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A B S T R A C T

While aggregation of neuroimaging datasets from multiple sites and scanners can yield increased statistical power,
it also presents challenges due to systematic scanner effects. This unwanted technical variability can introduce
noise and bias into estimation of biological variability of interest. We propose a method for harmonizing longi-
tudinal multi-scanner imaging data based on ComBat, a method originally developed for genomics and later
adapted to cross-sectional neuroimaging data. Using longitudinal cortical thickness measurements from 663
participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, we demonstrate the presence of
additive and multiplicative scanner effects in various brain regions. We compare estimates of the association
between diagnosis and change in cortical thickness over time using three versions of the ADNI data:
unharmonized data, data harmonized using cross-sectional ComBat, and data harmonized using longitudinal
ComBat. In simulation studies, we show that longitudinal ComBat is more powerful for detecting longitudinal
change than cross-sectional ComBat and controls the type I error rate better than unharmonized data with scanner
included as a covariate. The proposed method would be useful for other types of longitudinal data requiring
harmonization, such as genomic data, or neuroimaging studies of neurodevelopment, psychiatric disorders, or
other neurological diseases.
1. Introduction

Aggregation of neuroimaging data across sites and scanners can
potentially increase statistical power to detect biological variability of
interest. However, the use of different scanner hardware, software, and
acquisition protocols can introduce unwanted technical variability (Han
et al., 2006; Jovicich et al., 2006; Takao et al., 2011). Harmonization
methods seek to remove unwanted technical variability while preserving
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isease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
and/or provided data but did not participate in analysis or writing of this report.
p-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

medicine.upenn.edu (K.A. Linn).

2020

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:joanne.beer@pennmedicine.upenn.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117129&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.117129
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.117129


J.C. Beer et al. NeuroImage 220 (2020) 117129
emission tomography (PET) imaging (Orlhac et al., 2018). ComBat has
also recently been extended to cross-sectional studies of structural brain
changes across the lifespan using a generalized additive model frame-
work (Pomponio et al., 2020).

In general, ComBat is applicable to situations where multiple features
of the same type are measured for each participant, where features might
be expression levels for different genes, or imaging-derived metrics from
different voxels or anatomic regions. In this paper, we extend the ComBat
methodology from a cross-sectional to a longitudinal setting, where
participants are imaged repeatedly over the course of the study.

In contrast to a general linear model approach that includes site or
scanner as a fixed effect covariate, there are several benefits to the
empirical Bayes estimation method used in ComBat. Notably, ComBat is
more robust to outliers in the case of small within-scanner sample sizes
(Johnson et al., 2007). ComBat assumes that for a given scanner, the
scanner effects across features derive from a common distribution, and
thus borrows information across features to shrink estimates towards a
common mean. Furthermore, in addition to removing additive scanner
effects, ComBat also corrects multiplicative scanner effects by removing
heteroscedasticity of model errors across scanners. Prior studies have
shown that the location (mean) and scale (variance) adjustment imple-
mented in ComBat outperforms methods that merely include scanner as a
covariate (Fortin et al., 2018).

While longitudinal studies are important for measuring within-
subject change, there has been little work on longitudinal data harmo-
nization. Müller et al. (2016) examined a variety of batch correction
methods in longitudinal gene expression data and found that a combi-
nation of quantile normalization and ComBat performed best. However,
their batch effect estimation method relied on biological replicates
collected at baseline, and processed at both baseline and follow-up. This
does not translate well to longitudinal neuroimaging study designs, as
there is no way to obtain analogous biological replicates. Venkatraman
et al. (2015) estimated scanner fixed effects in cross-sectional and lon-
gitudinal DTI data using linear mixed effects models. They then used
these estimates to apply a linear correction to new data. The authors
found that accounting for within-subject variability led to better scanner
effect estimates in longitudinal as compared with cross-sectional data.
However, their method does not enjoy the benefits of empirical Bayes
discussed above, nor does it adjust for multiplicative scanner effects.

Rather than explicitly estimating and removing scanner effects, other
approaches have sought to address scanner effects at a more global level
or further upstream in the processing pipeline. Erus et al. (2018) used a
multi-atlas segmentation approach to harmonize structural MRI neuro-
imaging data, creating mutually consistent inter-scanner atlases derived
from scans of the same participant on different scanners. Authors re-
ported more similar cross-sectional age trends across scanners, and
increased within-subject consistency (i.e., intra-class correlation) after
harmonization. However the method did not completely remove scanner
effects, so scanner still needed to be included as a covariate. Dewey et al.
(2019) applied a contrast harmonization approach, using a fully con-
volutional neural network to harmonize structural MRI brain images
between two protocols. They showed that protocol change had sub-
stantially less effect on atrophy estimation after harmonization. Both of
these methods require an overlap cohort, i.e., that each pair of scanners
or protocols have some shared participants, and so would not be appli-
cable to existing datasets without this design.

In this work, we aim to estimate and correct for additive and multi-
plicative scanner effects while explicitly accounting for the within-
subject correlation inherent to longitudinal studies, such that the
harmonization method may be flexibly applied to existing and future
longitudinal multi-scanner neuroimaging datasets. We illustrate the
longitudinal ComBat method using cortical thickness data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (Weiner et al.,
2015). Alzheimer’s disease (AD) is a neurodegenerative disease charac-
terized by aggregation of amyloid β plaques and accumulation of
neurofibrillary tangles. Brain atrophy is one of the earliest biomarkers of
2

AD that is visible on structural magnetic resonance imaging (MRI),
particularly in certain regions such as the hippocampus and entorhinal
cortex (Dickerson et al., 2008; Bakkour et al., 2009). ADNI is a multi-site
longitudinal study including cognitively normal, mild cognitive impair-
ment (MCI), which is a prodromal stage of AD, and AD participants.

