Association between tau deposition and antecedent amyloid-β accumulation rates in normal and early symptomatic individuals

Duygu Tosun,1 Susan Landau,2 Paul S. Aisen,3 Ronald C. Petersen,4 Mark Mintun,5 William Jagust2 and Michael W. Weiner1 for the Alzheimer’s Disease Neuroimaging Initiative

See Vandenberghe and Schaeverbeke (doi:10.1093/awx065) for a scientific commentary on this article.

A long-term goal of our field is to determine the sequence of pathological events, which ultimately lead to cognitive decline and dementia. In this study, we first assessed the patterns of brain tau tangle accumulation (measured with the positron emission tomography tracer $^{18}$F-AV-1451) associated with well-established Alzheimer’s disease factors in a cohort including cognitively healthy elderly individuals and individuals at early symptomatic stages of Alzheimer’s disease. We then explored highly associated patterns of greater $^{18}$F-AV-1451 binding and increased annualized change in cortical amyloid-β plaques measured as florbetapir positron emission tomography binding antecedent to $^{18}$F-AV-1451 positron emission tomography scans, and to what extent these multimodal pattern associations explained the variance in cognitive performance and clinical outcome measures, independently and jointly. We found that: (i) $^{18}$F-AV-1451 positron emission tomography retention was differentially associated with age, and cross-sectional florbetapir positron emission tomography binding retention, but not with years of education, gender, or APOE genotype; (ii) increased annualized change in florbetapir retention, antecedent to $^{18}$F-AV-1451 positron emission tomography scans, in the parieto-temporal and precuneus brain regions was associated with greater $^{18}$F-AV-1451 PET retention most prominently in the inferior temporal and inferior parietal regions in the full cohort, with florbetapir positive/negative-associated variability; and (iii) this $^{18}$F-AV-1451 positron emission tomography retention pattern significantly explained the variance in cognitive performance and clinical outcome measures, independent of the associated antecedent increased annualized change in florbetapir positron emission tomography retention. These findings are in agreement with the pathology literature, which suggests that tau tangles but not amyloid-β plaques correlate with cognition and clinical symptoms. Furthermore, non-local associations linking increased amyloid-β accumulation rates with increased tau deposition are of great interest and support the idea that the amyloid-β pathology might have remote effects in disease pathology spread potentially via the brain’s intrinsic connectivity networks.

1 Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, USA
2 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
3 Department of Neurology, University of California-San Diego, San Diego, CA, USA
4 Department of Neurology, Mayo Clinic, Rochester MN, USA
5 Avid Radiopharmaceuticals, Philadelphia, PA, USA

Correspondence to: Duygu Tosun, PhD,
Department of Radiology and Biomedical Imaging University of California – San Francisco
4150 Clement St, Bldg 13, 114M
San Francisco, CA 94121, USA
E-mail: duygu.tosun@ucsf.edu
Introduction

Alzheimer’s disease is associated with widespread deposition of extracellular amyloid-β peptides into cortical amyloid-β plaques and deposition of intracellular phosphorylated tau protein into neurofibrillar tangles in disease-specific brain regions (Hyman and Trojanowski, 1997). Braak (Braak et al., 2011) and others (Braak and Braak, 1996; Bradley et al., 2002; Vemuri et al., 2008), using neuropathology, demonstrated a close correlation between tau tangles and neurodegeneration. Furthermore, the neuropathology literature suggests that tau tangles, but not amyloid-β plaques, correlate with cognition (Markesbery, 1997), especially memory function (Terry et al., 1999), which characterizes Alzheimer’s disease. Therefore, tau tangle-associated neurodegeneration is likely to be part of the chain of events leading to cortical dysfunction and cognitive impairment. Yet, the neuropathology literature concerning the distribution of amyloid-β, tau, and their relationship to cognition is complex (Terry and Katzman, 1983; Price, 1997; Berg et al., 1998), reporting cases with little amyloid-β and tau in young subjects, cases with widespread amyloid-β plaques but without tau tangles (Tiraboschi et al., 2004; Nelson et al., 2009), cases with tau tangles in the absence of amyloid-β plaques (Nelson et al., 2009), and cases with both amyloid-β plaques and tau tangles widely distributed, especially as seen in subjects with dementia due to Alzheimer’s disease (Knoopman et al., 2003; Monsell et al., 2013). One well-established finding from neuropathological studies is the existence of intracellular tau tangles in non-demented cases, especially in the earliest tau tangle formation brain sites including transentorhinal cortex, entorhinal cortex, and hippocampus (Price and Morris, 1999). Furthermore, the neuropathology studies report exponential increase in the concentration of tau tangles with age, and greater spatial spread and further increase in concentration in the presence of widely distributed neuritic as well as diffuse plaques throughout neocortex and limbic structures (Price and Morris, 1999). These reports suggest an interaction between the pace of amyloid-β deposition and the spread of tau tangles, even at the earliest disease stage. However, limitations of pathology studies are that they only represent one time point, that the brain specimens are collected at some considerable time from the previous clinical evaluation, and that different studies use different methods, making a consensus view of the chain of events in living humans difficult to achieve.

In-depth analysis of the cause-effect mechanisms by which amyloid-β, tau, and symptomatology interact is of great interest, particularly for development of therapeutic strategies for Alzheimer’s disease. The amyloid-β cascade hypothesis (Hardy and Selkoe, 2002; Karran et al., 2011), the prevailing hypothesis in Alzheimer’s disease research, posits that accumulation of amyloid-β is primarily responsible for the accumulation of tau tangles, synaptic dysfunction, neurodegeneration, and cognitive decline especially in memory function. In addition to the knowledge gained from aforementioned neuropathology studies, accumulating evidence from in vitro tissue experiments and in vivo animal models has also provided direct experimental support for the amyloid-β cascade hypothesis, particularly for the amyloid-β-induced tau accumulation (Hurtado et al., 2010; Pooler et al., 2015). Most importantly, recently developed PET ligands for amyloid-β (Mintun et al., 2006; Clark et al., 2011) and tau (Fodero-Tavoletti et al., 2011; Xia et al., 2013) provide information concerning the amount and topography of deposition of these two hallmark pathologies of Alzheimer’s disease in vivo. These PET ligands will enable temporal and spatial localization of the amyloid-β and tau, their respective contribution to the aetiology of Alzheimer’s disease, and the mechanistic link between amyloid-β and tau pathology examined in vivo for the first time. Here, we examined in vivo the burden and the anatomical distribution of tau pathology as measured by 18F-AV-1451 PET retention (Xia et al., 2013) and its relationship with antecedent and cross-sectional amyloid-β pathology as measured by florbetapir-PET retention longitudinally (Wong et al., 2010), as well as its relationship with other Alzheimer’s disease-related factors, using data from asymptomatic elderly individuals and early symptomatic individuals, recruited in a multi-centre Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Alzheimer’s disease-related factors considered in this study were limited to age, gender, education, and APOE genotype based on the current literature reporting associations between these factors and neurobiological factors implicated in Alzheimer’s disease. Specifically, after advanced age, APOE ε4 genotype is a major risk factor for developing Alzheimer’s disease (Payami et al., 1997); females compared to males are at higher risk of both neurofibrillary tangle and amyloid-β plaque neuropathology especially in the early stages of Alzheimer’s disease (Corder et al., 2004; Damoiseaux et al., 2012); greater education may allow people to harbour amyloid-β plaques and other brain pathology linked to Alzheimer’s disease without experiencing decline in their cognitive functioning (Stern, 2012).

