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a b s t r a c t

High-dimensional classification methods have been a major target of machine learning for the automatic
classification of patients who suffer from Alzheimer’s disease (AD). One major issue of automatic
classification is the feature-selection method from high-dimensional data. In this paper, a novel
approach for statistical feature reduction and selection in high-dimensional magnetic resonance imaging
(MRI) data based on the probability distribution function (PDF) is introduced. To develop an automatic
computer-aided diagnosis (CAD) technique, this research explores the statistical patterns extracted from
structural MRI (sMRI) data on four systematic levels. First, global and local differences of gray matter in
patients with AD compared to healthy controls (HCs) using the voxel-based morphometric (VBM)
technique with 3-Tesla 3D T1-weighted MRI are investigated. Second, feature extraction based on the
voxel clusters detected by VBM on sMRI and voxel values as volume of interest (VOI) is used. Third, a
novel statistical feature-selection process is employed, utilizing the PDF of the VOI to represent statistical
patterns of the respective high-dimensional sMRI sample. Finally, the proposed feature-selection
method for early detection of AD with support vector machine (SVM) classifiers compared to other
standard feature selection methods, such as partial least squares (PLS) techniques, is assessed. The
performance of the proposed technique is evaluated using 130 AD and 130 HC MRI data from the ADNI
dataset with 10-fold cross validation1. The results show that the PDF-based feature selection approach is
a reliable technique that is highly competitive with respect to the state-of-the-art techniques in
classifying AD from high-dimensional sMRI samples.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In older adults, Alzheimer’s disease (AD) is a brain disorder that
gradually impairs regions of the brain that are responsible for
memory, learning, and higher executive functioning [1,2]. Currently,
the detection of AD is based on clinical examinations and assess-
ments of perception and behavior as indicators emerging in the
later disease stages. