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Abstract: In this article, SIENA-XL, a new segmentation-based longitudinal pipeline is introduced, for:
(i) increasing the precision of longitudinal volume change estimation for white (WM) and gray (GM)
matter separately, compared with cross-sectional segmentation methods such as SIENAX; and (ii)
avoiding potential biases in registration-based methods when Jacobians are used, with a smoothing
extent larger than spatial scale between tissue-interfaces, which is where atrophy usually occurs.
SIENA-XL implements a new brain extraction procedure and a multi-time-point intensity equalization
step before performing the final segmentation that also includes separate segmentation of deep GM
structures by using FMRIB’s Integrated Registration and Segmentation Tool. The detection of GM and
WM volume changes with SIENA-XL was evaluated using different healthy control (HC) and multiple
sclerosis (MS) MRI datasets and compared with the traditional SIENAX and two Jacobian-based
approaches, SPM12 and SIENAX-JI (a version of SIENAX including Jacobian integration - JI). In scan-
rescan data from HCs, SIENA-XL showed: (i) a significant decrease in error, of 50–70% when com-
pared with SIENAX; (ii) no significant differences in error when compared with SIENAX-JI and
SPM12 in a scan-rescan HC dataset that included repositioning. When tested in a HC dataset with
scan-rescan both at baseline and after 1 year of follow-up, SIENA-XL showed: (i) significantly higher
precision (P< 0.01) than SIENAX; (ii) no significant differences to SIENAX-JI and SPM12. Finally, in a
dataset of 79 MS patients with a 2 years follow-up, SIENA-XL showed a substantial reduction of sam-
ple size, by comparison with SIENAX, SIENAX-JI, and SPM12, for detecting treatment effects of 25, 30,
and 50%. Hum Brain Mapp 39:1063–1077, 2018. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Magnetic resonance imaging (MRI)-derived measures of
brain volume changes have increasingly gained interest in

clinical neurology [Giorgio and De Stefano, 2013]. The
assessment of brain volume loss can represent a valid bio-
marker of clinical progression in many neurological disor-
ders, providing insights into the understanding of
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physiological and pathological mechanisms leading to
brain atrophy [Giorgio and De Stefano, 2013; Pini et al.,
2016]. Recently, these measures have been used with suc-
cess for monitoring treatment efficacy in large clinical tri-
als of patients affected by neurodegenerative disorders
[Giorgio and De Stefano, 2013].

While the high accuracy of global brain volume changes
as measured, for example, by registration-based modalities
such as SIENA [Smith et al., 2002b] or BBSI [Fox and Free-
borough, 1997] has been persistently reported in several
studies [Novak et al., 2015; Popescu et al., 2013, Smith et al.,
2007], the assessment of volume changes of tissue-specific
measures, such as gray matter (GM) and white matter (WM)
volumes, still suffers from important technical limitations
leading to significant increases in the measurement error
[Sampat et al., 2010]. Among the different limitations, one of
the most important is related to difficulty in producing an
accurate separation of GM and WM at their interface, which
makes the measure of GM and WM volumes relatively
unstable. This is particularly evident in longitudinal assess-
ments, due to subtle differences in contrast between images
acquired in different MR sessions and in diseased brains,
due to inherent brain damage (e.g., focal abnormalities in
the WM). Overall, this can cause shifts in the GM/WM
intensity distributions and consequent biases in the GM and
WM volume estimations [Battaglini et al., 2012; Dwyer et al.,
2014; Nakamura and Fisher, 2009]. Furthermore, differences
in tissue intensities can produce an additional relevant
error, particularly in images from two different MRI ses-
sions, in the separation of brain from nonbrain tissues. This
results in regions being erroneously classified as GM or WM
and, consequently, in a reduction of the accuracy and
robustness of GM and WM volume assessment.

Cross-sectional methods that evaluate the GM and WM
volume changes, which are based on the independent seg-
mentation of each image of the same subject, typically suf-
fer from all the limitations mentioned above. Recently,
longitudinal registration-based methods have been devel-
oped to overcome these issues [Guizard et al., 2015]. These
methods evaluate the GM and WM volume changes
through the calculation of the local Jacobian determinants
of nonlinear displacement fields. It is possible to use sym-
metric diffeomorphic nonlinear registrations with [Ash-
burner and Ridgway, 2013] or without [Nakamura et al.,
2014] temporal regularization. These methods improve the
precision of the estimation of GM and WM volume
changes, but can suffer from some limitations. In Jacobian
integration methods, regardless of whether temporal regu-
larization is applied or not, parameters are chosen to
obtain a smooth Jacobian transformation, making the Jaco-
bian potentially insensitive to small spatial scales, such as
those associated with the interfaces between tissues, where
atrophy usually occurs. Moreover, although the use of
temporal regularization reduces the temporal fluctuations
due to noise, it could also affect the real, anatomically
induced fluctuations of the signal [Guizard et al., 2015].

In this work, we introduce a new segmentation-based
longitudinal pipeline with the aim of increasing the preci-
sion of longitudinal volume changes of WM and GM com-
pared with cross-sectional segmentation-based methods,
avoiding any potential biases related to the regularization
parameters used in the registration-based longitudinal
approaches.

More than a decade ago, FSL (www.fmrib.ox.ac.uk/fsl)
provided a tool (Structural Image Evaluation using Nor-
malization of Atrophy, Cross-sectional, SIENAX) [Smith
et al., 2002b] for a robust, automated measurement of cere-
bral GM and WM on MRI datasets, which has been exten-
sively used in clinical studies. Despite some recent
improvements in accurate brain-non brain separation [Bat-
taglini et al., 2008; Popescu et al., 2012], in robust longitu-
dinal segmentation [Dwyer et al., 2014] and in reducing
bias caused by the presence of hypointense lesions on T1-
weighted (T1-W) MRI of pathological subjects [Battaglini
et al., 2012], the SIENAX approach still provides tissue-
specific volume measurements with an error that is close
to 1%, which may be above the expected clinical changes.
To overcome, at least in part, some of the above-
mentioned limitations and consequently reduce measure-
ment errors in the separate assessment of GM and WM
volumes in healthy and diseased brain, we propose here a
new version of SIENAX. This now includes a longitudinal
component and is therefore named SIENA-XL (L for
longitudinal).