18F-AV-1451 (also known as 18F-T807) has been shown to bind selectively to paired-helical filament tau but not to other common protein aggregates such as amyloid-β, α-synuclein, and TDP-43 deposits in human brain tissues (Xia et al., 2013; Marquie et al., 2015). In vivo human studies indicate that patterns of 18F-AV-1451 retention...
parallel neuropathological staging of neurofibrillary tau pathology of Alzheimer’s disease and that tracer retention increases with age even in the presence of cognitive impairment and dementia (Chien et al., 2013; Johnson et al., 2016; Scholl et al., 2016). Florbetapir (also known as \(^{18}\)F-AV-45 and Amyvid) has been shown to bind to fibrillar forms of amyloid-\(\beta\) with high sensitivity and specificity in detection of presence and density of amyloid-\(\beta\) pathology with autopsy-verified histopathology (Choi et al., 2009; Clark et al., 2011). In this study, we specifically hypothesized that in a population of older people with various degrees of cognitive impairment: (i) \(^{18}\)F-AV-1451 PET retention would be independently associated with age and cross-sectional florbetapir retention, and to a lesser degree with APOE genotype; and (ii) greater annualized change in amyloid-\(\beta\) burden in frontal, parietal, and lateral temporal brain regions, measured by longitudinal florbetapir PET scans antecedent to \(^{18}\)F-AV-1451 PET scans, would be associated with greater \(^{18}\)F-AV-1451 PET retention in limbic areas of inferior and lateral temporal and parietal lobes, i.e. brain sites of tau tangle deposition involved in early symptomatic disease stages. Furthermore, we hypothesized that the variance in cognitive performance and clinical outcome measures explained by this increased \(^{18}\)F-AV-1451 retention pattern would be greater than, and independent of, the variance explained by the associated pattern of increased annualized change in florbetapir retention antecedent to \(^{18}\)F-AV-1451 scan.

**Materials and methods**

**Participants**

Subjects of this study were ADNI-2 participants who recently underwent \(^{18}\)F-AV-1451 PET imaging and had antecedent longitudinal florbetapir PET scans and structural MRI. ADNI is a longitudinal multi-centre natural history study designed to characterize clinical, imaging, genetic, and biochemical biomarkers for early detection and tracking of Alzheimer’s disease (Weiner et al., 2015). As of 12 September 2016, \(^{18}\)F-AV-1451 PET imaging has been performed at 20 ADNI sites qualified for both \(^{18}\)F-AV-1451 and florbetapir PET scanning. According to the clinical assessment done closest in time to \(^{18}\)F-AV-1451 PET scan visit, the study cohort was composed of 42 clinically normal elderly individuals and 40 individuals with mild cognitive impairment (MCI). The diagnostic criteria for clinically normal and MCI in ADNI were previously described (Petersen et al., 2010). In this study, we limited the longitudinal florbetapir PET scans to the last two time points (i.e. last visit closest to the time of the \(^{18}\)F-AV-1451 PET scan and the one prior to the last).

**PET acquisition**

The radiochemical synthesis of both \(^{18}\)F-AV-1451 and florbetapir were overseen and regulated by Avid Radiopharmaceuticals and distributed to the qualifying ADNI sites. PET imaging was performed at each ADNI site according to standardized protocols. The florbetapir protocol entailed the injection of 10 mCi of tracer followed by an uptake phase of 50 min. At 50 min subjects were positioned in the scanner and 4 × 5 min frames of emission data collected. This approach assisted with correction for patient movement as needed. Similarly, the \(^{18}\)F-AV-1451 protocol entailed the injection of 10 mCi of tracer followed by an uptake phase of 80 min during which the subjects remained out of the scanner. \(^{18}\)F-AV-1451 emission data were collected as 4 × 5 min frames from 80–100 min. PET/CT scans preceded these acquisitions with a CT scan for attenuation correction; PET-only scanners performed a transmission scan following the emission scan. Both PET scans underwent a rigorous quality control protocol and were processed to produce final images with standard orientation, voxel size, and 8 mm\(^3\) resolution (Jagust et al., 2010).

**MRI acquisition**

Structural MRIs were acquired at ADNI-2 sites equipped with 3 T MRI scanners using a 3D MP-RAGE or IR-SPGR \(T_1\)-weighted sequences with sagittal slices and voxel size of 1.1 × 1.1 × 1.2 mm\(^3\), as described online (http://adni.loni.usc.edu/methods/documents/mri-protocols).

**PET processing**

Longitudinal florbetapir PET scans were analysed in native space using each participant’s structural MRIs acquired closest to the time of the florbetapir PET scans. Briefly, structural MRIs were segmented into cortical regions of interest and reference regions in native space for each subject using FreeSurfer version 4.5.0 (surfer.nmr.mgh.harvard.edu) as described previously (Landau et al., 2012). Florbetapir data were realigned, and the mean of all frames was used to co-register florbetapir data to each participant’s structural MRI. Cortical standardized uptake value ratio (SUVR) images for each subject at each time point were generated by dividing the voxel-wise florbetapir data by average uptake from a composite reference region (including the whole cerebellum, pons/brainstem, and eroded subcortical white matter regions) optimized for longitudinal florbetapir SUVR analysis (Landau et al., 2015). The averaged cortical florbetapir SUVR in lateral and medial frontal, anterior and posterior cingulate, lateral parietal, and lateral temporal cortical grey matter regions was used as an index of global cortical florbetapir burden of each subject at each time point. Furthermore, subjects were characterized as florbetapir-positive (florbetapir +) or florbetapir-negative (florbetapir −) based on a threshold value of 0.79 as published previously (Landau et al., 2015).