In Section 2 we describe the ADNI data and assess the presence of
scanner effects; in Section 3 we outline the proposed longitudinal Com-
Bat harmonization method; in Section 4 we use the ADNI dataset to
compare model estimates and inference for longitudinal ComBat, cross-
sectional ComBat, and unharmonized data; and in Section 5 we present
a simulation study. We provide discussion and conclusions in Section 6.
Code for implementing longitudinal ComBat is available at https://gith
ub.com/jcbeer/longCombat.

2. Quantifying site and scanner effects in ADNI data

2.1. Methods

We examined longitudinal cortical thickness data from participants
enrolled in the first phase of the ADNI study. Data were obtained from the
ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early
AD. For up-to-date information, see www.adni-info.org. All ADNI par-
ticipants gave written informed consent at enrollment for data collection,
storage, and use for research. Institutional Review Boards approved the
study at each respective participating ADNI site. ADNI data was used in
compliance with the ADNI Data Use Agreement and Data Sharing and
Publication Policy.

We included 663 ADNI-1 participants from 58 study sites (See Fig. 1A
for distributions of participant age, sex, and diagnoses.). Structural MRI
brain scans were done at 6 or 12 month intervals for up to 3 years from
baseline. Many sites used multiple MRI scanners over the course of the
study, and a given participant may have been scanned on different
scanners across visits. The data was acquired on 142 total scanners,
where scanners were identified as unique combinations of site, scanner
vendor, model, head coil, and field strength variables. Since our proposed
method required there be at least 2 scans per scanner in order to estimate
scanner effects, we had to omit 16 scanners with only one scan. Thus, 126
scanners were included in our analyses, of which 35 were 3.0 T and the
remainder were 1.5 T. Supplementary Figure S1 shows scans and scanner
changes over time in the ADNI dataset. Participants were diagnosed at
baseline as cognitively normal (CN, n ¼ 197), late mild cognitive
impairment (LMCI, n ¼ 324), or Alzheimer’s disease (AD, n ¼ 142).
They were reassessed at each study visit, but no participants changed
diagnostic category during the study.

Cortical thicknesses for 62 brain regions defined using the Desikan-
Killiany-Tourville atlas (Klein and Tourville, 2012) were obtained
using the Advanced Normalization Tools (ANTs) longitudinal cortical
thickness pipeline (Tustison et al., 2019). Specifically, we used data
processed with the ANTs Longitudinal-SST pipeline, which involves first
rigidly transforming each subject to a single subject template (SST) and
then estimating cortical thickness in the SST space. In comparison to the
well-known FreeSurfer longitudinal processing pipeline, ANTs
Longitudinal-SST results in superior statistical power for differentiation
of diagnostic groups in this dataset, with greater between-subject to re-
sidual variance ratios and tighter confidence and prediction intervals
(Tustison et al., 2019). For further details on this dataset, please refer to
Tustison et al. (2019) and references therein. Sample trajectories of the
unharmonized cortical thickness data are depicted in Fig. 1B.

We first assessed via statistical testing whether site or scanner addi-
tive (i.e., shift in mean) and multiplicative effects (i.e., hetero-
scedasticity) were present in the data, while also controlling for known
differences in biological variability (i.e., age, sex, diagnosis) across site or
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Fig. 1. (A) Characteristics of n ¼ 663 ADNI-1 participants. (B) Example trajectories for left superior frontal cortical thickness at 3 ADNI sites. Each line represents the
trajectory for one participant at the given site, and each data point represents the cortical thickness in mm derived from the given scan using the ANTs Longitudinal-
SST pipeline.
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scanner. We considered two sources of potential technical variability
(encoded as the ‘scanner’ variable in the model below): (1) site effect
only (m ¼ 58), and (2) scanner effect (m ¼ 126). For both of these
scenarios and for each of the V ¼ 62 cortical regions, we fit the linear
mixed effects model

yijνðtkÞ ¼ αν þ βν1ðbaseline ageÞ þ βν2Iðsex ¼ maleÞ
þβν3Iðdiagnosis ¼ LMCIÞ þ βν4Iðdiagnosis ¼ ADÞ
þβν5 � tk þ βν6Iðdiagnosis ¼ LMCIÞ � tk þ βν7Iðdiagnosis ¼ ADÞ � tk
þβν8Iðscannerk ¼ 2Þ þ⋯þ βνðmþ7ÞIðscannerk ¼ mÞ
þηjν þ εijνðtkÞ;

(1)

where i 2 f1;…;mg is the site or scanner index, j 2 f1;…;Ng is the
participant index, ν 2 f1;…Vg is the feature index (corresponding to the
62 regional cortical thickness measurements, in this case), k 2 f0;…;Kjg
is the visit index and Kj is total number of visits for participant j, tk 2 R�0

is years from baseline visit for visit k, αν is an intercept term, Ið �Þ is an
indicator function equal to one if the argument condition is true and zero
otherwise. Reference levels for factor variables are female sex, cogni-
tively normal diagnosis, and scannerk ¼ 1. All parameters represent fixed
effects except for the subject-specific random intercept, ηjν, for which we

assume the distribution Nð0;ρ2ν Þ, and the error term, εijνðtkÞ, for which we
assume the distribution Nð0; σ2ν Þ. Furthermore, we assume the ηjν’s and
εijνðtkÞ’s are mutually independent.