This paper is organized as follows. First, we describe a
new procedure to separate brain from non-brain and com-
pare it with the traditional FSL procedure (Brain Extrac-
tion Tool, BET) [Smith, 2002a] on a dataset of healthy
controls (HC) scanned twice on the same day. Second, we
use (i) artificial images with different signal-to-noise ratio
and identical GM and WM volumes (Experiment 1) and
(ii) a real dataset of HC with scan-rescan acquisitions
(Experiment 2) to test the error in GM and WM assess-
ments due to partial volume modelling, as implemented in
FAST, the FSL segmentation tool used in SIENAX [Zhang
et al., 2001]. Third, an intra-subject intensity equalization
of serial images is added before of the MRI segmentation
of GM and WM, to reduce biases in the FAST output, as
highlighted by experiments 1 and 2 of the previous sec-
tion. Finally, we describe the new SIENA-XL procedure
for the assessment of GM and WM volume changes, which
modifies the traditional SIENAX procedure [Smith et al.,
2002b] by implementing, (i) a new approach for brain
extraction; (ii) a presegmentation step for equalizing the
intensity distributions over multiple MRI sessions of the
same subject; (iii) the segmentation of deep GM structures
by using FMRIB’s Integrated Registration and Segmenta-
tion Tool (FIRST) [Patenaude et al., 2011], as this has been
shown to substantially decrease the variability in the esti-
mation of GM volume changes [Derakhshan et al., 2010].
This new approach is then evaluated using multiple MRI
datasets of HCs and patients with multiple sclerosis (MS)
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and compared (i) with the traditional SIENAX; (ii) with
SIENAX using the Jacobian integration (SIENAX-JI) that,
as mentioned before, is a promising procedure that has
recently demonstrated the ability to reduce GM and WM
measurement errors [Nakamura et al., 2014] and; (iii) with
SPM12, which uses temporal regularization to obtain Jaco-
bian determinants [Ashburner and Ridgway, 2013], and
has shown higher robustness and accuracy than other lon-
gitudinal methods such as Freesurfer [Guizard et al, 2015].

PART 1. NEW BRAIN EXTRACTION

PROCEDURE

Background

If the nonlinear registration between standard space and
T1-weighted (T1-W) images was perfect, a nonlinear trans-
formation of a standard space brain mask into the native-
space T1-W image could, in principle, separate brain from
nonbrain tissue. However, the nonlinear registration of the
standard space brain mask provided by FSL [Jenkinson
et al., 2012] to the native T1-W image at each time-point
has shown a certain degree of variability depending on
the dataset analyzed [Dosh et al., 2013]. We therefore pro-
pose a method here that uses FSL tools to improve brain
extraction and test it on two different sets of 3D T1-W
MRI images.

Method

We first perform a nonlinear registration to MNI space
and then transform a dilated MNI space brain mask, pro-
vided by FSL, to the T1-W image, by using the default
parameters implemented in the fsl_anat tool of FSL [Jen-
kinson et al., 2012]. This initial T1-W brain image is cor-
rected for inhomogeneity using fsl_anat with the weakbias
option, and then segmented into three different tissue clas-
ses [i.e., GM, WM, and cerebro-spinal fluid (CSF)] using a
separate application of FAST [Zhang et al., 2001]. Subse-
quently, all voxels with low (< 50%) probability of being
CSF are added to a T1-W brain mask that was obtained by
transforming the nondilated MNI space brain mask into
the native T1-W space. A further step is then performed to
refine this preliminary brain extraction. The binarized
masks of the three tissues are created by taking the maxi-
mum partial volume estimation (PVE) for each voxel after
transforming them into the standard (MNI) space. In the
standard space, the probability that each voxel, of intensity
I and coordinate x, is brain tissue is obtained by calculat-
ing the Bayesian posterior probability:

p CijI; xð Þap Cijxð Þ � p IjCið Þ

where p(|) are the conditional probabilities and p(Ci|x) is
the prior probability that a voxel with coordinate x in stan-
dard space belongs to the ith tissue class, Ci. For each class
i, the prior probability, p(Ci|x), is provided by the average

of PVE maps from 100 3DT1-W images (TR/TE 5 35 ms/
10, voxel size 5 1 mm3 acquired with a 1.5T magnet) of
subjects enrolled in previous studies performed in our lab-
oratory. These images were segmented using FAST and
the PVE maps of GM and WM were transformed to the
MNI space using a nonlinear registration run with FNIRT
[Jenkinson et al., 2012]. Once the posterior probabilities are
calculated, a voxel in the brain mask is retained only if the
class with the highest p(Ci|I,x) is >0.5. In this way, the use
of the prior atlas further reduces the number of false posi-
tive (non-brain) voxels. The final mask, obtained in stan-
dard space, is then transformed back into the native space
using a trilinear interpolation.

Materials and Analysis

We used 3D T1-W images of HCs obtained from two dif-
ferent MRI acquisitions. The first set was downloaded from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (www.loni.usc.edu/ADNI) and consisted of 192
images from 96 subjects, each scanned twice in the same
session. The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Wei-
ner, MD. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography, other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment and early Alzheimer’s disease
(AD). The second dataset consisted of 40 high-resolution
3DT1-W images (TR 5 25 ms, TE 5 4.6 ms, voxel
size 5 1 mm3, acquired with a 3.0T magnet) of 20 healthy
subjects. They were recruited locally and each scanned twice
on the same day, in two different sessions, in our center.

The new brain extraction procedure was compared with
a version of the brain extraction tool of FSL that used an
optimized setting (“optimized-BET”), as previously
described [Popescu et al., 2012]. We quantified the similar-
ity of each pair of brain mask images using the DICE mea-
sure and the absolute percentage difference of the total
brain volumes of the masks. In detail, the DICE was calcu-
lated by registering each pair of T1-W images to the half-
way space using siena_flirt, a subroutine in SIENA [Smith
et al., 2002b]; then the two masks, mask 1 and mask 2,
were linearly transformed into this halfway space, and the
DICE measure was obtained with the formula:

2 � nðmask1 \mask2Þ= n mask1ð Þ1n mask2ð Þð Þ:

where n(mask) is the number of voxels in the mask. This
gives a measure of the similarity between the brain masks
of the two images that is sensitive to excluding different
portions of the image, even if the total volumes were
similar.

The formula:

DV5200 � V12V2ð Þ= V11V2ð Þ (1)
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was used to obtain the percentage difference in brain vol-
ume [Cover et al., 2011].

Comparisons between the median DICE values and
between the absolute percentage differences in brain mask
volumes were each tested using Wilcoxon rank tests (level
of significance P< 0.05).

Results

Brain masks obtained with the new procedure were sig-
nificantly more similar to each other than those obtained
with optimized-BET (Fig. 1a,b), both in terms of spatial
overlap (DICE: 0.987 60.0028 vs. 0.977 6 0.013, P< 0.01)
and volumetric differences (absolute differences:
0.15 6 0.38% vs. 0.27 6 0.6%, P< 0.001).

When differences in median DICE between the ADNI
group and our local dataset were compared, both our new
brain extraction pipeline (ADNI: 0.987 6 0.0030; local data-
set: 0.988 6 0.0011; P 5 0.006) and the optimized-BET
(ADNI: 0.975 6 0.0133; local dataset: 0.988 6 0.001;
P< 0.0001) showed better spatial overlaps when used in
the local dataset.