\(^{18}\)F-AV-1451 data were realigned, and the mean of all frames was used to coregister \(^{18}\)F-AV-1451 data to each participant’s MRI. Cortical standardized uptake value ratio (SUVR) images for each subject at each time point were generated by dividing the voxel-wise florbetapir data by average uptake from a composite reference region (including the whole cerebellum, pons/brainstem, and eroded subcortical white matter regions) optimized for longitudinal florbetapir SUVR analysis (Landau et al., 2015). The averaged cortical florbetapir SUVR in lateral and medial frontal, anterior and posterior cingulate, lateral parietal, and lateral temporal cortical grey matter regions was used as an index of global cortical florbetapir burden of each subject at each time point. Furthermore, subjects were characterized as florbetapir-positive (florbetapir +) or florbetapir-negative (florbetapir −) based on a threshold value of 0.79 as published previously (Landau et al., 2015).

PET processing

Longitudinal florbetapir PET scans were analysed in native space using each participant’s structural MRIs acquired closest to the time of the florbetapir PET scans. Briefly, structural MRIs were segmented into cortical regions of interest and reference regions in native space for each subject using FreeSurfer version 4.5.0 (surfer.nmr.mgh.harvard.edu) as described previously (Landau et al., 2012). Florbetapir data were realigned, and the mean of all frames was used to co-register florbetapir data to each participant’s structural MRI. Cortical standardized uptake value ratio (SUVR) images for each subject at each time point were generated by dividing the voxel-wise florbetapir data by average uptake from a composite reference region (including the whole cerebellum, pons/brainstem, and eroded subcortical white matter regions) optimized for longitudinal florbetapir SUVR analysis (Landau et al., 2015). The averaged cortical florbetapir SUVR in lateral and medial frontal, anterior and posterior cingulate, lateral parietal, and lateral temporal cortical grey matter regions was used as an index of global cortical florbetapir burden of each subject at each time point. Furthermore, subjects were characterized as florbetapir-positive (florbetapir +) or florbetapir-negative (florbetapir −) based on a threshold value of 0.79 as published previously (Landau et al., 2015).

**MRI processing**

A designated centre quality controlled the MP-RAGE/IR-SPGR images and corrected for system-specific image artefacts such
as geometry distortion, B1 non-uniformity, and intensity inhomogeneities (Jack et al., 2008). Further structural MRI processing was performed to established anatomical correspondences across subjects and time points to perform voxel-wise PET data analysis as described below. The structural MRI processing was based on the publicly available and open-source Advanced Normalization Tools (ANTS, http://stnava.github.io/ANTS/) and the associated pipelining framework PipeDream (http://neuropipedream.sourceforge.net). Briefly, corrected structural MRIs were mapped to an open source ageing brain template (IXI template) (Tustison et al., 2014) via a symmetric diffeomorphic spatial normalization methodology available in ANTs (Avants et al., 2008). The template contains prior labelling and probability maps that were used to aid both brain extraction and neuroanatomical segmentation. $^{18}$F-AV-1451 and florbetapir SUVR images mapped onto template image space via the spatial normalization parameters estimated for the corresponding structural MRIs were used for subsequent data analyses.

Clinical and cognitive assessments

ADNI participants are assessed with a wide spectrum of clinical and cognitive tests (Aisen et al., 2010). In this study, we limited the clinical assessments to the global Clinical Dementia Rating (CDR) based on CDR Sum of Boxes (CDR-SB) score and the Mini-Mental State Examination (MMSE) score based on a 30-point questionnaire, and limited the cognitive assessments to composite scores on two cognitive domains, memory and executive function (Crane et al., 2012; Gibbons et al., 2012). The composite score for memory was composed of scores of the Rey’s Auditory Vocabulary List Test (RAVLT), Alzheimer’s Disease Assessment Scale - cognitive subscale-11 (ADAS-Cog), Logical Memory (LM), and MMSE recall scores. The composite score for executive function included Category Fluency (animals and vegetables scores), Trail Making Test (TMT) A and B, Digit span backwards, Wechsler Adult Intelligence Scale-Revised (WAIS-R) Digit Symbol Substitution, and five Clock drawing items (circle, symbol, numbers, hands, time). Both composite scores were defined to have a mean of 0 and variance of 1 at the baseline visit, based on the 800 ADNI participants with complete cognitive assessments data.

Demographic and clinical features at the time of $^{18}$F-AV-1451 scans

Differences in baseline characteristics between groups were assessed using analysis of variance with post hoc Bonferroni tests for continuous variables and $\chi^2$ and Kruskal-Wallis with post hoc Mann-Whitney U-tests for dichotomous or categorical variables.

Relationships between $^{18}$F-AV-1451 and Alzheimer’s disease-related factors

Alzheimer’s disease-related factors considered in this study included age at $^{18}$F-AV-1451 PET scan visit, gender, education, APOE $\varepsilon 4$ allele carrier status (0 or 1), and global cortical florbetapir burden measured closest to the $^{18}$F-AV-1451 PET scan visit in time. We used a generalized linear model (GLM) for voxel-wise analysis of the $^{18}$F-AV-1451 SUVR data as the dependent variable regressed against the explanatory variables age, gender, education, APOE $\varepsilon 4$ allele status, and global cortical florbetapir burden closest to the $^{18}$F-AV-1451 PET scan time across all subjects. The models presented herein were corrected for clinical diagnosis. Furthermore, models assessing the main effect of the global cortical florbetapir burden closest to the $^{18}$F-AV-1451 PET scan time were further corrected for potential confounding effect of time between the last florbetapir-PET and $^{18}$F-AV-1451 PET scans.

To assess the independent association of each Alzheimer’s disease-related factor with $^{18}$F-AV-1451 SUVR at voxel level after correcting for confounding effects of the remaining Alzheimer’s disease-related factors, we compared pair-wise full GLM models with and without the Alzheimer’s disease-related factor of interest, fitted by maximum likelihood (ML), via $F$-tests. These tests were performed separately for each Alzheimer’s disease-related factor considered in this study. Due to substantial spatial correlations within imaging data, statistical significances were assessed after non-parametric correction for multiple-comparisons. Specifically, clusters of voxels exceeding a predetermined threshold ($P < 0.05$) were identified, and cluster-wise statistical significances were calculated via 1000 instances of a Monte Carlo simulation (Hayasaka et al., 2006).

