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Abstract—1In this paper, we present a sequential projection-
based metacognitive learning algorithm in a radial basis function
network (PBL-McRBFN) for classification problems. The algo-
rithm is inspired by human metacognitive learning principles and
has two components: a cognitive component and a metacognitive
component. The cognitive component is a single-hidden-layer
radial basis function network with evolving architecture. The
metacognitive component controls the learning process in the
cognitive component by choosing the best learning strategy
for the current sample and adapts the learning strategies by
implementing self-regulation. In addition, sample overlapping
conditions and past knowledge of the samples in the form of
pseudosamples are used for proper initialization of new hidden
neurons to minimize the misclassification. The parameter update
strategy uses projection-based direct minimization of hinge loss
error. The interaction of the cognitive component and the
metacognitive component addresses the what-to-learn, when-to-
learn, and how-to-learn human learning principles efficiently.
The performance of the PBL-McRBFN is evaluated using a
set of benchmark classification problems from the University
of California Irvine machine learning repository. The statistical
performance evaluation on these problems proves the superior
performance of the PBL-McRBFN classifier over results reported
in the literature. Also, we evaluate the performance of the
proposed algorithm on a practical Alzheimer’s disease detection
problem. The performance results on open access series of
imaging studies and Alzheimer’s disease neuroimaging initiative
datasets, which are obtained from different demographic regions,
clearly show that PBL-McRBFN can handle a problem with
change in distribution.

Index Terms— Alzheimer’s disease, metacognitive learning,
projection-based learning, radial basis function network classifier,
self-regulatory thresholds.

I. INTRODUCTION

N MACHINE learning, batch learning algorithms require
complete training data to build the model. In most practical
applications, especially in medical diagnosis, the complete
training data describing the input-output relationship is not
available a priori. For these problems, classical batch-learning
algorithms are rather infeasible and instead sequential learning
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is employed. In a sequential learning framework, the training
samples arrive one-by-one and the samples are discarded
after the learning process. Hence, it requires less memory
and computational time for the learning process. In addition,
sequential learning algorithms automatically determine the
minimal architecture that can accurately approximate the true
decision function described by stream of the training samples
[1].

Radial basis function (RBF) networks have been extensively
used in a sequential learning framework because of their
universal approximation ability and simplicity of architecture
[2]. Recently, there has been renewed interest in single-
hidden-layered RBF networks with least-square error training
criterion, partly due to their modeling ability and partly
due to the existence of efficient learning algorithms such
as extreme learning machine (ELM) [3], and second-order
training methods [4]. In recent years, researchers have been
focusing on sequential learning algorithms for RBF networks
through streams of data. A brief discussion of existing research
work in a sequential learning framework is given below.

The first sequential learning algorithm introduced in the
literature was resource allocation network (RAN) [5]. RAN
uses novelty-based neuron growth to evolve the network
architecture automatically and linear mean square algorithm
to update the network parameters. Minimal RAN (MRAN)
[6] adapted the similar approach, but it uses extended Kalman
filter (EKF) for parameter update and pruning strategy to
determine the compact network architecture. Growing and
pruning RBF network [7] uses the neuron significance to select
the neuron growth/prune criterion. On-line sequential ELM
(OS-ELM) [8] is the sequential version of ELM using recur-
sive least squares. OS-ELM randomly assigns input weights
with fixed number of hidden neurons and uses minimum
norm recursive least squares to determine the output weights
analytically. The random selection of input weights with fixed
number of hidden neurons affects the performance of OS-
ELM significantly in case of sparse and imbalance datasets
[9]. Sequential multicategory RBF network (SMC-RBF) com-
bines the misclassification error, similarity measure within
the class, and prediction error in neuron growth/parameter
update criterion [2]. In SMC-RBF, it has been shown that
growing/pruning criterion based on class-specific conditions
improves the classification performance than conditions based
on approximation error alone.

The aforementioned sequential learning algorithms in neural
networks gain the knowledge about the information within
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stream of data by using all the samples in the training
dataset. Simply put, these algorithms have human information-
processing abilities, such as perception, learning, remember-
ing, judging, and problem solving, which are cognitive in
nature. On the other hand, human learning studies suggested
that the learning process is effective when the learners adopt
self-regulation in the learning using metacognition [10], [11].
Metacognition means cognition about cognition. Precisely, in
a metacognitive framework, learners think about their cogni-
tive process, and improve and control it by developing new
strategies using the information contained in their memory.
If an RBF network is considered as a cognitive component
in metacognitive framework to analyze its cognitive process
and to choose suitable learning strategies adaptively, then it is
referred to as metacognitive RBF network (McRBFN). Hence,
there is a need to develop such McRBEFN that is capable of
deciding what-to-learn, when-to-learn, and how-to-learn from
a stream of training data to devise the decision function by
emulating the human self-regulated learning principles.

Self-adaptive RAN (SRAN) [12] is a sequential learning

algorithm and also addresses the what-to-learn component
of metacognition by selecting the significant samples using
misclassification error and hinge loss error. The complex ver-
sion of the above algorithm is complex-valued self-regulating
RAN (CSRAN) [13]. It has been shown in [12] and [13],
that selecting the significant samples and removing repetitive
samples in learning helps to improve the generalization per-
formance. Therefore, it is apparent that emulating the three
components of metacognition with suitable learning strategies
would improve the generalization ability of a neural network.
The drawbacks in the above algorithms are as follows.

1) The selection of significant samples from stream of
training data are based on simple error criterion which
is not sufficient.

2) The allocation of new hidden neuron center without
considering the amount of overlap with already existing
neuron centers leads to misclassification.

3) The knowledge gained from past trained samples is not
used in further learning.

4) These algorithms use computationally intensive EKF for
parameter update.

Metacognitive neural network (McNN) [14] and metacog-
nitive neuro-fuzzy inference system (MCcFIS) [15] address
the first two issues efficiently by using three components of
metacognition. However, McNN and McFIS use computation-
ally intensive EKF for parameter updation and do not utilize
the knowledge acquired from past trained samples. Similar
works of metacognition in complex domain are reported in
[16] and [17]. Recently proposed projection-based learning
(PBL) in McRBFN [18] addresses the first three issues in batch
framework except proper utilization of the past knowledge
stored in the network and applied in detection of neurode-
generative diseases [19], [20]. Therefore, in this paper, we
propose a fast and efficient sequential PBL algorithm for
McRBFN.