PART 2. TESTING THE ERROR IN GM AND WM

ASSESSMENTS DUE TO PARTIAL VOLUME

Background

Let I be an MR image and IB the set of N voxels within
the brain. Further, let the fractional volumes of the tissues
(CSF, GM, and WM) at each of the voxels vj in IB be speci-
fied by the three numbers {pi; i 5 1,2,3} such that

P
i pi 5 1

for each voxel. The total volume of a tissue across the
brain is then given by Vi 5 (

P
j

Npi(vj))*Vol_v, where Vol_v

is the volume of a single voxel.
A simple segmentation model is the hard segmentation

model, where each voxel v is only associated with one tis-
sue: in this case one of the pi values will be equal to one
and the other two will be equal to zero. Due to the size of
typical voxels and the irregular shape of the interface
between brain tissues, a hard segmentation leads to biases
and suboptimal precision for volume measurements [Nies-
sen et al., 1999]. Alternatively, several PVE models have
been proposed, with the aim of providing more accurate
proportions (pi), reflecting the “real” mixture of tissues in
each voxel. Zhang et al. [2001] and Van Leemput et al.
[2003] implemented a 2-stage estimation process, starting
with a hard segmentation followed by PVE. These were
estimated using the EM algorithm and a Markov Random
Field spatial prior model, which incorporates spatial
neighborhood information when estimating the pi values.

A simplified summary of the PVE approach is that it
considers a voxel, v, to be made up of M sub-voxels, vm,
each of them consisting of only one tissue, with the overall
intensity modeled by a Gaussian of mean intensity mi and
standard deviation ri. Thus, the hard segmentation gives

an initial rough estimate of the initial parameters mi and ri,
and these are then iteratively redefined and used for calcu-
lating the triad of pi values. In this framework, the inten-
sity distributions of the “pure” voxels, (i.e., voxels
estimated to only contain one type of tissue), should reflect
the unknown intensity distributions of the true pure tis-
sues. These parameters have a complicated relationship
with the intensity histogram of IB, since the intensities in
the nonpure tissue voxels (containing mixtures of tissues)
distort and blur the histogram. For longitudinal analysis of
brain volumes this point is crucial, since differences in
intensity contrast between tissues can, on their own, affect
the estimation of changes in tissue volume over time.

To test the relationship between the error in volume
measurement (as assessed by using FAST) and the partial
volume, we performed the following two experiments.

Experiment 1

The first experiment aims at assessing whether, and to
what extent, measurement errors of GM and WM,
obtained using FAST, are related to changes in the signal-
to-noise ratio.

Materials and analysis

A set of 50 T1-W synthetic images was built by varying
the “pure” distributions of the GM intensities, but keeping
the total GM volume fixed. These images were based on
10 real MRI 3D-T1W images of HCs and constructed as
follows: from each real T1-W image a brain image was cre-
ated with optimized-BET [Popescu et al., 2012] by masking
out nonbrain voxels and then this was segmented with
FAST to obtain PVE maps for CSF, GM, and WM. For
each tissue, the average and the standard deviation of the
intensities of those voxels containing only that type of tis-
sue, according to the initial PVE classification, was used to
define the simulated ground truth for the pure tissue
intensity distributions. Finally, for each real T1-W image, 5
synthetic images were obtained by filling (i) WM and CSF
masks (defined as those voxels where WM or CSF, respec-
tively, was the tissue with the largest PVE) with intensities
sampled from the distributions of the respective pure tis-
sues (the simulated ground truth, defined above) and (ii)
the GM mask with values from a modified GM distribu-
tion. This modified GM distribution was a Gaussian distri-
bution having the same mean as the original pure GM
voxel intensities (as estimated above) but with a standard
deviation equal to 0.8, 0.9, 1, 1.1, or 1.2 times the standard
deviation of the original pure GM voxel intensities (esti-
mated above). For each of the 10 original images a sepa-
rate image was simulated using a different multiplicative
factor for the standard deviation, such that the standard
deviation was constant for any one image but varied over
the simulated image set; this gave 10 3 5 5 50 simulated
images in total. Note that the simulated ground truth
voxel labels were the same for all five images derived
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from a single subject, and that only the intensity distribu-
tion of the GM was altered.

All the synthetic images were then segmented with
FAST and the volumes of GM and WM were calculated,
as well as the number of pure GM and WM voxels. For
each synthetic image, percentage changes of total GM and
WM volumes and also pure voxel numbers were calcu-
lated by comparison with the synthetic image where the
multiplicative factor for the GM standard deviation was 1.
Averaging across the 10 subjects, the mean of the percent-
age changes in GM and WM volumes, and the changes in
number of pure voxels, were obtained for each separate
setting of the GM standard deviation. Finally, Spearman
regression analyses were performed between the changes
in GM and WM volumes and the standard deviation val-
ues, as well as between changes in GM and WM volumes
and changes in number of pure GM and WM voxels.

Results and conclusions

Decreases in the standard deviation of the GM in the
synthetic images were associated with decreases of GM

volume (r 5 20.992, P< 0.0001) and increases of WM vol-
ume (r 5 0.991, P< 0.0001). The mean error of GM and
WM in this dataset, defined as the absolute change in vol-
ume between synthetic images generated with modified
GM standard deviations compared with that of the origi-
nal standard deviation, was 0.8% for GM and 0.47% for
WM. Strong correlations were found between changes in
volume and the number of pure voxels of both GM
(r 5 0.9989, P< 0.001) and WM (r 5 0.9995, P< 0.0001).

This first experiment shows that the segmentation of
images using FAST, that had the same GM and WM vol-
umes, but with different intensity distributions for pure
voxels, provides results that differ by an amount that is
comparable with the levels of atrophy that we want to
detect. This is without simulating any mixed tissue voxels,
and so it demonstrates a fundamental bias in the calculation
of volumes that depends on the contrast-to-noise ratio.

Experiment 2

Differences in partial voluming and intensity along the
GM/WM interface are also likely to have a substantial

Figure 1.

(a) DICE values for scan-rescan MRI data relative of 116 HCs

obtained from the brain masks of the new brain extraction pro-

cedure and optimized-BET. The spatial agreement of the masks

obtained with the new procedure is better than that obtained

with the optimized-BET. (b) Differences between the median of

the absolute differences in brain mask volume as obtained with

the optimized-BET (red) and with the new procedure (blue).

[Color figure can be viewed at wileyonlinelibrary.com]

r SIENA-XL for Brain Atrophy r

r 1067 r

http://wileyonlinelibrary.com


effect on GM and WM volumes. To investigate this aspect
of the FAST outputs, further simulations were conducted
using true T1-W 3D images. More specifically, the second
experiment aims at assessing whether, and to what extent,
measurement errors of GM and WM volumes, as obtained
with FAST on scan-rescan images, are related to the vari-
ability in the number of pure GM and WM voxels.