Relationships between $^{18}$F-AV-1451 and antecedent annualized change in florbetapir

The relationship between $^{18}$F-AV-1451 retention and antecedent annualized change in florbetapir retention was modelled using two different analysis approaches.

In the first analysis, we took a global influence approach and first estimated the linear change in the global cortical florbetapir burden based on the last two time point florbetapir-PET scans, then normalized by time difference between scans measured in years to estimate the annualized change in global cortical florbetapir burden. At each imaging voxel, we then used pair-wise GLMs across all subjects with voxel-wise $^{18}$F-AV-1451 SUVR as the dependent variable with and without the annualized change in global cortical florbetapir burden as the explanatory variable while adjusting for age, gender, education, APOE $\varepsilon 4$ allele status, global cortical florbetapir burden at the initial florbetapir-PET scan time, and the time from the last florbetapir-PET scan visit to the $^{18}$F-AV-1451 PET scan visit. Pair-wise GLMs were then compared via $F$-tests and thresholded at cluster-wise statistical significances at $P < 0.05$ as estimated from 1000 instances of a Monte Carlo simulation (Hayasaka et al., 2006).

In the second analysis, rather than performing univariate voxel-wise testing against the annualized change in global cortical florbetapir burden, we used a dimensionality reduction method based on sparse canonical correlation analysis specifically developed for medical imaging data (Le Cao et al., 2009; Witten et al., 2009; Avants et al., 2010). Univariate approaches when applied at each imaging voxel lack statistical power due to severe multiple comparisons problem. Even if the statistical power could be boosted with greater sample sizes,
univariate methods do not exploit the latent signal in the image data that spreads across brain regions. We used the sparse canonical correlation analysis to extract the most dominant features associating 18F-AV-1451 SUVR patterns and patterns of annualized change in florbetapir SUVR across all subjects, with the expectation of spatially disjointed multivariate associations. For this purpose, linear rates of florbetapir SUVR images were estimated as voxel-wise differences between last two time point florbetapir SUVR images, normalized by time difference between scans measured in years to estimate the annualized change in florbetapir retention voxel-wise. Permutation testing was performed to assess whether the associated multimodal PET patterns were significant while controlling for confounding effects of age, gender, education, APOE ε4 allele status, global cortical florbetapir burden at the initial florbetapir-PET scan time, and the time from the last florbetapir-PET scan visit to the 18F-AV-1451 PET scan visit.

Previous studies reported that the dynamics of amyloid-β accumulation across brain regions were variable and associated with the global cortical amyloid-β burden (Villain et al., 2012). Therefore, the analyses assessing the relationships between 18F-AV-1451 and antecedent annualized change in florbetapir retention was repeated for florbetapir– and florbetapir+ sub-cohorts.

Variance in cognitive/clinical measures explained by 18F-AV-1451 and antecedent annualized change in florbetapir

To leverage the dimensionality reduction via sparse canonical correlation analysis, projected values of 18F-AV-1451 and annualized change in florbetapir retention for each subject were determined from the detected voxels within the associated multimodal PET patterns. The projected values were then used in subsequent data analysis to assess to what extent the annualized change in florbetapir retention pattern and the associated 18F-AV-1451 pattern explained the variance in global clinical and cognitive measures, both separately and jointly.

Results

Study cohort characteristics

Demographic and clinical characteristics are presented in Table 1. Diagnostic grouping was based on the most recent change in clinical diagnosis evaluation provided by the ADNI Clinical Core. The diagnostic groups did not differ in age at 18F-AV-1451 PET visit, female/male gender distribution, APOE ε4 allele status distribution, and years of education. At the time of 18F-AV-1451 PET visit, MCI subjects compared to clinically normal subjects were more impaired on both composite memory score ($P < 10^{-4}$) and composite executive function score ($P = 0.008$) and had greater CDR-SB ($P < 10^{-13}$) and marginally lower MMSE ($P = 0.03$) scores. The diagnostic groups did not differ in their florbetapir SUVR characteristics either at initial or last florbetapir-PET visits considered in this study. Furthermore, the groups did not differ in estimates of annualized change in global cortical florbetapir burden. There were no group differences in the time interval between the last florbetapir-PET and 18F-AV-1451 PET scans.

We assessed partial correlation of clinical and cognitive measures with age, gender, education, APOE ε4 allele status, and global cortical florbetapir burden across all subjects while controlling for the remaining Alzheimer’s disease-related factors. CDR-SB score was partially correlated with age ($r = 0.22, P < 10^{-4}$), gender ($r = 0.11, P = 0.04$), and global cortical florbetapir burden ($r = 0.12, P = 0.03$) but not education or APOE ε4 allele status. MMSE score was partially correlated with age ($r = -0.49, P < 10^{-20}$), gender ($r = -0.11, P = 0.04$), and global cortical florbetapir burden ($r = -0.26, P < 10^{-5}$) but not education or APOE ε4 allele status. Composite memory score was partially correlated with age ($r = -0.33, P < 10^{-8}$), gender ($r = -0.26, P < 10^{-5}$), education ($r = 0.15, P = 0.007$), APOE ε4 allele status ($r = -0.13, P = 0.02$), and global cortical florbetapir burden ($r = -0.14, P = 0.01$). Finally, composite executive function score was partially correlated only with age ($r = -0.16, P = 0.004$) and education ($r = 0.19, P = 0.0004$).

18F-AV-1451 SUVR images of cognitively normal and early symptomatic subjects

Figure 1 shows average patterns of 18F-AV-1451 PET SUVR images of florbetapir– and florbetapir+ participants from each diagnostic group. Although voxel-wise contrasts between groups were not assessed in this study, the in vivo 18F-AV-1451 SUVR patterns were visually consistent with the patterns observed in previous post-mortem and in vivo 18F-AV-1451 PET studies (Braak and Braak, 1997a; Johnson et al., 2016; Scholl et al., 2016). Specifically, the florbetapir– clinically normal subjects had low overall cortical 18F-AV-1451 binding with presumably off-target 18F-AV-1451 binding at basal ganglia, whereas more extensive medial temporal lobe binding was observed in the florbetapir+ clinically normal subjects. Greater medial temporal lobe 18F-AV-1451 binding with more extensive neocortical binding, especially in parietal and temporal regions, and selective sparing of primary cortices was observed with increased symptomatology as in MCI subjects. Similar to clinically normal subjects, the extent and magnitude of the 18F-AV-1451 binding were amplified with florbetapir-positivity in MCI subjects.