There are several models of metacognition available in edu-
cational psychology and survey of these models of metacog-
nition is reported in [21]. Nelson and Narens proposed a

simple model of metacognition in [22] that clearly highlights
the various self-regulated principles in human metacognition.
Nelson and Narens model contains a cognitive component
and a metacognitive component. The flow of information
from the cognitive component to the metacognitive component
is referred as a monitory signal, while the flow of infor-
mation from the metacognitive component to the cognitive
component is referred as a control signal. The control signal
changes the state of the cognitive component or changes
the cognitive component itself. On the other hand, monitory
signal updates the metacognitive component about the state of
cognitive component. Similar to the Nelson and Narens model
of metacognition [22], McRBFN also has two components.
A single-hidden-layer RBF network with evolving architecture
is the cognitive component, and the metacognitive component
contains a dynamic model of the cognitive component, knowl-
edge measures, and self-regulated thresholds. The cognitive
component learns from stream of training data by growing
hidden neurons or updating the output weights of hidden
neurons so as to approximate the decision function. When
a new hidden neuron is added to the cognitive component,
the Gaussian parameters (center and width) are determined
based on the current training sample and the output weights
are estimated using the PBL algorithm. Finding optimal output
weights is first formulated as a linear programming problem
from the principles of minimization and Real calculus. The
PBL algorithm then converts the linear programming problem
into a system of linear equations and provides a solution
for the optimal output weights, corresponding to the minima
of the error function. For classification problems, it has
been proven theoretically in [23] and [24] that a classifier
developed using a hinge-loss function estimates the posterior
probability more accurately than a mean square error function.
Hence, the PBL algorithm in the cognitive component of
MCcRBEN employs hinge-loss error function. In addition, the
PBL algorithm uses existing neurons in the cognitive com-
ponent as pseudosamples. Thereby, the proposed algorithm
exploits the knowledge stored in the network for proper
initialization. When a sample is presented to the cognitive
component of McRBFN, the metacognitive component of
MCcRBFN measures the information contained in the current
training sample with respect to the knowledge acquired in
the cognitive component through its knowledge measures.
The knowledge measures in the metacognitive component are
predicted class label, maximum hinge error, and classwise
significance. In kernel methods, spherical potential is widely
used to determine whether all the trained samples are enclosed
tightly by the Gaussian kernels [25]. Hence, the spherical
potential is taken as classwise significance of a sample and it is
measured as the squared distance between the sample and the
hyperdimensional projection. In this paper, spherical potential
is redefined to address the classification problems. Using
the above-mentioned knowledge measures along with self-
regulatory thresholds, the metacognitive component constructs
two sample-based learning strategies and three neuron-based
learning strategies. As each training sample is presented, the
metacognitive component selects one of the five strategies
such that the cognitive component learns the decision function
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efficiently and achieves better classification performance. The
metacognitive component also measures the amount of overlap
between the current training sample and nearest neurons in the
interclass and intraclass to determine new hidden parameters.
The PBL algorithm for McRBFN to obtain the network
parameters is referred to as PBL-McRBFN.

The performance of the proposed PBL-McRBFN classi-
fier is evaluated through a set of benchmark binary and
multicategory classification problems from the University of
California, Irvine (UCI) machine learning repository [26].
We consider nine multicategory and five binary classification
problems with varying values of imbalance factor (I.F). In
all these problems, the performance of PBL-McRBFN is
compared against the best-performing classifiers available in
the literature. Further, we have also conducted a nonpara-
metric Friedman test [27] to indicate the statistical signifi-
cance in performance of PBL-McRBEN classifier. The results
indicate PBL-McRBFN classifier outperforms the existing
classifiers.

Finally, the performance of the PBL-McRBFN classifier has
also been evaluated on a practical Alzheimer’s disease (AD)
detection problem using magnetic resonance imaging (MRI).
For performance evaluation, we consider well-known open
access series of imaging studies (OASIS) [28] and Alzheimer’s
disease neuroimaging initiative (ADNI) [29] MRI databases.
These two MRI databases are generated in similar imaging
environment with different demographic patient conditions.
Hence, we use these datasets to demonstrate the capability of
learning from changing distribution. The proposed classifier
approximates the relationship between morphometry features
and class label. First, we demonstrate the performance of
the proposed classifier on these datasets and compare with the
existing results reported in the literature. Later, we show
the ability to capture the change in distribution by adapting
the classifier developed using OASIS with ADNI images. The
results show that the classifier has the ability to learn efficiently
from a stream of data.

The structure of this paper is as follows. Section II describes
the metacognitive RBF network for classification problems.
Section IIl presents the performance evaluation of PBL-
MCcRBEN classifier on a set of benchmark and practical AD
detection datasets in comparison with the best-performing
classifiers available in the literature. Section IV summarizes
the conclusions from this paper.

II. MCRBFN FOR CLASSIFICATION PROBLEMS

In this section, we describe the McRBFN for solv-
ing classification problems. The classification problem in
sequential framework can be defined as follows: Given a

stream of training data, {(x!,c!),..., (', c"),...}, where
xl = [xi,...,x,’n]T € R™ is the m-dimensional input
of the tth sample, ¢ € {1,...,n} is its class label, and

n is the total number of classes. The coded class labels
o =0, yj., . y1T) € R are given by

1 if =j
t ’ .
Yj I —1, otherwise Jj=1b...n &
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Fig. 1. Schematic diagram of metacognitive learning.

The objective of McRBFN classifier is to approximate the
underlying decision function that maps x’ € R" — y' € R".
MCcRBEN begins with zero hidden neuron and selects suitable
strategy for each sample.

A. Metacognitive Learning in RBF Network

The schematic diagram of metacognitive learning in
MCcRBEN is shown in Fig. 1. The cognitive component of
McRBFN is an RBF network with evolving architecture.
The metacognitive component of McRBFN contains a
dynamic model of the cognitive component. When a new
training sample is presented to the McRBFN, the metacogni-
tive component of McRBFN estimates the knowledge present
in the new training sample with respect to the cognitive
component. Based on this information, the metacognitive
component controls the learning process of the cognitive
component by selecting suitable strategy for the current
sample.

1) Cognitive Component of McRBFN: The cognitive com-
ponent of McRBEN is a single-hidden-layered feed forward
RBF network with a linear input and output layers. The
neurons in the hidden layer employ the Gaussian activation
function.