Materials and analysis

The same dataset of HC was used here as in Part 1 (i.e.,
3D T1-W images obtained from 2 different MRI acquisi-
tions) together with the new procedure for brain extraction
(from Part 1). These 3D T1-W images were then seg-
mented with FAST to obtain PVE maps of CSF, GM, and
WM. The total volumes of GM and WM were then
obtained by summing the respective PV values. For each
tissue class, the number of pure voxels was also measured
by counting all the voxels where one of the tissue proba-
bilities was equal to 1.

The percentage error of a given measurement was calcu-
lated using Eq. (1). In this formula V can represent volume
measurements of GM, WM, (GM 1 WM) or the number of
pure voxels of GM (pGM), WM (pWM), or their sum
p(GM 1 WM). Comparisons between the mean absolute
errors in GM, WM and (GM 1 WM) and between the mean
absolute deviations in pGM, pWM, and p(GM 1 WM) were
tested with a Kruskal-Wallis test, followed by multiple com-
parison correction using Tukey’s honestly significant differ-
ence criterion. Correlation between the error of a volume
measurement and that of the corresponding number of pure
voxels was calculated by a Spearman regression.

Results and conclusions

The results are summarized in Figure 2. The absolute vol-
ume error for (GM 1 WM) (Mean 6 SD: 0.3680 6 0.4771%)
was significantly lower (P< 0.05, after multiple comparison
correction) than the error of both GM (Mean 6 SD:
0.93 6 1.03%) and WM (Mean 6 SD: 1.12 6 1.07%; Fig. 2-a1).
The absolute deviation of p(GM 1 WM) (Mean 6 SD:
0.56 6 0.78%) was significantly lower (P< 0.05 after multiple
comparison correction) than the deviation of both pGM
(Mean 6 SD: 1.84 6 2.02%) and pWM (Mean 6 SD:1.05 6

1.01%; Fig. 2-a2). A very close correlation was found
between the errors in GM and pGM (Spearman’s q: 0.9418;
P< 0.01; Fig. 2-b1) and between the errors in WM and pWM
(Spearman’s q 5 0.9525; P< 0.001; Fig. 2-b2), but the correla-
tion was only moderate between the errors in (GM 1 WM)
and p(GM 1 WM; Spearman’s q 5 0.5; P< 0.001; Fig. 1-b3).

We can conclude here that, as obtained by the FAST
PVE model, the number of pure voxels (pGM and pWM)
varies substantially and these variations are closely associ-
ated with measurement errors in volumes (for GM and
WM). However, the variation of their sum, p(GM 1 WM),
is smaller and seems to impact less on the measurement
error of (GM 1 WM) volume.

PART 3. SEGMENTATION PIPELINE

Summarizing the results of Experiment 1 and 2, it can
be affirmed that, using FAST, there is a very strong corre-
lation between the measurement error in the GM and WM
volumes and the variability in numbers of pure GM and
WM voxels. This is true even when the volumes of GM
and WM are fixed, as shown by Experiment 1 that used
simulated T1-W images.

We propose a solution to this by performing combined
intensity equalization on the set of serially acquired
images of the same subject. This is intended to be a pre-
processing step that is applied prior to image segmenta-
tion, and is described as follows.

Intensity Equalization

Let I
j
B be the jth brain image of a set of serially

acquired images from the same subject (this is a generali-
zation that is also valid for more than two images per
subject) and p

j
i0 be the probability distribution of the

intensities of the pure voxels (determined by a prelimi-
nary segmentation by FAST of the brain extracted image
using the new procedure described above) for the ith tis-
sue; that is, p

j
i0 sð Þ is the probability of I

j
B(x) 5 s for a loca-

tion x that corresponds to the ith pure tissue. The
histogram of intensities for the pure voxels is: H

j
05
P3

i51

p
j
i0n

j
i where n

j
i is the number of pure voxels of the ith tis-

sue class and N
j
tot5

P3
i51 n

j
i the total number of pure vox-

els in the jth image.
Experiments 1 and 2 in the previous section showed

that n
j
i depends in a complex way on the MR acquisition

conditions (especially the signal-to-noise ratio) and on the
amount of atrophy. The probability distribution p

j
i0, how-

ever, should depend only on the MR acquisition if the
classification of the pure voxels is reasonably accurate
and has little contamination from partial volume voxels.
Since atrophy does affect the number of pure voxels, the
intensity normalization needs to account for this. Conse-
quently, the probability distribution should not be
derived directly from H

j
0 as this is influenced by n

j
i and

hence the unknown amount of atrophy. Therefore, to
derive the probability distribution we introduce a quan-
tity, n0

j
i, which represents the value of n

j
i that would have

been estimated from a hypothetical image where no atro-
phy had occurred, but where the MR acquisition had still
changed.

To estimate values for n0
j
i we impose several conditions.

The first condition is that N1
tot5N0

j
tot for j> 1; and the sec-

ond condition is that:

n1
gm1n1

wm5n0
j
gm1n0

j
wm (2)

which is based on the observation, from experiment 2
(Fig. 2), that the sum of the number of GM and WM pure
voxels varies very little (a lot less than either one alone).
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From these conditions, we obtain:

n0jgm5n1
gm1 xj

n0jwm5n1
wm1 lj

8<
:

as we know that the estimated number of pure voxels for
the GM and WM do vary with MR acquisition, due to the
subtler contrast between them, and so using Eq. (2) we
obtain that lj5- xj and this gives:

n0
j
csf5n01csf

n0jgm5n1
gm2lj

n0jwm5n1
wm1lj

8>>><
>>>:

(3)

These equations do not uniquely define lj and so we will
further assume that

lj5

n
j
gm2n1

gm if abs n1
gm2n

j
gm

� �
< abs n1

wm2n
j
wm

� �

n1
wm2n

j
wm if abs n1

wm2n
j
wm

� �
< abs n1

gm2n
j
gm

� �

8><
>:

(4)

This is based on the hypothesis that the minimum dif-
ference among the pairs of numbers (n1

gm; n
j
gm) and

(n1
wm; n

j
wm) for the most part depends on differences in

acquisition conditions rather than true tissue atrophy.
That is, as a result of this calculation, one of the numbers
will remain unchanged (e.g., either n0jgm5 n1

gm or n0jwm

5 n1
wm).

Using the above relationships, we can obtain the
probability distributions and from that an intensity
transformation that will minimize the differences
between the probability distributions p

j
i0 of pure voxels

between images, to compensate for changes in MR
acquisition with minimal dependence on the amount of
atrophy. To do this, we define a hypothetical histogram
representing the pure voxels as if no atrophy had
occurred. That is:

~H
j

05
X3

i51

n0
j
ip

j
i0

where we use the n0
j
i defined above, and we also define

Figure 2.