Models were fit using the R package lme4 (Bates et al., 2015) and R
version 3.5.3 (R Core Team, 2019). To test for additive site or scanner
effects, we also fit models omitting the site or scanner fixed effects and
3

used the package pbkrtest (Halekoh and Højsgaard, 2014) to carry out
tests of their joint significance using the Kenward-Roger (KR) approach
(Kenward and Roger, 1997). We also tested for a differential scaling ef-
fect by site or scanner. We fit the model represented in Equation (1)
above, including the site or scanner fixed effects. Due to small within-site
or within-scanner sample sizes in some cases, we used the
non-parametric Fligner-Killeen (FK) test (Conover et al., 1981) to assess
heteroscedasticity of the residuals ðbεijνðtÞÞ across site or scanner. Addi-
tionally, we tested whether incorporating specific scanner information
rather than site alone significantly improved the model. Since the two
scenarios correspond to nested models, we used the KR test. Finally, we
did exploratory visualizations to assess whether additive and multipli-
cative scanner effects were associated with scanner field strength,
vendor, number of subjects scanned, total number of scans, percentage of
scans with AD diagnosis, or percentage of scans with CN diagnosis.

All brain figures in this manuscript were made using free-
surfer_statsurf_display (Murdoch Childrens Research Institute Develop-
mental Imaging Group, 2017) and MATLAB R2018a (MATLAB, 2018).
2.2. Results

The KR test for additive site effects was significant (p < 0:05) for all
but 8 of the 62 regional cortical thickness measurements (i.e., ‘‘fea-
tures”). Nonsignificant site effects occurred in medial and lateral occip-
ital, inferior parietal, middle temporal, and paracentral regions
(Supplementary Figure S2 and Table S1). The KR test for additive scanner
effects was significant for all features (Supplementary Figure S3 and
Table S2). Fig. 2A illustrates the additive scanner effects for the feature



Fig. 2. (A) Additive scanner effects. Boxplots
show distributions of residuals across scan-
ners after fitting a model with baseline age,
sex, diagnosis, time, and diagnosis � time
fixed effects and a subject-specific random
intercept. Right lingual cortex was the region
with the largest additive scanner effects ac-
cording to the Kenward-Roger F-test; para-
hippocampal and entorhinal cortical regions
also showed large effects. 3.0 T scanners
tended to produce larger estimates of cortical
thickness than 1.5 T scanners. (B) Multipli-
cative scanner effects. Boxplots show distri-
butions of residuals across scanners after
fitting a model with baseline age, sex, diag-
nosis, time, scanner, and diagnosis � time
fixed effects and a subject-specific random
intercept. Left superior frontal cortex was the
region with the largest multiplicative scan-
ner effects according to the Fligner-Killeen
χ2-test. Vendor 1 scanners tended to have
larger, while vendor 3 scanners had smaller,
residual variability.
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with the largest KR test F-statistic and shows � log10 p-values across
brain regions. Additive scanner effects were particularly large in medial
occipital and medial temporal regions. Visualizations showed that 3.0 T
scanners tended to result in larger cortical thickness measurements
(Supplementary Figures S6-S11).

Across both site and scanner, all features had significantly different
residual variances (Supplementary Figures S4-S5; Supplementary
Tables S3-S4). Fig. 2B illustrates the multiplicative scanner effects for the
feature with the largest FK test χ2-statistic and shows � log10 p-values
across brain regions. Multiplicative scanner effects were particularly
prominent in superior frontal and superior parietal regions. Visualiza-
tions indicated that vendor 1 scanners generally tended to have larger,
while vendor 3 scanners had smaller, residual variability, with vendor 2
scanners falling in between (Supplementary Figures S12-S17).

Scanner significantly improved the model for all 62 features (Sup-
plementary Table S5). Hence, we use scanner instead of site in all
4

subsequent analyses.

3. Longitudinal ComBat

3.1. Longitudinal ComBat model

For a longitudinal version of the ComBat harmonization method, we
propose the model

yijνðtÞ¼ αν þ γiν þ XT
j ðtÞβν þ ηjν þ δiνεijνðtÞ;

where i 2 f1;…;mg is the scanner index, j 2 f1;…;Ng is the participant
index, ν 2 f1;…Vg is the feature index, t is time (continuous or cate-
gorical), yijνðtÞ is the observed data for feature ν, participant j, scanner i,
and time t, αν is overall mean for feature ν at baseline, γiν is the additive
scanner i parameter for feature ν, XjðtÞ is a p� 1 vector of potentially



J.C. Beer et al. NeuroImage 220 (2020) 117129
time-varying covariates for participant j at time t (e.g., age, sex, the
outcome that we ultimately intend to assess in association with the
harmonized data such as diagnosis or cognitive test score, and time), βν is
a p� 1 vector of coefficients for feature ν, ηjν is a subject-specific random
intercept for participant j and feature ν, δiν is the scanner i scaling factor
for feature ν, and εijνðtÞ is the error term. We assume ηjνe Nð0; ρ2ν Þ and
εijνðtÞeNð0;σ2ν Þ, and ηjν’s and εijνðtÞ ’s are mutually independent.

The ComBat-harmonized data is

yComBat
ijν ðtÞ¼ yijνðtÞ � bαν � bγ iν � XT

j ðtÞbβν � bηjνbδiν þ bαν þ XT
j ðtÞbβν þ bηjν;

where bαν;bγ iν;bβν;bηjν, and bδiν are parameter estimates.