Without loss of generality, we assume that the McRBFN
builds K neurons from ¢ — 1 training samples. For a given
input x’, the predicted output 67;.) of McRBFN is

K
Vo= wjhl, j=1,....n 2
k=1

where wy; is the weight connecting the kth hidden neuron to
the jth output neuron and h/, is the response of the kth hidden
neuron to the input x’ is given by

lIx" — |12
hf{ = exp(—%) 3)
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where ;Li € N™ is the center and a,ﬁ e N is the width of
the kth hidden neuron. Here, the superscript [ represents the
corresponding class of the hidden neuron.

a) PBL algorithm: The projection-based learning algo-
rithm works on the principle of minimization of error function
and finds the optimal network output weights for which the
error is minimum.

The considered error function is the sum of squared errors at
output neurons of McCRBFN. The error function for ith sample
is defined as

Ji =Z( Zwk,hk) 4

j=1
For ¢ training samples, the overall error function is defined as
2

1 t 1 t n ) K )
W =33 u=1 33 (- Swnt) ©
i=1 i=1 j=1 k=1
where h}'{ is the response of the kth hidden neuron for ith

training sample.
The optimal network output weights (W* € RE*") are

estimated such that the total error reaches its minimum

min

W* = arg
WenKxn

J(W). (6)

The optimal W* corresponding to the minima of the error
function (J (W*)) is obtained by equating the first-order partial
derivative of J(W) with respect to the output weight to zero
0J(W)
Owpj

=0, p=1,...,K; j=1,...,n. 7

Equating the first partial derivative to zero and re-arranging

> s = 3 ®

k=1 i=1

which can be represented in matrix form as
AW =B 9)

where the projection matrix A € RX*X is given by

t

ay = > hihl,,  k=1,...K:p=1..K (10
i=1

and the output matrix B € RE*" is
thy,, p=1,...K; j=1,...,n. (1D

Equation (9) gives the set of K xn linear equations with K xn
unknown output weights W.

The solution for W obtained as a solution to the set of
equations as given in (9) is minimum, if (62J/6w1p2) > 0.
The second derivative of the error function (J) with respect
to the output weights is given by

3%J (W) Z W

12
Dot (12)

t
Z n%1* > 0.
i=1

As the second derivative of the error function J (W) is positive,
the following observations can be made from (12).

i) J is a convex function.
ii) The obtained output weight W* is the weight corre-
sponding to the minima of the error function (J).

The solution for the system of equations in (9) can be
determined as follows:
W* = A7'B. (13)
2) Metacognitive Component of McRBFN: The metacog-
nitive component contains a dynamic model of the cog-
nitive component, knowledge measures, and self-regulated
thresholds. During the learning process, the metacognitive
component monitors the cognitive component and updates
its dynamic model of the cognitive component. When a
new training sample (x’,y’) is presented to McRBFN, the
metacognitive component of McRBFN estimates the knowl-
edge present in the new training sample with respect to
the cognitive component using its knowledge measures. The
metacognitive component uses predicted class label (¢'), max-
imum hinge error (E?), confidence of classifier (p(c’|x")),
and classwise significance () as the measures of knowledge
in the new training sample. The self-regulated thresholds are
adapted to capture the knowledge present in the new training
sample. Based on the knowledge measures and self-regulated
thresholds, the metacognitive component chooses one of the
two sample-based learning strategies or three neuron-based
learning strategies to learn the current sample accurately.
The knowledge measures are defined as shown below.
a) Predicted class label (¢'): Using the predicted output
(¥") it can be obtained as

¢ =arg Imax ?; (14)
jel,.,n

b) Maximum hinge error (E"): McRBFN uses the hinge

loss error (et = [etl""’e}""’eiz Ty ¢ 9" and is defined as
r_ 5t

r_ yj_yj if y]yj<1 1 s

“ [ 0 otherwise J R (15)

Using the hinge loss error e!, the maximum hinge error (E’)
can be obtained as

el

r_
E = J

max (16)

jel2,...n

¢) Confidence of classifier (p(c'|x")): The confidence
level of classification or predicted posterior probability is given
as

min(1, max(—1, )7;.)) +1
2 b
d) Classwise significance (y.): The classwise distribu-
tion plays a vital role and it will influence the performance
the classifier significantly [2]. Hence, we use the measure of
the spherical potential of the new training sample x’ belonging
to class ¢ with respect to the neurons associated with same
class (i.e., [ = ¢). Let K¢ be the number of neurons associated

pjIx) = j=c. a7
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with the class c, then classwise spherical potential or classwise
significance (i) is defined as
1 &
Ve = — Sh (X, k).

K¢
k=1

(18)

The spherical potential explicitly indicates the knowledge
contained in the sample, a higher value of spherical potential
(close to one) indicates that the sample is similar to the existing
knowledge in the cognitive component, and a smaller value of
spherical potential (close to zero) indicates that the sample is
novel. For more details on the classwise significance, one may
refer to [14].

3) Learning Strategies: The metacognitive component
devises various learning strategies using the knowledge mea-
sures and the self-regulated thresholds that address the basic
principles of self-regulated learning (i.e., what-to-learn, when-
to-learn, and how-to-learn). The metacognitive part controls
the learning process in the cognitive component by selecting
one of the following five learning strategies for the new
training sample.

a) Sample Delete Strategy: If the new training sample
contains information similar to the knowledge present
in the cognitive component, then delete the new training
sample from the training dataset without using it in the
learning process.

b) Neuron Growth Strategy: Use the new training sample
to add a new hidden neuron in the cognitive component.
During neuron addition, sample overlapping conditions
are identified to allocate a new hidden neuron appropri-
ately.

¢) Parameter Update Strategy: The new training sample is
used to update the parameters of the cognitive compo-
nent. PBL is used to update the parameters.

d) Neuron Pruning Strategy: Very less contributed neurons
in a class over a period of same class samples are deleted
from the cognitive component.

e) Sample Reserve Strategy: If the new training sample
contains some information but not significant, they can
be used at later stage of the learning process for fine
tuning the parameters of the cognitive component.