In the left panel, the graphs representing the errors of the

(GM 1 WM), GM, and WM volume measurements (a1) and the

errors of the numbers of pure GM (pGM) and pure WM

(pWM) voxels and their sum p(GM 1 WM) (a2). The error of

(GM 1 WM) is significantly lower than the errors of each sepa-

rate tissue, and the error of p(GM 1 WM) is always significantly

lower than the errors of the number of voxels for each separate

tissue. In the right panel, the Spearman correlation between

errors in GM and pGM voxels (b1), between WM and pWM

voxels (b2) and between of (GM 1 WM) and p(GM 1 WM) vox-

els. In addition, in this case it can be noted that correlation

between the (GM 1 WM) volume measurement and the number

of pure voxels of (GM 1 WM) is significantly lower than the cor-

relations between the volume of each separate tissue and the

respective number of pure voxels of that tissue. [Color figure

can be viewed at wileyonlinelibrary.com]
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as the average histogram of these hypothetical pure voxel
distributions over all the M images of the same subject. The
difference in these histograms between different images is:

D
j
05 ~H

j

02 �H0 (6)

and, due to our construction, this primarily depends on
differences in MR acquisition conditions, because in each
case the histograms are estimates of the hypothetical case
where the number of pure voxels is equal for each image of
the same subject. Now, we define a new histogram, with the
aim to reduce the differences that are due to MR acquisition:

H
j
B new5H

j
B2D

j
0

where H
j
B is the histogram of the intensities of all the vox-

els (not just pure voxels) in the jth brain image.
These two histograms, H

j
B new and H

j
B, are used to create

an intensity transformation that acts to normalize, or
equalize, the intensities between the different images of
the subject. In our implementation, the intensity transfor-
mation is defined by using a piecewise mapping between
the bins of H

j
B new and H

j
B.

In practice, all histograms are calculated using a set of
intensity bins. These bins are defined by the intensity
values at their borders, which are denoted as b

j
k for

k 5 0,. . ., K for histogram b
j
B; that is, there are K bins in

total, where the first bin spans intensity values between b
j
0

and b
j
1, the second bins spans intensity values between b

j
1

and b
j
2 and so on. Given these bins, the histogram is

formed directly by determining the number of voxels in
the image with intensity values within the bin range; that
is, H

j
B kð Þ is equal to the number of voxels where

b
j
k21� I

j
B(x)< b

j
k. To create a more continuous intensity

mapping, the bin intervals are then more finely sampled
by evenly subdividing each bin by the number of ele-
ments, Lk, within that bin. That is, the interval b

j
k21 to b

j
k,

which was one bin, now becomes Lk intervals, with bor-
ders at m* (b

j
k – b

j
k21)/Lk 1b

j
k for m 5 0,. . ., Lk, where

Lk 5 H
j
B kð Þ. The new set of intervals (across the whole his-

togram, and not just one bin) are defined by the set of val-
ues c

j
v for v 5 0,. . .,N

j
tot, where N

j
tot is the total number of

voxels in I
j
B; that is, the set of c

j
v values is equal to the set

of all values of the form m* (b
j
k – b

j
k21)/Lk 1 b

j
k for m 5 0,. . .,

Lk – 1 for all k (combining across all bins, while avoiding
repeated values) plus b

j
K, to span the range [b

j
0; b

j
K]. This

same process is also performed for H
j
B new, creating inter-

vals defined by c
j
v new. The piecewise mapping function

Figure 3.

Illustrative example of intensity differences of a scan-rescan dataset. When the new brain extrac-

tion and the joint intensity equalization methods are used (new procedure, on the right) the dif-

ferences in intensities between images become smaller than when the two images were

subctracted using the traditional-SIENAX method (left panel). Please note the differences in the

interface between tissue.
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then maps c
j
v to c

j
v new, with linear interpolation in between.

That is, for an intensity value I that is in between c
j
vand

c
j
v11, the transformed intensity value is:

Inew5 ðI–cj
vÞ � ððc

j
v11 new –cj

v newÞ=ð c
j
v11–cj

vÞÞ1cj
v new

PART 4. SIENA-XL

We introduced the above modifications (the new
approach for brain extraction and intensity equalization)
into a new pipeline to obtain GM and WM volume
changes (SIENA-XL). Figure 3 shows an illustrative exam-
ple of differences in intensities between a pair of scan-
rescan brain images when the traditional SIENAX com-
pared with when the new SIENA-XL pipeline is used.

The new pipeline procedure is shown in Figure 4. In
comparison to the traditional SIENAX [Smith et al., 2002b],
SIENA-XL works on at least one pair of images and, in
addition to the above-mentioned modifications, introduces
the segmentation of deep GM structures by using FIRST
[Patenaude et al., 2011].

We assessed this new approach using HC and MS MRI
datasets and compared with results obtained by using the
traditional SIENAX, SIENAX-JI [an implementation of the
methodology in Nakamura et al., 2014] and SPM12. In MS
patients, the lesion-filling procedure (as provided by FSL)
was used in all methods, as it has been shown to substan-
tially decrease the variability in the estimation of GM and
WM volume changes [Battaglini et al., 2012].

Materials and Methods

SIENA-XL was tested on three different datasets:

1. One hundred and sixteen scan-rescan pairs of 3D T1-
W images of HCs used in Part 1 for testing the new
brain extraction procedure. We separately analyzed

(i) multicenter ADNI data (96 subjects), where 3D T1-
W images were acquired at 1.5T twice for each sub-
ject in the same session (i.e., without removing the
subject from the scanner) and (ii) single-center data
of 20 healthy subjects, where high-resolution 3D T1-
W images were acquired at 3.0T in two different ses-
sions on the same day (i.e., removing the subject
from the scanner, or repositioning).

2. One hundred and thirty-six 3D-T1-W images of 34
HCs from the ADNI dataset, each subject having a
one-year follow-up and scan-rescan images at each
time-point.

3. One hundred and fifty-eight 3D-T1W images from a
multicenter dataset of 79 untreated patients with
relapsing-remitting MS and a follow-up of 2 years.

In all image datasets, the measurements obtained with
the proposed method (SIENA-XL) were compared with
those obtained using the traditional SIENAX method, as
well as with SIENAX-JI and SPM12. Furthermore, in the
first dataset, the impact of the different steps of the new
method was assessed by estimating GM and WM volumes
changes using (1) SIENAX with the new brain extraction;
(2) SIENAX with the new brain extraction and intensity
equalization; (3) SIENAX with the new brain extraction,
intensity equalization, and FIRST (i.e., SIENA-XL).

SIENAX-JI was performed as previously described
[Nakamura et al., 2014], using ANTS [Avants et al., 2011]
for the nonlinear, symmetric registration of the second
scan to the first scan and then integrating the Jacobian
[Leow et al., 2007] of the transformation over the binarised
mask of voxels from the first scan, where the probability
of being either GM or WM was >0.5. Finally, the SPM12
longitudinal pair-wise toolbox was used. This is based on
a unified model that combines intensity nonuniformity
correction, linear registration, and nonlinear registration.
This method creates a subject-specific template and

Figure 4.