3.2. Parameter estimation

3.2.1. Standardization step
The empirical Bayes estimation for ComBat parameters assumes that

for a given scanner, the additive scanner parameters across features ν all
derive from a common distribution, γiνeNðγi; τ2i Þ, and similarly for scan-
ner scaling factors, δ2iνeInverse Gammaðλi; θiÞ. To obtain unbiased
empirical Bayes prior distribution estimates of scanner effects, we first
standardize features so they have similar overall mean and variance. For
this step, Johnson et al. (2007) used a feature-wise ordinary least squares

approach to obtain the estimates bαν; bβν;bγ iν. To properly account for the
dependence of repeated within-subject observations, we propose using a
feature-wise linear mixed effects model with a random subject-specific
intercept, ηjνeNð0; ρ2ν Þ. We estimate the fixed effect parameters αν; βν;

γiν using the best linear unbiased estimator (BLUE), the subject random
effect variance ρ2ν and error variance σ2ν with the restricted maximum
likelihood (REML) estimator, and subject-specific intercepts ηjν using the
best linear unbiased predictor (BLUP). For parameter identifiability, we
constrain

P
i
nibγBLUEiν ¼ 0, where ni the is total number of images from

scanner i.
Standardized data are calculated as

zijνðtÞ¼
yijνðtÞ � bαBLUE

ν � XT
j ðtÞbβBLUE

ν � bηBLUPjνbσREML
ν

:

Note that we do not subtract off the scanner additive effect bγBLUEiν . We
assume that the standardized data zijνðtÞ are from the distribution Nðγiν;
δ2iνÞ. Prior distributions on the scanner effect parameters are assumed to
be γiνeNðγi; τ2i Þ, and δ2iνeInverse Gammaðλi;θiÞ.

We also note that the REML estimator for σ2ν is usually preferred for
mixed models due to its unbiasedness, as it accounts for error associated
with estimation of the fixed effects (Patterson and Thompson, 1971).
However, for the sake of harmonization, we may not care about unbiased
estimation of error variance, as it can be accounted for in the final
modeling stage (excepting error associated with estimation of scanner
effects). Thus, we also consider the estimator ~σ2ν ¼P

ijðyijνðtÞ � bαBLUE
ν � XT

j ðtÞbβBLUEν � bηBLUPjν Þ
2
=
P

ini. We refer to this as the
mean squared residual (MSR) method. This is similar to the estimator
used in Johnson et al. (2007).

3.2.2. Empirical Bayes estimation of scanner effects
After standardization, parameter estimation for longitudinal ComBat

is similar to that for standard ComBat. Hyperparameters γi; τ2i ; λi; θi are
estimated from standardized data using the method of moments, and
empirical Bayes estimates for scanner effect parameters γiν and δ2iν are
given by conditional posterior means. Please refer to Appendix A for
derivations of these estimators.
5

3.3. Longitudinal ComBat-harmonized data

Finally, we use the empirical Bayes estimates bγ*iν and bδ2*iν and the
linear mixed effects model estimates to adjust the data:

yComBat
ijν ðtÞ¼ bσREML

νbδ*iν
�
zijνðtÞ�bγ*iν�þ bαBLUE

ν þXT
j ðtÞbβBLUE

ν þ bηBLUPjν :

The first term performs the location and scale adjustment, thereby
removing additive and multiplicative scanner effects, and remultiplies by
the error variance estimate to put features back on their original scale;
the remaining terms add back estimates of biological effects of interest.

4. Comparison of data harmonization approaches in ADNI data

4.1. Methods

We used the ADNI cortical thickness data to compare three data
harmonization approaches: (1) data harmonized across scanners using
longitudinal ComBat (REML and MSR methods), (2) data harmonized
across scanners using a cross-sectional version of ComBat, which does not
account for the within-subject repeated measures (i.e., we omit the
subject-specific random intercept from the ComBat steps, but include it in
the final model), and (3) unharmonized cortical thickness data. Since our
method is specifically designed for longitudinal data, we focused on the
diagnosis by time interaction coefficients. Parameters of interest are βν6
and βν7 in Equation (1); these quantify differential rates of cortical
thickness loss over time for LMCI and AD groups, respectively, relative to
CN. For each of the three harmonization approaches, we fit the model
given in Equation (1) for each feature, using the corresponding harmo-
nized or unharmonized outcomes, and either included or omitted the
scanner fixed effects.

We evaluated the results using the following criteria. First, we visu-
ally examined standardized data distributions across features for both
longitudinal and cross-sectional ComBat, to assess whether they were
approximately normal. We also visualized additive and multiplicative
scanner effect prior distributions for longitudinal ComBat, to assess
whether they were approximately normal and inverse gamma-
distributed across features, respectively. Then, as in Section 2 for the
unharmonized data, we tested whether any residual additive or multi-
plicative scanner effects remained after applying longitudinal and cross-
sectional versions of ComBat. (We did the above assessments for the
REML version of longitudinal ComBat only, but expect similar results for
MSR as the data only differ slightly in scale.) Cross-sectional ComBat and
unharmonized data both showed residual scanner effects while longitu-
dinal ComBat harmonized data did not. Thus, for cross-sectional ComBat
and unharmonized data, we only considered results for models with
scanner fixed effects included.

For each coefficient of interest, we compared the numbers of signif-
icant features, i.e., features with p < 0:05=62 (Bonferroni-corrected
across features), across methods. Then, to avoid biasing our analyses to
favor any particular method, we considered only features which were
significant for all cases. A good data harmonization method will ideally
preserve the biological signal of interest while removing unwanted
technical variability. Therefore, we might expect to see greater biological
signal for the proposed method, in the form of greater magnitudes or
smaller p-values for the longitudinal diagnosis-specific effects. Thus, for
the statistically significant feature subsets, we compared coefficient
magnitudes and p-values across the three methods.