The principle behind these five learning strategies are

described in detail below.

a) Sample delete strategy: When the predicted class label
of the new training sample is same as the actual class label and
the estimated posterior probability is close to 1, then the new
training sample does not provide additional information to the
classifier and can be deleted from training sequence without
being used in learning process. The sample deletion criterion
is given by

o)

t

== ¢ AND p(c'Ix") > Pa. (19)

The metacognitive deletion threshold (5;) controls the number
of samples participating in the learning process. The sample
deletion strategy prevents learning of the samples with similar
information, and thereby, avoids overtraining and reduces the
computational effort. In our simulation studies, it is selected
in the interval of [0.9-0.95].

b) Neuron growth strategy: When a new training sample
contains significant information and the predicted class label
is different from the actual class label, then one needs to add
a new hidden neuron to represent the knowledge contained in
the sample. The neuron growth criterion is given by

(¢ #c OrR E' = B,) AND y.(x') < B (20)
where f. is the metacognitive knowledge measurement
threshold and f, is the self-adaptive metacognitive addition
threshold. The terms fS. and S, first allow the samples with
significant knowledge for learning then use the other samples
for fine tuning. The f, is adapted as follows:

Ba = 0Pa + (1 — 5)Et 21

where ¢ is the slope that controls rate of self-adaptation and
is set close to one. The f, adaptation allows McRBFN to
add neurons only when the presented samples to the cognitive
network contains significant information. In our simulation
studies, f. is selected in the interval of [0.3-0.7] and S, is
selected in the interval of [1.3—1.7]. Details on influence of
these parameters are given in [14].

When a new neuron (K +1) is added, the existing sequential
learning algorithms initialize center based on the new training
sample and width based on the distance with nearest neuron.
The new training sample may overlap with existing neurons
in other classes or will be a distinct cluster far away from
the nearest neuron in the same class. Therefore, one has to
consider the amount of overlap with respect to existing neurons
while initializing the new neuron parameters. Also, the existing
sequential learning algorithms estimate new neuron output
weights based on the error of the new training sample. In
sequential learning framework, the output weight initialization
using only the new training sample influences the performance
significantly, due to absence of knowledge contained in the
past samples. In the proposed McRBFN, the above-mentioned
issues are dealt with as follows.

i) The new neuron output weights will be estimated using
existing knowledge of past trained samples stored in the
network.

i) The new neuron center and width parameters will be
initialized on the basis of new training sample distances
to existing interclass and interclass nearest neurons.

Let nrS be the nearest hidden neuron in the intraclass and
nr be the nearest hidden neuron in the interclass as

. t I . t I
nrS =arg min |[|x' — ; nrl =arg min ||xX' — .
gl:C;Vk l myll g oo [ will
(22)

Let the Euclidian distances between the new training sample
to nrS and nrl are given as follows:
(23)

. l
ds=||Xt—Mf,,SII, dI=||Xt_ILnr1||'

We can determine the new hidden neuron center (% ;) and
width (o) parameters on the basis of overlapping and
nonoverlapping conditions using the nearest neuron distances
as follows.
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i) Distinct Sample: If (ds >> o/.¢ AND dj >> a,llrl)
then the new training sample does not overlap with any
class cluster, and is from a distinct cluster

ILZK+1 =x"; C’;(+1 =y (X)X,
where x is a overlap factor of the hidden units, which
lies in the range 0.5 <k < 1.

ii) Nonoverlapping: If the intraclass and interclass distance
ratio is < 1, then the sample does not overlap with the
other classes

l=c (24

[ t. l t
Rk =X5 0k =kIX —py6ll,  I=c. (25

iii) Minimum Overlapping With the Interclass: If the intr-
aclass and interclass distance ratio is in range 1-1.5,
then the sample has minimum overlapping with the other
class

l l
Rk = x! + C(’LZrS - I'l’nrl)

ok =Kl —mosll,  1=c  (26)

where ¢ is center shift factor. In our simulation studies,
it is selected in the interval of [0.01-0.1].

iv) Significant Overlapping With the Interclass: If the intra-
class and interclass distance ratio is more than 1.5, then
the sample has significant overlapping with the other
class

’LIK+1 =x - C(M'izrl —-x')

ok = KMoy —Hygll,  I=c. 2D

The above-mentioned center and width determination con-
ditions help in minimizing the misclassification in McRBFN.

When a neuron is added to McRBFN, the output weights
are estimated using PBL with past knowledge stored in the
network as pseudosamples, i.e., centers and associated class
labels as pseudosamples.

When a new neuron is added to the cognitive component,
the size of matrix A as defined in (10) is increased from K x K
to (K+1)x(K+1)

_ T
Ak + (1) ht‘ Ay (28)
ag+1 |aK+1,K+1

where h' = [k, R}, ... h%] is a vector of the existing K
hidden neurons response for new (fth) training sample. In
sequential learning, the samples are discarded after learning,
but the information present in the past samples are stored in
the network. The centers of neuron provides the distribution of
past samples in feature space. These centers {;Ll1 sy [LIK} can
be used as pseudosamples to capture the effect of past samples.
Hence, existing hidden neurons are used as pseudosamples
to calculate agxy; and ag41,k+1 terms. agx4| € RIXK g
assigned as

At(K+1)><(K+1) = [

K+1
agiip= D hh i, p=1,...K (29)
i=1
and ag41,k+1 € RT value is assigned as
K+1
agtik+1 = D iy by, (30)
i=1

The size of matrix B is increased from K xn to (K 4+ 1) xn

B! + (n T .nT
Bik-r1)xn = [ Ko biﬁ ) @31
and bg 1 € " is a row vector assigned as
K+1
(32)

bK+1,j=ZhiK+1)7;, j=1,...,n
i=1

where 7' is the pseudooutput for the ith pseudosample or
hidden neuron (;Lﬁ) given as

1 __ ) _
Vi T I—l, otherwise ¢ — L...,n. (33)
Finally, the output weights are estimated as
w! .
[WIK:} - (AI(K“)X(KH)) Bt(KJrl)Xn (34)

where WIK is the output weight matrix for K hidden neurons,
and wtK 41 is the vector of output weights for new hidden
neuron after learning from ¢th sample. The inverse of a matrix
A( K+1)x(K+1) 18 calculated recursively using matrix identities

as
—1 At —1 O
(At(K+1)x(K+1)> :[( KBK) 0}
—1 -1 T
J,.%[(Athli) aTi||:(Ath1i) aT:| (35)
where

AthK — Atfl +(ht)Tht
1 -1
A = agi1k+1 —ak+1(A ) ) ak
and (A% K)_1 is calculated as

() ) )

Al =
( KXK) 1+ht(At_1)—1 (ht)T

. (36)

After calculating inverse of matrix in (34) using (35) and (36),
the resultant equations are

~1
-1 T
(AK><K> Ag 1AK+1

Wt]( = | Igkxk + A
-1
Wit (ate) 00 00|
-1
3 (AII;:K) ag b+ 37
A
-1
K (WIK_1+(AIK_>1K) (ht)T (yt)T) bK+1
wtK+1 = - A A .
(38)
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c) Parameters update strategy: The current (¢th) training
sample is used to update the output weights of the cognitive

component (Wg = [wi,wa,...,wglD), if the following
criterion is satisfied:
c'==7¢ and E' > B, (39)

where £, is the self-adaptive metacognitive parameter update
threshold. For the selection of f,, value, one may refer to [14].
The f, is adapted based on the maximum hinge error as

Bu =Py + (1 = )E' (40)

where J is the slope that controls the rate of self-adaption of
parameter update and is set close to one.