18F-AV-1451 binding in relation to Alzheimer’s disease-related factors

In voxel-wise statistical analyses across all subjects assessing the associations between 18F-AV1451 SUVR and each of the Alzheimer’s disease-related factors without correcting...
for confounding effects of the remaining Alzheimer’s disease-related factors, we found that (i) cortical $^{18}$F-AV-1451 binding was positively associated with age in temporal pole and medial orbitofrontal regions, with $\text{APOE}^4$ allele carrier status in hippocampus, and with global cortical florbetapir burden throughout medial and lateral temporal, lateral occipital and inferior parietal regions; (ii) cortical $^{18}$F-AV-1451 binding was negatively associated with age, particularly in medial frontal brain regions, with male gender in lateral parieto-temporal regions, and with education in lateral occipital region; and (iii) presumably off-target subcortical $^{18}$F-AV-1451 binding was positively associated with age and male gender (Supplementary Fig. 1).

The independent relationships between these Alzheimer’s disease-related factors and $^{18}$F-AV-1451 binding were as follows: (i) controlling for gender, education, $\text{APOE}^4$ allele carrier status, global cortical florbetapir burden, and the time interval between the last florbetapir-PET and $^{18}$F-AV-1451 PET scans, advanced age across all subjects was associated with greater presumably off-target $^{18}$F-AV-1451 binding in basal ganglia and greater temporal pole and medial orbitofrontal $^{18}$F-AV-1451 binding, but lower $^{18}$F-AV-1451 binding in anterior aspects of medial frontal cortices (Fig. 2A). As global cortical florbetapir burden positively correlates with age ($r = 0.16$, $P = 0.004$), to test if correcting for confounding effects of global cortical

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Study cohort characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CN</td>
</tr>
<tr>
<td>$n$</td>
<td>42</td>
</tr>
<tr>
<td>Age (years)</td>
<td>$74.87 \pm 6.98$</td>
</tr>
<tr>
<td>Gender (F/M)</td>
<td>22/20</td>
</tr>
<tr>
<td>$\text{APOE}^4 (-/+)$</td>
<td>24/18</td>
</tr>
<tr>
<td>Education (years)</td>
<td>$16.19 \pm 2.48$</td>
</tr>
<tr>
<td>CDR at AV-145 scan</td>
<td>$0.04 \pm 0.13$</td>
</tr>
<tr>
<td>MMSE at AV-145 scan</td>
<td>$28.90 \pm 1.20$</td>
</tr>
<tr>
<td>Composite memory at AV-145 scan</td>
<td>$1.23 \pm 0.69$</td>
</tr>
<tr>
<td>Composite executive function at AV-145 scan</td>
<td>$0.98 \pm 0.67$</td>
</tr>
<tr>
<td>Initial florbetapir-PET scan</td>
<td>41</td>
</tr>
<tr>
<td>Global cortical florbetapir burden</td>
<td>$0.80 \pm 0.11$</td>
</tr>
<tr>
<td>Florbetapir $-/-+</td>
<td>26/15</td>
</tr>
<tr>
<td>Last florbetapir-PET scan</td>
<td>41</td>
</tr>
<tr>
<td>Global cortical florbetapir burden</td>
<td>$0.81 \pm 0.12$</td>
</tr>
<tr>
<td>Florbetapir $-/-+</td>
<td>25/16</td>
</tr>
<tr>
<td>Time from initial florbetapir-PET scan (years)</td>
<td>$2.11 \pm 0.36$</td>
</tr>
<tr>
<td>Time to AV-1451-PET scan (years)</td>
<td>$0.72 \pm 0.83$</td>
</tr>
<tr>
<td>Annualized change in global cortical florbetapir burden</td>
<td>$0.0060 \pm 0.0119$</td>
</tr>
</tbody>
</table>

n.s. = non-significant; CN = cognitively normal.
florbetapir burden artificially introduced negative associations between age and $^{18}$F-AV-1451 binding, analysis was repeated only controlling for gender, education, and $APOE\ ^{\varepsilon4}$ allele carrier status. Although negative association findings between age and $^{18}$F-AV-1451 binding did not change, additional significant positive associations between age and $^{18}$F-AV-1451 binding were observed in hippocampus and amygdala regions (Fig. 2B); (ii) increased global cortical florbetapir burden was associated with greater $^{18}$F-AV-1451 binding in diffuse cortical regions, including inferior and middle temporal regions, medial and inferior parietal cortices, and prefrontal regions (Fig. 2C), after correcting for age, gender, education, $APOE\ ^{\varepsilon4}$ allele carrier status, and the time interval between the last florbetapir-PET and $^{18}$F-AV-1451 PET scans. Gender, education, and $APOE\ ^{\varepsilon4}$ allele carrier status effects on $^{18}$F-AV-1451 binding were not significant after controlling for confounding effects of the remaining Alzheimer’s disease-related factors considered in this study (data not shown).

Figure 2 Relationships between $^{18}$F-AV1451 SUVR and Alzheimer’s disease-related factors. (A) Age and $^{18}$F-AV-1451 SUVR association corrected for gender, education, $APOE\ ^{\varepsilon4}$ allele status, and global cortical florbetapir burden. (B) Age and $^{18}$F-AV-1451 SUVR association corrected for gender, education, $APOE\ ^{\varepsilon4}$ allele status, but not global cortical florbetapir burden. (C) Global cortical florbetapir burden and $^{18}$F-AV-1451 SUVR association corrected for age, gender, education, $APOE\ ^{\varepsilon4}$ allele status, and the time from the last florbetapir-PET to the $^{18}$F-AV-1451 scan. Covariate adjusted significance maps ($P < 0.05$; cluster-level corrected). Hot colours: positive associations; cold colours: negative associations.
**18F-AV-1451 binding in relation to annualized change in global florbetapir burden antecedent to 18F-AV1451 PET scans**

On average, clinically normal subjects had the greater annualized change in global cortical florbetapir burden, compared to MCI subjects, without statistical significance at group level (Table 1). Subjects identified as florbetapir + at the initial florbetapir-PET scan had marginally greater ($P = 0.06$) annualized change in global cortical florbetapir burden compared to the change observed in subjects identified as florbetapir− at the initial florbetapir-PET scan visit.