We also created exploratory visualizations to assess relationships
between the magnitudes of additive and multiplicative scanner effects in
unharmonized data, and magnitudes of changes in coefficient and p-
values between models fit on longitudinal ComBat (REML method)
harmonized data with no scanner covariate and unharmonized data with
a scanner covariate. We expected that brain regions with larger scanner
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effects would show greater differences in coefficients and p-values after
harmonization.
4.2. Results

Standardized data distributions were largely symmetric and approx-
imately normal, particularly for longitudinal ComBat. Example distri-
butions for the scanner with the most scans (ni ¼ 74) are shown in
Supplementary Figures S18-S21. For longitudinal ComBat, additive and
multiplicative scanner effect prior distributions were approximately
normal and inverse gamma across features, respectively (Supplementary
Figures S22-S25).

We found no significant additive or multiplicative scanner effects
6

after applying longitudinal ComBat (Supplementary Tables S6-S7).
However, after cross-sectional ComBat, additive and multiplicative
scanner effects were still significant for all features (Supplementary
Tables S8-S9). Fig. 3 shows residual boxplots by scanner before and after
harmonization for left superior frontal cortical thickness data. Fig. 4
shows left fusiform cortical thickness trajectories before and after
applying longitudinal ComBat. Examples of unharmonized and harmo-
nized trajectories are shown in Supplementary Figure S26.

Coefficient estimates and corresponding KR p-values for the AD �
time interaction for different methods are shown in Fig. 5. Table 1
summarizes the number of significant features for each method, and
compares coefficient magnitudes and p-values for longitudinal ComBat
versus other methods for the shared significant features only. Coefficient
Fig. 3. Distributions of left superior frontal
cortical thickness residuals across scanners
before harmonization (A), after cross-
sectional ComBat (B), and after longitudinal
ComBat (REML method) (C). Residuals are
derived from linear mixed effects models
including explanatory variables baseline age,
sex, diagnosis, time, diagnosis � time inter-
action, and a subject-level random intercept.
Scanners are ordered left to right by
increasing residual means (red dots).
Kenward-Roger (KR) test for additive scanner
effects and Fligner-Killeen (FK) test for mul-
tiplicative scanner effects were significant for
unharmonized and cross-sectional ComBat-
harmonized data, but not for longitudinal
ComBat harmonized data, confirming that
longitudinal ComBat successfully removed
scanner effects.



Fig. 4. Left fusiform cortical thickness trajectories before harmonization (left), after longitudinal ComBat REML (center), and after longitudinal ComBat MSR (right).
Individual subject trajectories and linear mixed effects model fit for the fixed effects are shown for the different diagnostic groups. Scanner was included as a fixed
effect covariate for unharmonized data. Fitted lines are for females at the mean baseline age of 75.3 years. Estimated coefficients (coef) for late mild cognitive
impairment (LMCI) by time interaction and Alzheimer’s disease (AD) by time interaction, and Kenward-Roger (KR) test p-values, are displayed in lower right corners.
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estimates were nearly identical between REML and MSR longitudinal
ComBat methods, but p-values tended to be smaller for the MSR method.

Estimated coefficients and p-values for different methods for the AD�
time interaction are tabulated in Supplementary Tables S10-S11, and for
the LMCI � time interaction these are shown in Supplementary
Figure S27 and Supplementary Tables S12-S13. We present results
summarized into larger brain regions in Supplementary Figure S28.

We expected that larger scanner effects would relate to larger changes

in diagnosis-related atrophy rate estimates (i.e., bβν6 and bβν7) after
harmonization. Contrary to our expectation, there were no apparent as-
sociations between the magnitudes of scanner effects and changes in
coefficient and p-values (Supplementary Figures S29-S30).

4.3. Comparison of longitudinal ComBat in one versus multiple scanners
per participant cases

Distinguishing scanner effects from between-person effects might
especially be a problem when a given scanner is only used for a single
participant, and that participant is only scanned on that scanner. To
better understand the performance of longitudinal ComBat under con-
ditions where scanner and subject-level effects might be difficult to
distinguish, we applied longitudinal ComBat (REML method) to a subset
of the data, restricting to the case where each participant is scanned only
on one scanner at multiple time points (’‘restricted case”). We compared
to another subset with the same participants, but using all the time points
for each participant, allowingmultiple scanners per participant (’‘general
case”). We then compared the estimates of the subject-level random ef-
fects obtained in the initial standardization step of longitudinal ComBat
(bηBLUPjν ), and the empirical Bayes estimates of additive and multiplicative

scanner effects (bγ*iν and bδ2*iν ) for the scanners common to each case.
Detailed methods and results are given in Supplementary Section 5.

While we found some significant differences for the various estimated
effects between cases, longitudinal ComBat harmonized data distribu-
tions differed significantly for only 4 of 92 scanners, and there were no
significant differences in the distributions of residuals after final models
were fit. Nonetheless, we recommend researchers pay close attention to
distributions of participants and their associated covariate values across
scanners and strive to achieve balance for these in a multi-scanner study
design whenever possible.

5. Simulation study

5.1. Methods

We performed a simulation study comparing the same approaches
7

used above, longitudinal ComBat (REML and MSR methods), cross-
sectional ComBat, and unharmonized data, each with and without
including scanner fixed effects in the model. For each iteration of the
simulation, we began with the cognitively normal (CN) subset (n ¼ 197)
of the ADNI cortical thickness dataset. We randomly assigned each
participant to either a CN control group or an AD group. In the AD group,
for 6 of the 62 features, we added both an intercept and a slope effect to
their cortical thickness trajectories. The magnitudes of these effects were
estimated from the full ADNI dataset. We chose 2 strong, 2 moderate, and
2 weak effects (see Supplementary Table S15 for exact magnitudes of
these effects). We then performed longitudinal ComBat and cross-
sectional ComBat and fit the linear mixed effects model in Equation (1)
(omitting the LMCI terms) to both harmonized and unharmonized
datasets, with and without the scanner fixed effects in the model. The
simulation was repeated for 1000 iterations.

