hazard ratio [HR], 2.47; with total number of medications, cardiac 

surgery, total number of comorbid conditions, and other psychiatric conditions as additional 

covariates).

B, When evaluating the interaction between AC use and Aβ positivity, we found that 

participants taking 1 or more medications with medium or high AC activity who are positive 

for Aβ on florbetapir F-18–positron emission tomographic (PET) scans or cerebrospinal 

fluid (CSF) samples (referred to as AC+ and Aβ+ participants) showed a higher risk of 

conversion relative to participants not taking these medications who are negative for Aβ on 

florbetapir F-18–PET scans or CSF samples (referred to as AC and Aβ participants) (P < .

001; HR, 7.73; with cardiac surgery and other psychiatric conditions as additional 

covariates) and participants who are positive for either AC use or Aβ (P = .001; HR, 4.24).
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Table

Demographic Characteristics and Medical Histories of 402 Participants From the ADNI

Characteristic

Participants, No.

P Value
AC−

(n = 350)
AC+

(n = 52)

Age, mean (SD), y 73.3 (5.8) 73.3 (6.6) .96

Sex

    Male 171 18
.06

    Female 179 34

Education, mean (SD), y 16.4 (2.6) 16.1 (2.7) .40

Handedness

    Right 318 50
.20

    Left 32 2

APOE ε4 positive, % of participants 28.0 25.0 .65

Non-Hispanic white, % of participants 84.6 94.2 .06

Medications, mean (SD), Total No. 4.2 (2.8) 6.7 (3.1) <.001

Comorbid conditions, mean (SD), Total No. 1.8 (1.3) 2.2 (1.5) .03

Transient ischemic attack

    No 341 51
.78

    Yes 9 1

Myocardial infarction

    No 325 51
.15

    Yes 25 1

Cardiac surgery

    No 330 50
.58

    Yes 20 2

Hypertension

    No 193 24
.23

    Yes 157 28

Hyperlipidemia

    No 181 29
.59

    Yes 169 23

Diabetes

    No 324 49
.67

    Yes 26 3

Sleep apnea

    No 334 49
.70

    Yes 16 3

Other vascular conditions (eg, atrial fibrillation)

    No 327 47 .42
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Characteristic

Participants, No.

P Value
AC−

(n = 350)
AC+

(n = 52)

    Yes 23 5

Anxiety

    No 342 47
.01

    Yes 8 5

Depression

    No 306 37
.002

    Yes 44 15

Insomnia

    No 338 46
.01

    Yes 12 6

ADD or ADHD

    No 348 52
.59

    Yes 2 0

Other psychiatric condition (eg, posttraumatic stress disorder)

    No 348 52
.56

    Yes 2 0

Concussion

    No 331 48
.51

    Yes 19 4

Abbreviations: AC+, participant taking anticholinergic medication with medium or high anticholinergic activity; AC−, participant not taking 
anticholinergic medication; ADD, attention-deficit disorder; ADHD, attention-deficit/ hyperactivity disorder; ADNI, Alzheimer’s Disease 
Neuroimaging Initiative.
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