When a sample is used to update the output weight parame-
ters, the PBL algorithm updates the output weight parameters
as follows:

GJ(W’K) _ GJ(W’K) n 6],(W’K) —0
aij aij aij
where
p=1,...,K; j=1,...,n. 41)

Equating the first partial derivative to zero and re-arranging
(41), we get

(A + ) ) Wi — (B (1) (")) =0. @2

By substituting B'~! = A""'W/~! and A" = A”"! + (W)}
and adding or subtracting the term (ht)ThtW'I;1 on both
sides, (42) is reduced to

Wi = (a) 7 (AW + ()" ()" - Wit @3)
Finally, the output weights are updated as
_ -1 T
Wi =W+ (&) (b)) (')
where €’ is the hinge loss error for ¢th sample obtained from
(15). From (15) and (44), we can see that only the nonzero
hinge loss error producing output neurons connections weights
are updated. Since, the parameter update employs hinge error,
the resultant network approximates the posterior probability
very well.
d) Neuron pruning strategy: If the contribution of a
neuron in the same class is lesser than a pruning threshold
Bp for N, consequent samples in the same class /, then that

neuron is insignificant and can be removed from the network.
The contribution of the kth neuron is defined as

(i)

! (44)

(45)

where f, is the metacognitive neuron pruning threshold. If 3,
is chosen closer to zero, then pruning occurs seldom and all
the added neurons will remain in the network irrespective of
their contribution to the network output. If £, is chosen closer
to one, then pruning occurs frequently, resulting in oscillations
and insufficient neurons to capture the distribution from stream
of training samples. When a neuron is pruned from the
network, the dimensionality of the A’ and B’ is reduced by
removing the respective rows/columns corresponding to the
pruned neuron.

TABLE I
SPECIFICATION OF BENCHMARK BINARY AND MULTICLASS DATASETS

Datasets | No. of | No. of [ No. of Samples LF
Features | Classes | Training | Testing | Training | Testing
LD 6 2 200 145 0.17 0.14
PIMA 8 2 400 368 0.22 0.39
BC 9 2 300 383 0.26 0.33
HEART 13 2 70 200 0.14 0.1
ION 34 2 100 251 0.28 0.28
IN 19 7 210 2100 0 0
IRIS 4 3 45 105 0 0
WINE 13 3 60 118 0 0.29
vC 18 4 4244 422 0.1 0.12
GI 9 6 109¢ 105 0.68 0.77
AE 5 4 62 137 0.1 0.33
GCM 98 14 144 46 0.22 0.39
LETTER 16 26 13333 | 6667 0.06 0.1
SI 6 9 9108 | 262144 0 0.87

@ As suggested in [2], the samples are repeated three times.

e) Sample reserve strategy: If the new training sample
does not satisfy either the deletion or the neuron growth or
the cognitive component parameters update criterion or neuron
pruning, then the current sample is pushed to the rear of
the training sequence. Since McCRBFN modifies the strategies
based on the current sample knowledge, these samples may
be used in later stage.

Ideally, training process stops when no further sample is
available in data stream. However, in real-time, training stops
when samples in the reserve remains same.

In PBL-McRBFN, sample delete strategy addresses the
what-to-learn by deleting insignificant samples from training
dataset, neuron growth strategy, parameters update strategy,
and neuron pruning strategy address the how-to-learn effi-
ciently by which the cognitive component learns from the
samples, and self-adaptive nature of metacognitive thresh-
olds in addition to the sample reserve strategy address
the when-to-learn by presenting the samples in the learn-
ing process according to the knowledge present in the
sample.

III. PERFORMANCE EVALUATION OF PBL-MCRBFN
CLASSIFIER

In this section, we first present the performance compari-
son of the proposed PBL-McRBFN with the best-performing
sequential learning algorithm reported in the literature McNN
[14], batch ELM [9], and standard Support Vector Machine
(SVM) [30] on real-world benchmark binary and multicate-
gory classification datasets from the UCI machine learning
repository [26]. Next, we use the PBL-McRBFN to detect AD
from a stream of MRI scans.
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A. Performance Comparison on Benchmark Datasets

1) Benchmark Datasets: To extensively verify the perfor-
mance of the proposed algorithm, we have chosen datasets
with small and large number of samples, low- and high-
dimensional features, and balanced and unbalanced datasets
in both binary and multiclassification problems. The detailed
specifications of five binary and nine multiclassification
datasets are given in Table I. Note that the datasets are
taken from UCI machine learning repository, except for satel-
lite imaging [24], global cancer map using microarray gene
expression [31], and acoustic emission [32] datasets. The
sample imbalance in training and testing is measured using
LF and is defined as

I.F:l—%x ‘min N; (46)

j=L...n
where N; is the total number of training samples in class j
n

and N =37 N;.

For efficient comparison, we present them under the follow-
ing categories as described below.

a) Binary class datasets: All the considered binary class

datasets have high sample imbalance and are grouped into two
categories.

i) Low Dimensional: Liver disorders (LD), PIMA Indian
diabetes (PIMA), and breast cancer (BC) are having low-
dimensional features with relatively smaller number of
training samples.

i) High Dimensional: Heart disease (HEART) and
ionosphere (ION) datasets are having smaller number
of training samples with high-dimensional features.

b) Multiclass datasets: Considered nine multiclass
datasets are grouped into three categories.

i) Well Balanced: Image segmentation (IS), iris classifi-
cation (IRIS), and wine determination (WINE) datasets
have equal number of training samples per class. These
datasets are having varying number of features and
training and testing samples.

ii) Imbalanced: Vehicle classification (VC), glass iden-
tification (GI), and acoustic emission classification
(AE) datasets have lower dimensional features and
highly imbalanced training samples. The global can-
cer mapping (GCM) using microarray gene expression
is having high-dimensional features with high sample
imbalance.

iii) Large Number of Samples: Letter recognition (LETTER)
and satellite image (SI) classification datasets have rel-
atively large number of samples and classes.