We focused our primary analyses on estimation and inference for the
AD � time coefficient. For the 56 null features, we compared across
methods the distributions of the coefficient estimate means and standard
errors over the 1000 simulations. We also assessed distributions of type I
error by calculating the percent of p < 0:05 from the KR test for each null
feature. For the 6 features with nonzero effects, we compared distribu-
tions of the coefficient estimates and their standard errors, and calculated
mean squared error and bias. We assessed statistical power by calculating
the proportion of p < 0:05 from the KR test. Finally, we looked at the

distributions of intra-class correlation coefficients (ICC; bρ2=ðbρ2 þ bσ2Þ)
for the nonzero features across each of the 8methods. The ICC is a ratio of
between-subject variation to total variation. Larger ICC is desirable
because it allows for more clearly discernible between-subject differ-
ences.

5.2. Results

For the 56 null features, Fig. 6A shows that the distribution of the
means of these coefficient estimates tend to be clustered more closely
around zero for longitudinal ComBat as compared with the other
methods, regardless of whether scanner was included as a covariate.
Additionally, standard errors tended to be lower for longitudinal ComBat
and unharmonized data methods than for cross-sectional ComBat. Lon-
gitudinal ComBat REML method resulted in type I error closer to the
nominal rate than the other methods, ranging from 1.8 to 8.6% (below
5% for 22 features) and 0.6–6.5% (below 5% for 49 features) when
scanner was omitted or included in the final model, respectively. In
contrast, type I error for unharmonized data was 4.3–14.5% (below 5%
for 1 feature) and 4.5–13.1% (below 5% for 2 features) when scanner was
omitted or included in the final model, respectively. Longitudinal Com-
Bat MSR did worst at controlling type I error, which ranged from 6.0 to



Fig. 5. Comparison of data harmonization methods for the ADNI cortical thickness dataset. (A) Estimated coefficients and � log10p-values for the AD � time co-
efficients. Plots show results for each harmonization method, with and without scanner included as a fixed effect covariate in the final models. Features are sorted by
coefficient magnitude for longitudinal ComBat (REML method) with no scanner covariate in the final model. (B) Estimates obtained from data harmonized using
longitudinal ComBat (REML method, no scanner in final model) are displayed on the inflated cortical surface. AD: Alzheimer’s disease.
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Table 1
Comparison of harmonization methods in ADNI data.

AD� time AD� time AD� time LMCI� time LMCI� time LMCI� time

# significant # coef/p # coef/p # significant # coef/p # coef/p

Method features < Cross < Unharm features < Cross < Unharm

LongComBatREML, no scanner 30 17/16 13/2 10 2/3 3/1
LongComBatREML, with scanner 29 16/13 12/0 10 2/1 3/0
LongComBatMSR, no scanner 33 15/25 13/21 15 2/8 3/8
LongComBatMSR, with scanner 31 14/24 12/16 14 2/7 3/4
CrossComBat, with scanner 27 11
Unharmonized, with scanner 31 11
Shared significant features 25 9

Notes: Table shows number of Bonferroni-corrected significant features for each method. Coefficient estimate and p-value comparisons between methods only include
shared significant features. LongComBatREML: longitudinal ComBat, restricted maximum likelihood method; LongComBatMSR: longitudinal ComBat, mean squared
residual method; CrossComBat, Cross: cross-sectional ComBat; Unharm: unharmonized; coef: estimated coefficient; AD: Alzheimer’s disease; LMCI: late mild cognitive
impairment.
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15.1% (below 5% for 0 features) and 3.7–12.5% (below 5% for 5 fea-
tures) when scanner was omitted or included in the final model,
respectively. Simulation study null results are summarized in Supple-
mentary Table S16.

Results showed a similar pattern among the six nonzero features.
Fig. 6B shows results for one of each of the different effect sizes (Sup-
plementary Figures S34 and S35 and Supplementary Table S17 show
results for all nonzero features.). Again, the longitudinal ComBat
methods resulted in the smallest standard errors in most cases, while
cross-sectional ComBat tended to show the largest standard errors.
Longitudinal ComBat MSR was the most powerful for weak effect sizes,
correctly rejecting the null (uncorrected p < 0:05) in more than 80% of
cases. Longitudinal ComBat REML method was more powerful in
detecting a weak effect size than cross-sectional ComBat and about as
powerful as unharmonized methods, rejecting the null in 80.1 and 75.0%
of cases when scanner was omitted or included, respectively, versus 55.0
and 51.6% for cross-sectional ComBat, and 78.3% and 77.9% for
unharmonized data. For all six features, the ICC tended to be largest for
longitudinal ComBat MSR method, followed by unharmonized data,
indicating more between-subject and less within-subject variability for
these methods. Cross-sectional ComBat had the lowest ICC (Supple-
mentary Figure S36).

6. Discussion

Traveling subject studies have shown that, even with harmonized
protocols across different sites and scanners, there are still wide varia-
tions in features derived from images of the same individual obtained on
different scanners (Shinohara et al., 2017). The most impactful harmo-
nization approaches will address both protocol and post-data collection
analysis. While the ADNI protocol was harmonized across sites and
scanners, we showed that scanner effects are still present. Few methods
have been developed for post-data collection harmonization of longitu-
dinal data. Thus, in the present study, we proposed and validated lon-
gitudinal ComBat, a novel method for harmonizing longitudinal data
across different scanners. This constitutes a natural extension of the
widely-used ComBat methodology (Johnson et al., 2007; Fortin et al.,
2017, 2018) to a linear mixed effects model context.