Illustration of the pipeline of SIENA-XL: after the new brain extraction, the intensities of the T1-

brain images obtained are jointly equalized using the intensity distribution of the pure tissues

(see Methods for detail) and finally the segmentation is run, integrating both the FAST and FIRST

outputs to obtain the new GM and WM maps, from which the respective volumes are obtained.

[Color figure can be viewed at wileyonlinelibrary.com]
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integrates the Jacobian determinants of the deformation
map (from the particular visit to the template) over the
GM map provided by the segmentation of the template.

The optimized-BET, as previously described [Popescu
et al., 2012], was used in the traditional SIENAX and in
SIENAX-JI. As mentioned before, in the MS dataset, the
bias in GM and WM volume assessment due to the pres-
ence of hypointense WM lesions in the T1-W images was
reduced by filling each lesion with intensities similar to
the surrounding WM, as previously described [Battaglini
et al., 2012].

In the tests using the first dataset, the error was quanti-
fied using the median of the absolute percentage differ-
ence of GM and WM volumes between the scan and
rescan images. This was calculated separately for scan-
rescan MRI data without (96 HCs) and with (20 HCs)
repositioning. In the tests using the second dataset (one-
year HC follow-up data), the availability of four different
images allowed four measurements of the same underly-
ing volume change over time (from baseline to follow-up)
to be made for each subject and tissue: that
is, GMch1 5 100*(GMsc2-GMsc1)/GMsc1; GMch2 5 100*
(GMresc2-GMsc1)/GMsc1; GMch3 5 100*(GMsc2-GMresc1)/
GMresc1; GMch4 5 100*(GMresc2-GMresc1)/GMresc1); where
sc 5 scan and resc 5 rescan at timepoints 1 (baseline) and 2
(follow-up). Since ideally these four measures should be iden-
tical, we used the variance of the four measurements as a
quantification of the precision of the volume change assess-
ment. For both the error in the scan-rescan HC dataset and
the precision of the volume changes in the 1-year HC dataset,
a one-way analysis of variance (ANOVA), followed by a
Tukey honest significance difference (Tukey’s HSD) post-hoc
test (corrected P< 0.05), was performed to compare the per-
formance between the different methods.

In the MS patient dataset, the sample size required to
detect an effect with 90% power, 0.05-significance level and
25–30-50% treatment effect for GM was calculated using R
[Chow et al., 2008]. The treatment effect was assumed to
start immediately and remain constant over 2 years.

Results

3D scan-rescan dataset of HCs

The results are displayed in Figure 5. Of the 116 HCs, 4
were excluded due to movement artifacts and three more
were excluded (one each for SIENAX, SPM12, and SIE-
NAX-JI) due to highly inconsistent results (i.e., there was a
major failure of the analysis pipeline).

When the 96 HCs who were acquired twice in the same
session without repositioning were analysed, the differ-
ences in the results between methods were significant
(P< 0.0001 from the one-way ANOVA) for the GM and
WM errors. Comparing the individual methods showed
that the measurement errors provided by SIENA-XL (GM:
0.23 6 0.21%; WM: 0.28 6 0.49%) were not significantly dif-
ferent from those of SIENAX-JI (GM: 0.14 6 0.21%,

P 5 0.53; WM: 0.2 6 0.42%, P 5 0.95) but both methods had
significantly smaller (P< 0.001) GM and WM errors than
SIENAX (GM: 0.5 6 0.65%; WM: 0.67 6 1.1%) and signifi-
cantly larger (P< 0.03) GM and WM errors than SPM12
(GM: 0.05 6 0.11%; WM: 0.06 6 0.13%).

When the single-center data of the 20 HCs, who were
acquired twice in different sessions on the same day with
repositioning were analyzed separately, differences
between methods were significant (P< 0.0001) based on
the GM and WM errors. The measurement errors provided
by SIENA-XL (GM: 0.19 6 0.47%; WM: 0.38 6 0.4%) were
not significantly different from either SIENAX-JI (GM:
0.26 6 0.4%, P 5 0.98; WM: 0.31 6 0.5%, P 5 0.99) or SPM12
(GM: 0.10 6 0.14%, P 5 0.53; WM: 0.14 6 0.19%, P 5 0.51)
but the three the methods had significantly smaller
(P< 0.001) GM and WM errors compared with SIENAX
(GM: 1.26 6 1.2%; WM: 0.9 6 1.13%).

When the separate impact of different steps of the SIENA-
XL pipeline was compared, no differences were seen in GM
and WM errors derived from the full SIENA-XL pipeline
(GM: 0.23 6 0.21%; WM: 0.28 6 0.49%) and the pipeline with
new brain extraction and intensity equalization (GM:
0.23 6 0.32%, P 5 0.9597; WM: 0.31 6 0.48%, P 5 0.9491).
However, both of them had a significantly smaller error
(P< 0.0001) than the pipeline that only implemented the
new brain extraction (GM: 0.53 6 0.96%; WM: 0.77 6 1%).

3D dataset with one-year follow-up of HCs

Differences between methods were significant (P< 0.0001)
overall for the variances of GM and WM volume changes.
The variances of the GM and WM volume changes pro-
vided by SIENA-XL (GM: 0.12 6 0.17; WM: 0.43 6 0.7) were
not significantly different from those of SIENAX-JI (GM:
0.026 6 0.034, P 5 0.65; WM: 0.24 6 0.21, P 5 0.98) or SPM12
(GM: 0.008 6 0.02, P 5 0.51; WM: 0.01 6 0.015, P 5 0.89) but
all of them had significantly smaller variances in GM
(P< 0.001) and WM (P< 0.002) volume changes compared
with SIENAX (GM: 0.48 6 0.67; WM:2.24 6 4.96).

The measured one-year volume changes in GM and
WM for the HCs (mean age: 79 years 6 5) were (i) SIENA-
XL: GM: 21.17 6 1.2%; WM: 20.25 6 1.35%; (ii) SIENAX-JI:
GM: 20.6 6 0.59%; WM: 20.38 6 1.02%; (iii) SPM12: GM:
20.45 6 0.83%; WM: 20.46 6 1%; (iv) traditional SIENAX:
GM: 21.55 6 2.2%; WM: 0.78 6 2.14%.

3D dataset with two-year follow-up of MS patients

In this patient dataset (mean age: 39 years 6 10), the
measured two-year volume changes in GM and WM were
(i) SIENA-XL: GM: 21.12% 6 0.9; WM: 21.37% 6 1.41; (ii)
SIENAX-JI: GM: 20.81% 6 0.77; WM: 20.56% 6 1.4; (iii)
SPM12: GM: 20.64% 6 0.78; WM: 20.89% 6 1.02; (iv) tradi-
tional SIENAX: GM: 22.62% 6 2.59; WM: 20.63% 6 2.61.