2) Simulation Environment: For this performance compari-
son study, experiments are conducted for the PBL-McRBFN,
McNN, ELM, and SVM classifiers on all the datasets in
MATLAB 2011 on a desktop PC with Intel Core 2 Duo,
2.66-GHz CPU and 3-GB RAM. The tunable parameters of
PBL-McRBFN and McNN are chosen using cross-validation
on the training datasets. For ELM classifier [3], the num-
ber of hidden neurons are obtained using the constructive-
destructive procedure presented in [33]. The simulations
for batch SVM with Gaussian kernels are carried out

TABLE 11
PERFORMANCE COMPARISON OF PBL-MCRBFN WITH MCNN, ELM,
AND SVM ON BINARY CLASS DATASETS

Data Classifier No. of No. of Testing

set Neurons | Samples Used | 7, Ha
SVM 1414 200 71.03 | 7021®
LD ELM 100 200 7241 | 71.414)
McNN 68 110 73.79 | 71.60®
PBL-McRBEN 87 116 73.10 | 72.63(D
SVM 2214 400 77.45 | 76.430G)
PIMA ELM 100 400 76.63 | 75254
McNN 76 193 80.16 | 77.31()
PBL-McRBEN | 100 162 79.62 | 76.67@
SVM 244 300 926.61 | 97.0603
BC ELM 66 300 96.35 | 96.48(4
McNN 9 27 97.39 | 97.85(1:9
PBL-McRBFN 13 45 97.39 | 97.85(1:9
SVM 404 70 755 | 75.109
HEART ELM 36 70 76.50 | 75.914)
McNN 26 46 80.50 | 79.65®
PBL-McRBFN 20 69 81.50 | 81.47()
SVM 43¢ 100 91.24 | 88510
ION ELM 32 100 89.64 | 87.524
McNN 20 39 95.62 | 95.60(
PBL-McRBFN 18 58 96.41 | 96.47(D

4 Number of support vectors.

using the LIBSVM package in C [34]. For SVM classi-
fier, the parameters (c,y) are optimized using grid search
technique.

3) Performance Measures: The overall and average classifi-
cation efficiencies are used as quantitative evaluation measures
in this paper. The confusion matrix Q is used to obtain
the class-level performance and global performance of the
various classifiers. Class-level performance is measured by the
percentage classification (7;) which is defined as

95l « 100%
N

J

nj = 47
where ¢g;; is the total number of correctly classified samples in
the class j. The global measures used in the evaluation are the
average per-class classification accuracy (7,) and the overall
classification accuracy (7,) defined as

1« >i-14ii
naZZZ;nj, no = == —
j:

4) Performance Comparison:

a) Binary class datasets: The performance measures such
as overall (,), average (7,) testing efficiencies, number of
neurons, and samples used for PBL-McRBFN, McNN, ELM,
and SVM classifiers on all the five binary class datasets are
reported in Table II. From the performance comparison results
in Table II, one can see that in case of low-dimensional
LD and PIMA datasets, the proposed PBL-McRBFN uses
fewer samples for training and achieves significantly better
generalization performance approximately 1% improvement
over McNN, 1%-2% improvement over ELM and SVM

x 100%.  (48)
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TABLE III
PERFORMANCE COMPARISON OF PBL-MCRBFN WITH MCNN, ELM,
AND SVM ON MULTICATEGORY DATASETS

Data Classifier No. of No. of Testing

set Neurons | Samples Used | 7, Na
SVM 1274 210 91.38 | 91.380)
IS ELM 49 210 90.23 | 90.234
McNN 49 93 93.38 | 93.38(@
PBL-McRBFN | 50 89 94.19| 94.19()
SVM 134 45 96.19 | 96.19G-9)
IRIS ELM 10 45 96.19 | 96.19G-9)
McNN 5 22 97.14 | 97.14@
PBL-McRBFN 6 20 98.10 | 98.10(D
SVM 364 60 97.46 | 98.04(3-9)
WINE ELM 10 60 97.46 | 98.046-9)
McNN 9 27 98.3 | 98.49®
PBL-McRBFN | 11 29 98.31| 98.69(D
SVM 3404 620 70.62 | 68.51%
vC ELM 150 620 77.01| 77.593)
McNN 146 359 77.72| 78.72®
PBL-McRBFN | 175 318 78.91| 79.09(D
SVM 1834 336 70.47 | 75.61%
Gl ELM 80 336 81.31| 87.43@
McNN 73 117 85.71| 87.03®
PBL-McRBFN | 71 115 84.76 | 92.72()
SVM 204 62 98.54( 97.95%
AE ELM 10 62 99.27 | 98.91@
McNN 5 20 99.27 | 98.91®
PBL-McRBFN 5 9 99.27 | 98.91@
SVM 107¢ 98 76.08| 82.62
GCM ELM 55 98 76.08 | 73.57
PBL-McRBFN | 72 109 93.47| 91.67

SVM 44294 13333 92.94 -

LETTER ELM - 13333 93.51 -
PBL-McRBFN | 1654 3346 95.42| 9544
SVM 1298¢ 9108 9221] 90.14

SI ELM 1500 9108 88.39 -
PBL-McRBEN | 1274 2445 90.14| 91.19

¢ Number of support vectors.

with less number of neurons. In case of simple BC dataset,
PBL-McRBFN uses fewer samples for training and achieves
slightly better generalization performance approximately 1%
improvement over ELM and SVM with less number of neurons
and same performance as McNN. In case of high-dimensional
HEART and ION datasets, PBL-McRBFN uses fewer samples
for training and achieves better generalization performance
1%—-2% improvement over McNN, 6%—-9% improvement over
SVM and ELM. The overlapping conditions and class-specific
criterion in learning strategies of PBL-McRBFN helps in
capturing the knowledge accurately in case of high sample
imbalance problems.