We assessed two slightly different versions of longitudinal ComBat—
REML and MSR methods — that differed in statistical properties. Our
simulation study revealed that both longitudinal ComBat methods pro-
duced estimates with smaller standard errors than cross-sectional Com-
Bat and unharmonized data methods. The longitudinal ComBat MSR
method and unharmonized data demonstrated greatest statistical power
and had the highest ICC. However, both methods also showed inflated
type I error rate under the null hypothesis, even when scanner was
included as a fixed effect covariate in the final models. Meanwhile, the
longitudinal ComBat REML method controlled the type I error closer to
9

the nominal rate, and was particularly conservative when scanner was
included in the final models. This illustrates the trade-off that occurs
between type I and type II error. The right balance to strike may depend
on the context of particular research questions.

In the real ADNI data, longitudinal ComBat REML and MSR methods
produced similar estimated coefficient magnitudes. But, consistent with
the simulation study result, the longitudinal ComBat MSR method and
unharmonized data tended to yield smaller p-values for brain regions
with AD-related cortical atrophy. We note that statistical power should
be considered within the context of proper type I error control, and the
simulation study showed inflated type I error for longitudinal ComBat
MSR method and unharmonized data. Further research may explore
optimal methods for estimating the residual variance in the standardi-
zation step so as to achieve the desired type I and type II error control.
Also, we note that we did not adjust for apolipoprotein E (APOE) geno-
type in our models. While we do not expect it would be likely to change
the main conclusions of this study, the APOE-4 allele has been associated
with cortical thinning in cognitively normal participants (e.g., Donix
et al., 2010), and including APOE genotype as a covariate could poten-
tially explain more variability in the data.

The cross-sectional version of ComBat we implemented, which does
not account for within-subject repeated measures, did not completely
remove additive and multiplicative scanner effects, and in fact tended to
exacerbate multiplicative scanner effects. Longitudinal ComBat, howev-
er, successfully removed both types of scanner effects. As found by
Venkatraman et al. (2015), when dependence is properly accounted for,
there are advantages to using the entire longitudinal data to estimate
scanner effects, as this allows one to decompose the within- and
between-subject variability, and thus estimate scanner effects with
greater precision. This may be particularly important when estimating
and correcting for scanner-related heteroscedasticity.

Our finding that incorporating scanner information accounted for
significantly more variability in the data than site alone is consistent with
prior studies. Forty-four of the 58 sites included in our dataset used more
than one scanner, or upgraded scanners over the course of the study.
Some sites used both 1.5 and 3.0 T scanners. Han et al. (2006) previously
reported that higher field strengths tend to generate larger cortical
thickness estimates, which aligns with our results. Prior research also
indicates that scanner effects have other sources beyond field strength
(Han et al., 2006; Gunter et al., 2009; Lee et al., 2019). For example, Lee
et al. (2019) found that inter-vendor and pulse sequence changes had the
largest effects, as did, to a lesser extent, intra-vendor scanner upgrades,
on percent brain volume change measured in a sample of ADNI partici-
pants scanned at 1.5 T. Thus, when seeking to minimize effects of
scanner-induced variability in multi-scanner analyses, specific informa-
tion about scanner hardware, acquisition parameters, and protocols
should be taken into account whenever possible.

Moreover, in this dataset, multiplicative scanner effects showed a



Fig. 6. Simulation study results for 8
harmonization methods, each without or
with scanner fixed effect covariates in
the model. (A) Boxplots show distribu-
tions of the mean AD � time coefficient
estimates over 1000 simulations for the
56 null features (left), the standard er-
rors of the estimates (center), and the
percentage of p-values < 0:05 from the
Kenward-Roger test (right). (B) Distri-
butions of the AD � time coefficient es-
timates over 1000 simulations for one
strong, one moderate, and one weak ef-
fect size. (C) Distributions of the corre-
sponding �log10 Kenward-Roger p-
values. AD: Alzheimer’s disease; Long-
ComBatREML: longitudinal ComBat,
restricted maximum likelihood method;
LongComBatMSR: longitudinal ComBat,
mean squared residuals method; Cross-
ComBat: Cross-sectional ComBat.
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relationship with scanner vendor. While much work went into stan-
dardizing protocols across sites and platforms in ADNI-1 (Jack et al.,
2008), technical variability was not completely eliminated. For example,
Gunter et al. (2009) report that longitudinal analyses of the ADNI
phantom revealed that, prior to mid-2007, autoshim was incorrectly
disabled for one vendor protocol. This was later corrected. It is not
immediately clear how this and other inter-vendor differences might
have impacted the current dataset. In any case, the proposed harmoni-
zation method may be applied without explicit knowledge of the mech-
anisms underlying the mean shift or heteroscedasticity across scanners.
However, a limitation of our methods is that our definition of scanner, as
a unique combination of study site, scanner vendor, head coil, and field
strength, may have missed hardware changes of the same model. Addi-
tionally, we were unable to account for changes in acquisition protocol
such as the autoshim status, as Gunter et al. (2009) report that this was
not recorded in DICOM headers. This highlights the importance of
carefully tracking any hardware, software, or protocol changes in lon-
gitudinal imaging studies.