We observed no significant association between voxel-wise $18^F$-AV-1451 binding and antecedent annualized change in global cortical florbetapir burden using a univariate regression model across all subjects, florbetapir− subjects only, or florbetapir+ subjects only (data not shown).

**18F-AV-1451 binding in relation to voxel-wised annualized change in florbetapir binding antecedent to 18F-AV1451 PET scans**

Average maps of annualize change in florbetapir SUVR within florbetapir− ($n = 41$) and florbetapir + ($n = 37$) subjects are shown in Supplementary Fig. 2. Florbetapir−/+/ dichotomization was based on the initial florbetapir-PET scan analysis. On average, we observed increase in florbetapir SUVR throughout the cortex, with the greatest changes in the lateral temporal, medial inferior temporal, inferior parietal, medial parietal, inferior frontal, and medial orbitofrontal cortices. Although florbetapir+ subjects, compared to florbetapir− subjects, had greater annualized change in florbetapir SUVR throughout the brain, florbetapir− versus florbetapir+ group differences were not significant in voxel-wise statistical analysis.

We used sparse canonical correlation analysis to assess the extent to which increased annualized change in florbetapir binding and spatial patterns of $18^F$-AV-1451 binding were associated in our cohort. This was achieved by computing a reduced, optimal weighted average of a set of voxels in each modality that maximizes the correlation between multimodal measures. In the context of this study, sparse canonical correlation analysis aimed to isolate networks of voxels, potentially distinct for each modality, such that they collectively relate to each other with the highest correlation possibly attained within this cohort. This sparse selection of network of voxels was spatially distributed and automatically identified by using a regularized energy minimization approach to define the sets of voxels in one modality that were most informative about the other and the most reliable.

Sparse canonical correlation analysis solution vectors (i.e. weight vectors) are shown in Fig. 3, where the brightness of the red-hued overlay is related to the solution’s weighting at the local voxel. Sparse canonical correlation analysis indicated a pattern of increased annualized change in florbetapir binding in predominantly right lateral temporal and supramarginal regions, and bilateral precuneus/posterior cingulate cortices that was significantly associated with a pattern of greater $18^F$-AV-1451 binding in hippocampus, fusiform gyrus, inferior temporal, and inferior parietal lobule predominantly in the left hemisphere ($r = 0.27; P < 10^{-7}$). When repeated within florbetapir− subjects only, sparse canonical correlation analysis indicated a pattern of increased annualized change in florbetapir binding in the superior frontal and anterior cingulate cortices bilaterally that was significantly associated with a pattern of greater $18^F$-AV-1451 binding in the hippocampus, fusiform gyrus, inferior temporal, and inferior parietal lobule as well as the superior frontal cortex bilaterally, as shown in Fig. 4 ($r = 0.54; P < 10^{-15}$). When repeated within florbetapir+ subjects only, sparse canonical correlation analysis identified two associated pattern pairs: the first associated pattern pair mirrored the pattern of increased annualized change in florbetapir binding and associated greater $18^F$-AV-1451 binding pattern seen in the full cohort sparse canonical correlation analysis, as shown in Fig. 5A and B ($r = 0.39; P < 10^{-6}$). The second associated pattern pair shown in Fig. 5C and D indicated a pattern of increased annualized change in florbetapir binding in the bilateral middle frontal, right pars opercularis, right lateral inferior temporal, left angular gyrus and superior temporal, and bilateral lingual gyrus regions that was significantly associated with a pattern of greater $18^F$-AV-1451 binding in the left precuneus/posterior cingulate, bilateral medial and lateral orbitofrontal cortices, and right inferior parietal lobule ($r = 0.20; P < 0.01$).

**Relationship between brain tau ($18^F$-AV-1451), brain amyloid-β (florbetapir) and cognitive/clinical measures**

In full cohort assessment, the pattern of greater $18^F$-AV-1451 binding identified by the sparse canonical correlation analysis explained 24% of the variance in the composite memory score ($P = 0.0004$), but none of the variance in the CDR-SB, MMSE, or composite executive function scores. Although the pattern of increased annualized change in florbetapir binding did not explain variance in any cognitive/clinical measures independently, jointly with the pattern of greater $18^F$-AV-1451 binding explained 23% of the variance in the MMSE ($P = 0.0008$).

In the florbetapir− only subcohort, the pattern of greater $18^F$-AV-1451 binding identified by the sparse canonical correlation analysis explained 48% of the variance in MMSE score ($P < 10^{-4}$) and 23% of the variance in composite memory score ($P = 0.02$). The pattern of increased
annualized change in florbetapir binding explained 34% of the variance in MMSE score (P = 0.002) but did not add value to the pattern of greater 18F-AV-1451 binding in explaining variance in MMSE score.

In the florbetapir + only sub-cohort, neither the first pattern of greater 18F-AV-1451 binding nor the first pattern of increased annualized change in florbetapir binding explained variance in any cognitive/clinical measure independently. The second pattern of greater 18F-AV-1451 binding explained 32% of the variance in the composite memory score (P = 0.02).

As exploratory analyses, we tested the main effect of global florbetapir burden and the main effects of voxel-wise florbetapir SUVR measures on clinical/cognitive measures considered in this study, cross-sectional. None of the analyses reached statistical significance.

**Discussion**

In this study, we assessed the patterns of 18F-AV-1451 binding associated with well-established Alzheimer’s disease factors and global clinical and cognitive outcome measures in a cohort including cognitively healthy elderly individuals and individuals at early symptomatic stages of Alzheimer’s disease. Furthermore, we explored highly associated patterns of greater 18F-AV-1451 binding and increased annualized change in florbetapir binding antecedent to 18F-AV-1451 PET, and to what extent this multimodal pattern association explained the variance in cognitive performance and clinical outcome measures, independently and jointly. One major difference between this work and all previously reported studies using tau PET ligands is that, in addition to classical voxel-based analysis, we used multivariate neuroimaging statistics respecting the spatial disconnect between amyloid-β and tau pathologies.