b) Multicategory datasets: The overall (7,) and average
(n4) testing efficiencies, number of neurons, and samples
used for PBL-McRBFN, ELM, and SVM classifiers on all
the nine multicategory datasets are reported in Table III.
From Table III, we can see that PBL-McRBFN performs

significantly better than the ELM and SVM on all the
nine multicategory datasets. In case of well-balanced IS,
IRIS, and WINE datasets, PBL-McRBFN uses only 42%-
50% training samples to achieve better generalization per-
formance approximately 2%-3% improvement over McNN,
SVM, and ELM with the less number of neurons. Metacog-
nitive sample deletion criteria helps in removing redun-
dant samples from the training set and thereby improves
the generalization performance. For highly unbalanced
datasets, one can see that the proposed PBL-McRBFN is
able to achieve significantly better performance than the
other classifiers. In case of VC and GI datasets, PBL-
MCcRBEN uses fewer samples and achieves better generaliza-
tion performance approximately 1%-5% improvement over
McNN and ELM, and 7%-12% improvement over SVM.
In case of low-dimensional AE dataset, PBL-McRBFN
achieves slightly better generalization performance 1%
improvement over SVM, similar to McNN and ELM. In case
of high-dimensional GCM dataset, PBL-McRBFN achieves
significantly better generalization performance approximately
13% improvement over SVM and ELM. In case of large
samples LETTER and SI datasets, the generalization perfor-
mance of PBL-McRBFN is better than ELM and SVM by
approximately 2%—-3% and 3% using less number of training
samples and neurons. Due to computational intensive EKF
for parameter update, McNN experiences memory problem
for large problems like GCM, LETTER, and SI. Hence, the
results for McNN in these problem are not presented here.

From Tables II and III, we can say that the proposed PBL-
MCcRBEN improves generalization performance under wide
range of sample imbalance datasets.

5) Statistical Comparison: To compare the performance of
the proposed PBL-McRBFN classifier with McNN, ELM, and
SVM classifiers on various benchmark datasets, we employ
a nonparametric Friedman test followed by the Benforroni-
Dunn test as described in [27]. The Friedman test compares
whether the mean of individual experimental condition differs
significantly from the aggregate mean across all conditions.
If the measure F-score is greater than the F-statistic at
95% confidence level, then one rejects the equality of mean
hypothesis, i.e., the classifiers used in our paper perform
similarly on different dataset. If nonparametric Friedman test
rejects the equality hypothesis, then pairwise post hoc should
be conducted to test in which the mean is different from others.
In our paper, we have used four different classifiers ranks
based on average testing efficiency on 11 different datasets
from Table 1.

The F-score obtained using nonparametric Friedman test is
42.75, which is greater than the F-statistic at 95% confidence
level (F3,30,0.025 is 3.542), i.e., 42.75 > 3.542. Hence, one can
reject mean equality hypothesis at a confidence level of 95%.

Next, we conduct a pairwise comparison using a Benforroni-
Dunn test to highlight the performance significance of PBL-
MCcRBEN classifier with respect to other classifiers. Here,
the proposed PBL-McRBFN classifier is used as a control.
The critical difference (CD) is calculated is 1.317 at 95%
confidence level. From Tables II and III, we can obtain the
average ranks for all four classifiers and are PBL-McRBFN:
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1.25, McNN: 1.86, ELM: 3.18, and SVM: 3.72. The difference
in average rank between the proposed PBL-McRBFN classifier
and the other three classifiers are PBL-McRBFN-McNN:
0.61, PBL-McRBFN-ELM: 1.93, and PBL-McRBFN-SVM:
2.47. Note that difference in average rank for PBL-McRBFN-
ELM and PBL-McRBFN-SVM pairs is greater than CD at
95% confidence level, i.e., 1.93>1.317 and 2.47>1.317. The
difference in average rank for PBL-McRBFN-McNN pair is
less than CD at 95% confidence level, i.e., 0.61 <1.317. Hence,
we can say that PBL-McRBFN performs slightly better than
the McNN classifier and significantly better than ELM and
SVM classifiers with a confidence level of 95%.

B. AD Detection Using PBL-McRBFN

AD is one of the most common causes of dementia.
AD is a progressive, neurodegenerative disorder that leads
to memory loss, problems in learning, confusion, and poor
judgment. Early detection of AD using noninvasive methods
(brain imaging) plays a major role in providing treatment
that may slow down its progress. MRI is the most important
brain imaging procedure that provides accurate information
about the shape and volume of the brain. The problem of
early detection of AD using MRI can be formulated as
binary classification and can be solved using machine learning
techniques [35].

1) Related Works: The studies of analyzing MRI scans
can be categorized into two classes: region-of-interest (ROI)
methods [36] and whole-brain morphometric methods [37]. In
ROI methods, the volumetric measurements of specific brain
regions are used to detect AD. Studies have shown that the
tissue loss in the hippocampus and the entorhinal cortex could
be indicators for early AD. Major shortcomings in the use
of the ROI methods are dependent on tracer expertise and
are erroneous. To overcome these shortcomings, whole-brain
morphometric methods have been employed for accurate AD
detection. Voxel-based morphometry (VBM) is a completely
automatic image analysis approach for identifying the amount
of gray matter or white matter differences between the normal
persons and AD patients [38]. The steps involved in the
VBM to identify significant differences between the groups
of images are spatial normalization, segmentation, smoothing,
and statistical analysis [39]. The VBM analysis is used in this
paper to identify the regional differences in gray matter among
groups of persons and to extract morphometric features from
MRI scans.

2) AD Datasets: OASIS database [28] has cross-sectional
collection of 416 persons covering the adult life-span including
persons with AD in an early-stage. The data includes 218
persons aged from 18 to 59 years and 198 from 60 to 96
years. Among 198 elderly persons considered in this paper,
98 had no AD, i.e., clinical dementia rating (CDR) is zero.
Seventy persons were diagnosed as very mild AD (CDR =
0.5), 28 persons were diagnosed as mild AD (CDR = 1), and
two persons as moderate AD (CDR = 2). ADNI database [29]
has a cross-sectional collection of 422 elderly persons aged
from 55 to 91 years. Among 422 elderly persons considered
in this database, 226 were diagnosed as normal (CDR = 0),

(©

Fig. 2. Results of the unified segmentation and smoothing steps performed
on MRI of an AD patient. From right: sagittal, coronal, and axial views.
(@) MRI of an AD patient. (b) Segmented gray matter tissue class.
(c) Smoothed gray matter image.