The sample sizes for assessing 25–30-50% treatment
effects for GM volume changes in untreated MS patients
with a 1-year follow-up were: 219-152-56 for SIENA-XL,
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391-272-99 for the traditional SIENAX, 305-212-77 for
SIENAX-JI, and 501-348-126 for SPM12. Results of the sam-
ple size calculations are summarized in Table I.

GENERAL DISCUSSION

In this work, we introduced a new procedure, SIENA-
XL, for assessing longitudinal changes separately in GM
and WM volumes. This differs from the traditional SIE-
NAX procedure in the following ways: (i) it introduces a
new procedure for separating the brain from non-brain,
(ii) it includes, prior to segmentation, an intensity equali-
zation of serially acquired images by minimizing differ-
ences in the intensity histograms of the pure voxels for
GM and WM, and (iii) it incorporates FIRST into the seg-
mentation procedure to improve the assessment of deep
GM structures. These three new steps, when used
together, produced significant decreases in the errors of
both the WM and GM volume change measurements.

The new brain extraction has been developed to mini-
mize the differences between intrasubject brain masks, by
decreasing the number of voxels erroneously classified as
brain in one, but not in the other time point. The results
obtained using a scan-rescan dataset of a relatively large
HC population showed that the new procedure was almost

two-fold more precise than the optimized-BET procedure
(error of 0.15 vs. 0.27%), which is also reflected in higher
DICE similarity measurements (0.987 6 0.0027 vs.
0.977 6 0.013). As one can see by observing the standard
deviation of the DICE values for the two procedures, the
new brain extraction appears to be less dependent on dif-
ferences in scanners and centers than the optimized-BET,
suggesting a reduction in the number of voxels that were
not mutually classified as parenchyma in the two time-
points. Interestingly, both the new brain extraction proce-
dure and the “optimized BET” method appeared to work
better with our local dataset of HCs as compared with the
ADNI dataset, even though the HC subjects in the local
dataset were repositioned between the two scans. The dif-
ferences in the DICE values between the two datasets was
ten times smaller with our new pipeline (�0.001) compared
with the optimized BET method (�0.01). Overall, this sug-
gests that the reproducibility of the brain extraction results
are related to the contrast between GM and CSF more than
to the changes induced in repositioning. The use of this
new procedure has relevant consequences for the subse-
quent intensity equalization step: misclassified voxels that
are hyperintense (e.g., eyes ball and fat) or isointense (e.g.,
dura mater) with respect to the GM may cause an errone-
ous shifting of histograms, which would affect the GM and

Figure 5.

Error of SIENAX (red), SPM12 (magenta), SIENA-XL (blue), and SIENAX-JI (green) in scan-

rescan data set for GM (upper row) and WM (bottom row) of the 96 HC scanned twice in the

same session (without repositioning) and for the 20 HCs scanned twice in different sessions of

the same day (with repositioning). # Significant differences with SPM12; * significant differences

with SIENAX (P< 0.05). [Color figure can be viewed at wileyonlinelibrary.com]
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WM volume assessment and bias the comparison of GM
and WM volumes from the same subject over time. The use
of a-priori information provided by standard space maps of
GM, WM and CSF distinguishes this approach from the
brain extraction procedure used in the fsl_anat tool of FSL
[Jenkinson et al., 2012], but does not represent a novelty by
itself, because it is in line with similar recently published
software for brain/nonbrain separation [Dosh et al., 2014;
Eskildsen et al., 2012].

Another important new step in the SIENA-XL procedure
is the intensity equalization of serially acquired T1-W
images. This intensity equalization method is different
from other methods, which aim to standardize intersubject
MRI [Ny�ul et al., 2000], as this step is an intrasubject MRI
equalization, based on the intensities of the pure voxels
(i.e., voxels including 100% of one tissue). This new
approach was motivated by the analysis of the relationship
between the output from FAST and the partial volume, as
described in Part 2. These experiments showed that FAST
is systematically dependent on the signal-to-noise ratio,
even when synthetic images without partial volume voxels
were analysed (Experiment 1). Furthermore, it was shown
that PVE in FAST biases the results of volume measure-
ments of GM and WM, but is significantly more stable
when the sum of GM and WM is considered (Experiment
2). Those considerations led to the conception of the new
intensity equalization step described in Part 3. This new
step has probably the greatest impact on the improve-
ments provided by SIENA-XL. Assessing errors in GM
and WM by using (i) the new brain extraction; (ii) new
brain extraction and intensity equalization; (iii) new brain
extraction, intensity equalization and FIRST—the largest
decrease in error (>50% both for GM and WM) was
obtained when the intensity equalization was introduced.
The inclusion of FIRST did not substantially improve the
precision of the method, but slightly decreased the stan-
dard deviation of the error, probably due to a more repro-
ducible segmentation of WM and GM.

In general, the algorithm used for PVE includes: (i)
modeling the intensity of each tissue with a Gaussian distri-
bution; (ii) performing an initial segmentation into three
pure tissue classes (GM, WM, and CSF); and (iii) enhancing

the segmentation of GM, WM, and CSF by adding partial
volume classes (e.g., WM/GM, GM/CSF), utilizing the
mean and standard deviation of each pure tissue class as
provided by the second step [Cardoso et al., 2011; Van
Leemput et al., 2003]. In our study, we perform an intensity
equalization step with the aim of decreasing the differences
in intensity distributions of the pure tissues between differ-
ent images of the same subject. Once the intensity transfor-
mation that equalizes the intensity distributions of pure
voxels from serially acquired image is found (see methods
in Part 3), this intensity transformation is applied to all the
voxels in the set of serial images. Thus we reduce differ-
ences in the means and standard deviations of pure voxels
as obtained during segmentation, with an indirect effect on
the creation of PV classes (WM/GM, GM/CSF). It is worth
noting that no information is used from voxels with partial
volume content when determining the intensity transforma-
tion and that this transformation is also only weakly depen-
dent on the number of pure voxels at each time point. This
strategy, although fully segmentation-based, is longitudinal,
as it uses information from different images, acquired at
different times, to make the segmentation of each image
more robust.

The assessment of the true accuracy of a given brain
segmentation strategy is very challenging, due to the great
difficulties in creating a realistic gold-standard where the
“true” partial volume content of different tissues at each
voxel needs to be appropriately defined. Given this diffi-
culty in measuring the true accuracy of GM and WM vol-
ume changes, the use of pairs of scan-rescan images
provides a good compromise by allowing the precision to
be estimated. Thus, in this work, the results of SIENA-XL
were quantified in terms of precision and it was shown
that this method was significantly more precise in assess-
ing GM and WM volume changes in the scan-rescan of
HCs, and showed a significantly smaller variance of error
measured in the longitudinal cohort of HCs, when com-
pared with the traditional SIENAX. Furthermore, it should
be noted that the errors obtained from the HC datasets for
SIENA-XL, SIENAX-JI, and SPM12 did not vary greatly in
dataset acquired with or without subject repositioning.
This was not true for the traditional SIENAX assessment.