Our major findings were as follows: (i) 18F-AV-1451 PET retention was differentially associated with age and cross-sectional florbetapir PET retention; (ii) increased annualized change in florbetapir retention, antecedent to 18F-AV-1451 PET scans, prominently in the parieto-temporal brain regions as well as superior and medial frontal brain regions, was associated with greater 18F-AV-1451 PET retention most prominently in the inferior temporal, lateral parietal, and to a lesser degree in the precuneus/posterior cingulate and orbitofrontal brain regions in the full cohort, with florbetapir−/+ associated variability; and (iii) greater 18F-AV-1451 PET retention associated with increased annualized change in florbetapir retention, antecedent to 18F-AV-1451 PET scans, significantly explained variance in global clinical outcome measures, and this was independent of the increased annualized change in florbetapir retention.

The first major finding was that 18F-AV-1451 PET retention was independently associated with age and cross-
Figure 4  Relationship between $^{18}$F-AV1451 SUVR and antecedent annualized change in florbetapir-SUVR identified using sparse canonical correlation analysis of florbetapir – subjects ($r = 0.54$, $P < 10^{-15}$). (A) Pattern of annualized change in florbetapir antecedent to $^{18}$F-AV-1451-PET scan. (B) Pattern of greater $^{18}$F-AV-1451 binding associated with greater annualized change in florbetapir pattern in A.

Figure 5  Relationship between $^{18}$F-AV1451 SUVR and antecedent annualized change in florbetapir-SUVR identified using sparse canonical correlation analysis of florbetapir + subjects ($r = 0.54$, $P < 10^{-15}$). (A) First pattern of annualized change in florbetapir antecedent to $^{18}$F-AV-1451-PET scan. (B) First pattern of greater $^{18}$F-AV-1451 binding associated with greater annualized change in florbetapir pattern in A. (C) Second pattern of annualized change in florbetapir antecedent to $^{18}$F-AV-1451-PET scan. (D) Second pattern of greater $^{18}$F-AV-1451 binding associated with greater annualized change in florbetapir pattern in C.
sectional florbetapir PET retention, but not with education, gender, or APOE ε4 genotype. This main observation was in line with neuropathology literature consistently reporting significant influence of age and amyloid-β on formation of neurofibrillary tangles but a lack of independent effect of APOE ε4 genotype on neurofibrillary tau tangle formation (Serrano-Pozo et al., 2015; Muñson et al., 2016). Although the literature on association between in vivo 18F-AV-1451 PET retention and the Alzheimer’s disease-related factors is very limited at this point, our interpretation of these findings is as follows: (i) After correcting for global cortical florbetapir burden, advanced age was associated with greater 18F-AV-1451 retention in the basal forebrain, temporal pole, and to some extent in the medial temporal lobe. Weaker age-associated 18F-AV-1451 retention findings especially in the hippocampus and entorhinal cortex might be due to off-target binding in adjacent structures (Marquie et al., 2015) and relatively greater partial volume effects induced by greater tau-associated atrophy in these structures. Consistent with our findings, one in vivo 18F-AV-1451 PET study previously reported advanced age associated greater in vivo 18F-AV-1451 PET retention in medial temporal lobe, basal forebrain, and insula in cognitively normal participants (Scholl et al., 2016), while another notable study reported significant negative association between age and inferior temporal 18F-AV-1451 PET retention in cognitively normal participants (Johnson et al., 2016), both studies potentially capturing different aspects of age-related tau accumulation reported in large autopsy studies (Braak et al., 2011). The strongest association between advanced age and greater 18F-AV-1451 retention was observed in the basal ganglia. 18F-AV-1451 retention in this region is largely considered off-target binding of the 18F-AV-1451 tracer (Marquie et al., 2015) since limited neurofibrillary pathology has been reported in the basal ganglia. Further 18F-AV-1451 tracer validation studies are required to assess the biological substrates of the advanced age associated greater off-target binding of the tracer in the basal ganglia structures. In our cohort, after controlling for other Alzheimer’s disease-related factors, advanced age was associated with lower 18F-AV-1451 binding in the anterior aspects of the medial frontal cortical regions. First, we should emphasize that the current study is based on a convenience cohort where the degree of true population representation is not known. Second, most neuropathological changes associated with Alzheimer’s disease are strongly associated with rapid disease progression only in younger elderly individuals (Savva et al., 2009). Older age at disease onset was associated with lower tau and amyloid-β pathology (Silbert et al., 2012). Given the high prevalence of florbetapir-positivity in our cohort, one explanation for this negative age-association in cortical 18F-AV-1451 binding could be that individuals who had amyloid-β pathology early had a more rapid rise in brain amyloid-β leading to rapid accumulation of tau tangles. Another possible explanation is that for any given level of cognitive impairment, a younger person is more likely to have only Alzheimer’s disease as the brain pathology. On the other hand, an older person is more like to have other pathologies than just Alzheimer’s disease (i.e. tau pathology), such as—but not limited to—small strokes and white matter disease. (ii) We observed that female gender was associated with greater 18F-AV-1451 binding in diffuse cortical regions including lateral temporal, parietal, and frontal regions, in analysis uncorrected for confounding effects. Both neuropathology and in vivo studies agree that males and females may differ in the pathologic substrate for Alzheimer’s disease (Lin and Doraiswamy, 2014). Neuropathology studies suggest that females have a 3-year acceleration in tau tangle neuropathology (Corder et al., 2004) and this gender difference was largely attributable to APOE ε4 carrier females. Future research is warranted to assess the gender and APOE ε4 genotype interaction on in vivo 18F-AV-1451 binding. (iii) We observed lower 18F-AV-1451 binding prominently in lateral occipital cortices being associated with higher levels of education, in analysis uncorrected for confounding effects. Epidemiological studies suggest that education, in addition to other lifelong experiences, is associated with lower prevalence of Alzheimer’s disease (Sharp and Gatz, 2011; Lo and Jagust, 2013). Furthermore, previous data suggest that lifetime cognitive activity is associated with lower amyloid-β deposition (Vemuri et al., 2011; Lo and Jagust, 2013). One explanation of this result is that education increases cognitive reserve (Stern, 2012). This may represent an intrinsic cortical mechanism for responding to the effects of pathology, in particular amyloid-β facilitated tau accumulation. (iv) Greater global amyloid-β burden measured by florbetapir PET retention was associated with greater 18F-AV-1451 binding in diffuse cortical regions including inferior and middle temporal regions, medial and inferior parietal cortices, and prefrontal regions, consistent with large autopsy studies and recent in vivo 18F-AV-1451 studies (Johnson et al., 2016; Scholl et al., 2016) as well as the idea that neocortical tau accumulation is associated with the high amyloid-β burden.