95 persons were diagnosed as very mild AD (CDR = 0.5),
and 101 persons were diagnosed as mild AD (CDR = 1).

3) Feature Extraction Using VBM: The VBM is a voxelwise
comparison of local tissue volume of gray matter within or
among groups of persons using MRI scans. Here, MRI scans
undergo various preprocessing steps before the voxelwise
parametric tests are carried out on them.

The steps involved in VBM analysis are unified segmen-
tation, smoothing, and statistical testing, in the order as in
unified segmentation model proposed by [38]. The unified
segmentation step is a generative modeling approach, in which
tissue segmentation, bias correction, and image registration
are combined in a single model. The unified segmentation
framework combines deformable tissue probability maps with
a Gaussian mixture model. The MR brain images of both
the AD patients and healthy persons are segmented into gray
matter tissue class. The segmented and normalized gray matter
images are then smoothed by convolving with an isotropic
Gaussian kernel. VBM was performed using the statistical
parametric map (SPM) software package [40]. A 10-mm
full-width at half-maximum Gaussian kernel was employed.
Fig. 2 shows three planar views (sagittal, coronal, and axial)
of the original images and images after every stages in VBM
analysis. The maximum intensity projections of the significant
voxels obtained for OASIS dataset in sagittal, coronal, and
axial views are shown in Fig. 3.

4) Performance Comparison:

a) Individual OASIS and ADNI datasets: Significant vox-
els extracted from VBM analysis are taken as features. The
VBM extracted 19789 features on OASIS dataset and 23 797
features on ADNI dataset. For classification study, 10 random
trials of features sets are used as input to the PBL-McRBFN
classifier. In each trial, 50% of the samples are randomly
chosen for training set, the rest as testing set. Table IV
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TABLE IV
CLASSIFICATION PERFORMANCE OF PBL-MCRBFN ON AD DATASET FROM OASIS AND ADNI

Data | No. of No. of No. of Testing
set | Features | Samples Used Neurons Accuracy (%) F-Measure
Mean | Deviation | Mean | Deviation | Mean | Deviation | Best | Mean | Deviation
OASIS | 19879 | 81.8 9.49 42.8 3.11 75.75 1.01 76.77| 0.74 0.02
ADNI | 23797 [136.6| 20.10 63.6 6.84 85.49 0.98 86.26 | 0.84 0.01

ﬂ—
oy
-

. Rl S
(@ (b)

Fig. 3. Maximum intensity projections of the significant areas with increased
gray matter density in the healthy persons relative to the AD patients.
(a) Sagittal view. (b) Coronal view. (c) Axial view.
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Fig. 4. Schematic diagram of PBL-McRBFN application on extracted ADNI
dataset features from OASIS dataset SPM.

presents the mean results obtained from 10 random trials
on both OASIS and ADNI datasets. The best PBL-McRBFN
classification accuracy on OASIS dataset is 76.77%. Compared
with the results reported in [41] and [42], the PBL-McRBFN
classification accuracy on 19879 features set is 10% more
than the PCA-SVM approach (66.98%) [41], 7% more than
the IPCA-SVM approach (69.7%) [41], and 14% more than
the ICA-SVM approach (62.8%) [42].

The best PBL-McRBFN classification accuracy on ADNI
dataset is 86.26%. Compared with the results reported in
[43] and [44], the PBL-McRBFN classification accuracy on
complete 23 797 features set is 8% more than the ICA-SVM
approach on ADNI whole-brain images (78.4%) [43], 4%
more than the ICA-SVM approach on ADNI gray matter
images (82.4%) [43], 5% more than the SVM approach on
ANDI images with hippocampal volume features (81%) [44],
and 4% more than the SVM approach on ADNI images with
cortical thickness features (82%) [44].

b) Nonstationary ADNI dataset from OASIS SPM: From
the description of OASIS and ADNI datasets, we can see that
these datasets are collected from the different demographic
people with different geographic locations. Hence, the data-
bases represent variation in the data distribution. In this, we
study the performance of proposed classifier under varying

distribution. For this purpose, SPM obtained using OASIS
database is used to extract the VBM features from ADNI
database. The extracted 19879 features from ADNI samples
are tested with best classifier developed using OASIS database.
The schematic diagram of cross-sectional study is shown in
Fig. 4. Such cross-sectional study will prevent computationally
intensive VBM feature extraction and unify the diagnosis
mechanism. If all the 422 samples from the ADNI dataset are
used as testing samples to the best PBL-McRBFN classifier
that is trained on OASIS database, then the testing accuracy
is 62.3%. If 25% of samples from the ADNI database are
used to adapt the PBL-McRBFN classifier using metacognitive
principles and tested on the remaining 75% of samples, then
the testing accuracy is 77.4%. From the above results, we
can infer that best PBL-McRBFN classifier trained on one
data distribution (OASIS database) with adaptation using fewer
samples from ADNI achieves significant testing accuracy on
unseen samples.

IV. CONCLUSION

In this paper, we presented a sequential learning algorithm
using human metacognitive principles. The metacognitive
component selects appropriate learning strategy for the
cognitive RBF classifier to achieve better generalization
performance with minimal computational effort. The
metacognitive component adapts the learning process
appropriately by implementing self-regulation, and hence
it decides what-to-learn, when-to-learn, and how-to-learn
efficiently. In addition, PBL accurately estimates the output
weight by direct minimization of hinge loss error and the
overlapping conditions present in neuron growth strategy
helps in proper initialization of new hidden neuron parameters,
which minimizes the misclassification error. The performance
of the proposed PBL-McRBFN classifier was evaluated using
the benchmark binary and multiclassification datasets and
also a practical problem of AD detection. The statistical
nonparametric Friedman test based on 11 benchmark
datasets clearly indicated that the proposed PBL-McRBFN
classifier achieves slightly better performance than McNN,
and significantly better performance than ELM and SVM
classifiers. In practical AD detection problem, the proposed
PBL-McRBEN classifier showed 7%—-14% improvement over
reported results on OASIS and 4%-8% improvement over
ADNI databases. Based on simulation studies conducted on
benchmark and practical problems, we can infer that human
metacognitive principles in learning algorithm improves the
performance significantly. Finally, the performance evaluation
on ADNI database with PBL-McRBFN classifier trained on
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OASIS database shows that the proposed PBL-McRBFN can
also achieve significant results on the nonstationary problems.
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