In the cohort of HCs with a one-year follow-up, the
average GM and WM changes calculated by SIENA-XL,
SIENAX-JI, and SPM12 were substantially reduced by
comparison with those calculated by the traditional SIE-
NAX. In particular, SIENA-XL reports a WM reduction,
which is not usually seen with SIENAX in this work and
in other studies. Sometimes, even an increase in WM vol-
ume was found [Dwyer et al., 2014] with explanations sug-
gesting that it is related to scanner drift, subject
positioning or other acquisition differences. It is possible
that the equalization of the intensity distribution of the
pure voxels partially corrects for some of these errors, pro-
viding a better estimation of the WM and more biologi-
cally plausible results.

TABLE I. Sample size versus treatment effect size

Treatment
effect size

Sample Size

SIENA-XL SIENAX SIENAX-JI SPM12

25% 219 391 305 501
30% 152 272 212 348
50% 56 99 77 126

The sample size required to detect effect with 80% of power, 0.05-
significance level and 25-30-50% treatment effect for GM volume
changes for SIENA-XL, SIENAX, SIENAX-JI, and SPM12. The
treatment effect was assumed to start immediately and remain
constant over 2 years.
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Overall, no significant differences were found between
SIENA-XL and SIENAX-JI in the scan-rescan and longitu-
dinal cohorts of HCs. In contrast, SPM12 significantly out-
performed SIENA-XL and SIENAX-JI in the HC scan-
rescan dataset without repositioning. SPM12 also showed
a general, but not significant, reduction of the GM and
WM errors when compared with the other two methods
for the dataset with repositioning. These results are similar
to those obtained in a recent work [Guizard et al., 2015]
where SPM12 had the smallest error (�0.1%) in detecting
whole brain volume changes when compared with other
longitudinal approaches. However, it must be stressed
here that the interpretation of results might not be
straightforward when, as in SPM12 and SIENA-JI, the
Jacobian integration is introduced in the pipeline. This
approach attempts to partially circumvent the problems
related with the segmentation by using a registration-
segmentation approach, similar to the tensor-based mor-
phometry method. In brief, the second time-point image is
nonlinearly registered to the first time-point and the Jaco-
bian, a measure of the local volume change per voxel, is
calculated and integrated over the GM mask of the first
time-point, to assess the GM volume change. Given that,
with the current segmentation approaches, atrophy is
mostly measured at the interface between tissues and
these voxels are the most difficult to accurately determine,
we need to be particularly accurate when making a refer-
ence mask. Any errors in this mask will propagate
through all measurements. Interestingly, when we applied
the Jacobian integration to GM masks that were obtained
with SIENA-XL we found an error similar to that obtained
using SIENAX-JI (data not shown). However, the GM
masks obtained with SIENAX-JI and SIENA-XL differed
greatly, showing an overlap of only about 75% for the vol-
umes. The 25% difference was mostly driven by voxels in
the GM/WM and GM/CSF interfaces. This raises the
question as to whether the changes that are detected with
Jacobian integration can really be attributed only to
changes in the GM tissue volume.

In this work, SIENA-XL provided sample sizes for 25–30-
50% treatment effects for GM that were much lower than
those provided by SPM12, SIENAX, and SIENAX-JI.
Although it may have been expected that the sample sizes
measured with both SIENA-XL and SIENAX-JI were
smaller than that obtained with traditional SIENAX, it is
surprising that SIENA-XL reduces the sample size by �50%
when compared to SPM12, given the relative performance
on the scan-rescan datasets. In line with this finding, a
recent work [Guizard et al., 2015] also showed a poorer per-
formance of SPM12 in calculating the sample size for a
patient group when compared with other longitudinal
approaches. A plausible explanation for this [Guizard et al.,
2015] could be that SPM12 is over-regularizing the longitu-
dinal deformations and could be smoothing away some of
the real volumetric changes. This hypothesis could provide
a straightforward explanation of both the strong reduction

of the GM and WM errors in the scan-rescan experiments
as well as the increase in sample sizes for detecting treat-
ment effects. Finally, it is worth noting that the results from
SIENA-XL in MS patients had a high rate of GM volume
change with a relative small standard deviation, with both
of these effects leading to a lower required sample size in
comparison to the other methods tested here. Interestingly
all the methods showed a larger yearly rate of GM atrophy
in HCs (from the longitudinal ADNI cohort) compared to
MS patients. This could be explained by differences in age
between the two populations (mean age: ADNI: 78 years 6

5; MS cohort: 39 years 6 10) and by differences in the acqui-
sition parameters. It must be stressed, however, that
different GM rates obtained with different methods might
be not comparable and that values for the rates need to be
interpreted with caution.

This work has some limitations. The first is the definition
of pure voxels based on a preliminary FAST segmentation:
it is hard to predict what might happen in highly pathologi-
cal brains (e.g., patients with very high lesion loads or with
severe brain atrophy), where severe pathological changes
are reflected in abnormal tissue intensity contrast in the MR
images and could lead to a broad misclassification of GM
and WM. However, it is also true that the use of highly
pathological brains is very problematic for all segmentation
and registration approaches [Djamanakova et al., 2013].
Thus, the normalization of MRI of severely atrophic brain
on a template that was built on the MRIs of HCs could fail,
biasing the new brain extraction procedure. This could be
avoided by building a specific study-template. Another lim-
itation may lie in the sensitivity of this method to the qual-
ity of the images used. The joint intensity equalization step
relies on the hypothesis that the intensity distribution of
pure voxels is slightly different across the images; whereas
if one image has a tissue contrast that is clearly different
from the tissue contrast of other images from that subject,
this would bias the creation of the average histogram of the
pure tissues, expressed in Eq. (5) of Part 3. Furthermore,
the method presented here may have difficulties in han-
dling images with diffuse changes in WM intensity due to
severe tissue damage, as this might affect the classification
of pure voxels and the related histogram. This limitation,
however, stands for all segmentation- and registration-
based methods and can be avoided only by using multi-
modal approaches or quantitative imaging. Finally, given
the different intensity distributions in deep GM structures
compared with the cortical GM, a natural extension of this
method could consist of excluding voxels belonging to the
deep GM from being included in the intensity equalization
step.

CONCLUSIONS

The new SIENA-XL procedure can provide more precise
assessments of GM and WM volume changes over time
than the traditional SIENAX, overcoming some of the
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difficulties in interpretation of volume changes obtained
with segmentation-registration approaches. It has also
been shown, in a multicenter dataset of MS patients that
SIENA-XL can provide greater statistical power for dis-
criminating longitudinal changes in GM, reducing the size
of patient cohorts needed for testing treatment efficacy.
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