The second major finding was that antecedent increased annualized change in amyloid-β burden in frontal, parietal, and lateral temporal brain regions, measured by longitudinal florbetapir PET, was associated with greater 18F-AV-1451 PET retention in limbic areas of medial and inferior temporal and parietal lobes, sites of tau tangle deposition involved in early symptomatic disease stages. A florbetapir−/+/− associated variability was observed in this relationship between 18F-AV1451 SUVR and antecedent annualized change in florbetapir-SUVR identified using sparse canonical correlation analysis. In particular, the multimodality pattern association in florbetapir− subjects was dominated by the annualized change in frontal florbetapir-SUVR with a relatively weaker increase in the inferior temporal and inferior parietal 18F-AV1451 SUVR. Previous studies suggest that precuneus is the earliest cortical region to accumulate amyloid-β, closely followed by the cingulate and frontal cortices, then by the lateral parietal and temporal cortices (Bilgel et al., 2016). This multimodality...
pattern association in florbetapir+ subjects might reflect the earliest tau deposition in the limbic areas due to the earliest amyloid-β spread. In addition, greater orbitofrontal 18F-AV-1451 PET retention associated with increased annualized change in florbetapir retention was only observed in florbetapir+ subjects. According to Braak and Braak staging, increased anterior frontal tau pathology is seen in stages III-IV with increasing cognitive impairment (Braak et al., 2011). Thus, this multimodal pattern association specific to florbetapir+ subjects may reflect a more advanced disease progression stage in florbetapir+ subjects. These findings are in general consistent with three important concepts in Alzheimer’s disease research not yet fully validated with in vivo data. First, autopsy studies consistently associated the spread of tau outside the medial temporal lobe with increased amyloid-β pathology (Braak et al., 1999). Second, the most prevailing Alzheimer’s disease biomarker model suggests that amyloid-β aggregation facilitates the disease pathological cascade including the tau accumulation outside the medial temporal lobe (Jack et al., 2013). Finally, transneuronal transmission on disease-specific networks drives divergent spatiotemporal progression of amyloid-β and tau (Raj et al., 2012, 2015).

A long-term goal of our field is to determine the sequence of pathological events, which ultimately lead to cognitive decline and dementia. The ability to measure brain amyloid-β, tau, atrophy and cognition in a large group of subjects longitudinally will ultimately provide data, which will allow testing of the hypothesis that accumulation of brain amyloid-β leads to tau accumulation, which causes neurodegeneration measured by brain atrophy and cognitive decline. Our current ADNI dataset only has single time point 18F-AV-1451 PET data, preventing a longitudinal analysis. However, we examined the feasibility of this approach using one time point by analysing the relationship of change in brain amyloid-β to brain tau to cognition. Thus our third major finding was that those brain regions that had tau tangles (measured by 18F-AV-1451 PET retention) associated with increased annualized change in brain amyloid-β burden (measured by longitudinal florbetapir PET retention antecedent to the 18F-AV-1451 PET scans), significantly explained the variance in cognitive performance and clinical outcome measures, and this was independent of the increased annualized change in florbetapir PET retention. In a region of interest analysis (Johnson et al., 2016), greater inferior temporal 18F-AV-1451 retention was related to greater impairment on MMSE and CDR-SB, with similar but weaker associations observed between greater global amyloid-β burden and greater impairment on MMSE and CDR-SB. In our data-driven multimodality analysis, we also observed that greater inferior temporal 18F-AV-1451 retention, associated with increased annualized change in florbetapir retention in lateral temporal, lateral parietal, and orbitofrontal cortices, was significantly associated with global clinical outcome measures. Furthermore, it was not the increased annualized change in global amyloid-β burden, but increased annualized change in focal amyloid-β accumulation that greatly influenced the spread and severity of distant tau accumulation as detected by multimodal PET scans. These findings are in agreement with the pathology literature, which suggests that tau tangles but not amyloid-β plaques correlate with cognition (Markesbery, 1997), especially memory function (Terry et al., 1999). Furthermore, cortical tau tangles are also associated with neurodegeneration (Braak and Braak, 1996; Bradley et al., 2002; Ballatore et al., 2007; Vemuri et al., 2008), and are likely to be part of the chain of events leading to cortical dysfunction and cognitive impairment. Pathological studies (Braak and Braak, 1997b; Braak et al., 2011) showed that during the early development of Alzheimer’s disease pathology, tau tangles increase in the medial temporal lobe, associated with synapse loss and neurodegeneration, while at the same time widespread neocortical amyloid-β plaques are developing. According to the amyloid-β hypothesis (Hardy and Selkoe, 2002; Karran et al., 2011), the accumulation of amyloid-β leads to downstream events including accumulation of tau tangles, neurodegeneration, cognitive decline and dementia.

A main strength of the present study is the inclusion of a variety of diagnostic groups including cognitively normal and early symptomatic subjects from a multi-centre study, which allowed us to study relationships between tau pathology and Alzheimer’s disease-related factors in a continuum. At the same time, treating the cohort as a continuum in Alzheimer’s disease pathophysiology could be a flaw in our study design. In particular, even with the evidence of Alzheimer’s disease pathology, many of the clinically normal subjects and some of the MCI subjects will never develop Alzheimer’s disease. As the subjects in our cohort are potentially samples from different populations (i.e. not necessarily on Alzheimer’s disease path), the composition of the study cohort may be driving the associations observed in this study. Furthermore, MCI subjects are notoriously a very heterogeneous group and other pathologies, unrelated to Alzheimer’s disease, may have contributed to variations in both tau and rates of amyloid-β. We should also note that this is a preliminary study with a relatively small sample size. Due to sample size limitations, we did not assess relationships between 18F-AV-1451 PET, Alzheimer’s disease-related factors, and brain atrophy. Future studies including more participants are needed to extend and replicate our findings.

Acknowledgements

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
Funding

Support for this study was provided by NIH U01-AG024904. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Aragen Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; Ceregene, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Supplementary material

Supplementary material is available at Brain online.

References


Lin KA, Doraiswamy PM. When Mars versus Venus is not a Cliche

Landau SM, Marks SM, Mormino EC, Rabinovici GD, Oh H, O’Neil et al.

Karran E, Mercken M, De Strooper B. The amyloid cascade hypoth-


Karran E, Mercken M, De Strooper B. The amyloid cascade hypoth-

Lo RY, Jagust WJ. Effect of cognitive reserve markers on Alzheimer