The longitudinal ComBat harmonization method presents advantages
and disadvantages with respect to existing methods discussed in the
Introduction. We showed that longitudinal ComBat removes additive and
multiplicative scanner effects to a sufficient extent such that no scanner
covariates are needed in final models, in contrast to the approaches in
Erus et al. (2018) and Dewey et al. (2019). Furthermore, unlike these
approaches, longitudinal ComBat does not require an overlap cohort of
participants scanned on each pair of scanners to train the harmonization
model, and thus can potentially be used to harmonize existing datasets
without an overlap cohort design. However, the method requires at least
2 scans per scanner to estimate scanner effects, and it is also important
that sample size and covariates be sufficiently balanced and controlled
for across scanners to enable unbiased estimation of scanner effects (e.g.,
see Supplementary Section 5).

Also, since the harmonization is applied to model residuals, the lon-
gitudinal ComBat model should ideally match the linear mixed effects
model used in the final analysis. If researchers want to investigate
different models (e.g., inclusion of quadratic effects of time or different
covariates), we recommend harmonizing the data multiple times to
match these models. Another consideration is the spatial resolution of
features included in the harmonization model. Ideally, features will be
similar enough in scale such that scanner effects on these features can be
assumed to derive from a common distribution. Even though feature
scaling is included in the standardization step of ComBat, in our expe-
rience including features of dramatically different scales (e.g., including
total hemispheric volume with smaller regional volumes) can bias re-
sults. We also note that features harmonized together should be of the
same type, e.g., cortical volumes and cortical thicknesses should be
harmonized separately. While there should be sufficient numbers of
features such that prior distribution parameters can be reliably esti-
mated, it is also desirable to have reasonable correspondence between
features within and across subjects. For example, harmonization at the
level of individual voxels could potentially be too noisy due to registra-
tion errors between individuals or time points, and harmonization of
total hemispheric brain volumes may not provide sufficient data to reli-
ably estimate distribution parameters.

Additional avenues for future work include further assessment of the
method in other datasets, including comparisons with previously dis-
cussed existing methods using studies with an overlap cohort. We
considered including a subject-specific random slope in our linear mixed
effects model, in addition to the subject-specific random intercept, but
this accounted for relatively little variation in the data (only up to 0.7%).
Thus, for the sake of parsimony, we chose to omit random slopes.
However, it would be worthwhile to consider random slopes, along with
more hierarchical versions of ComBat in the future. For example, it may
11
be useful to incorporate information about site, field strength, or scanner
vendor, in addition to scanner, so as to borrow information across
scanners of similar type. Furthermore, as mentioned above, additional
research into methods for estimating the residual variance in the stan-
dardization step could be explored in relation to type I and type II error
control.

The proposed longitudinal version of ComBat would be useful for
other types of longitudinal data requiring harmonization, such as
genomic data, or neuroimaging studies of neurodevelopment, psychiatric
disorders, or neurological diseases other than AD. The method is flexible
and may be applied to many existing and future longitudinal datasets.
Code for implementing longitudinal ComBat is available at https://gith
ub.com/jcbeer/longCombat.
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.117129.
Appendix A. Parameter estimation

Hyperparameters γi; τ2i ; λi; θi are estimated from standardized data using the method of moments. Let bγ iν ¼ 1
ni

P
jkzijνðtijkÞ (scanner i sample mean for

feature v; note that these are on a different scale than the bγ iν above), where k 2 f1;…;Kg is the visit index and ni is total number of images from scanner
i. Method of moments estimates for γi and τ2i are

γi ¼
1
V

X
ν

bγ iν and τ2i ¼
1

V � 1

X
ν

ðbγ iν � γiÞ2:

Let bδ2iν ¼ 1
ni�1

P
jkðzijνðtijkÞ � γiÞ2 (scanner i sample variance for feature v). The sample mean and variance of the bδ2iν can be calculated as

Di ¼ 1
V

X
ν

bδ2iν and S
2
i ¼

1
V � 1

X
ν

�bδ2iν � Di

�2
;

respectively. We then set these sample moments equal to the theoretical moments of the Inverse Gamma distribution; the mean is θi= ðλi �1Þ and the
variance is θ2i =½ðλi � 1Þ2ðλi �2Þ� Solving the system for λi and θi gives the estimates

λi ¼D
2
i þ 2S

2
i

S
2
i

and θi ¼ D
3
i þ DiS

2
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S
2
i

:

Empirical Bayes estimates for scanner effect parameters γiν and δ2iν are given by conditional posterior means. Let the conditional posterior distribution
of γiν be denoted by πðγiν

��Ziν; δ
2
iνÞ: According to Bayes’ Theorem,
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By completing the square, we can identify the above as the kernel of a Normal distribution with expected value

E
�
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2
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This can be estimated using bγ iν, γi, τ2i , as defined above, and bδ2*iν , defined below:

bγ*iν ¼ bE�γiν��Ziν; δ
2
iν

� ¼ niτ2i bγ iν þ bδ2*iν γi
niτ2i þ bδ2*iν :

Let the conditional posterior distribution of δ2iν be denoted by πðδ2iν
��Ziν; γiνÞ: According to Bayes’ Theorem,
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This is an Inverse Gamma distribution with expected value

E
�
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P
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:

This can be estimated using θi, λi, and bγ*iν as defined above:

bδ2*iν ¼ θi þ 1
2

P
jk

�
zijν

�
tijk
�� bγ*iν�2

ni
2 þ λi � 1

:

Note that the estimates for bγ*iν and bδ2*iν depend on each other. They can be estimated iteratively, for example by first substituting bδ2iν for bδ2*iν to obtain
12
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the estimate bγ*iν, then plugging this into the formula for bδ2*iν , and so on. As Johnson et al. (2007) note in their supplementary material, this is a special case
of the expectation-maximization algorithm and tends to converge rather quickly in less than 30 iterations.
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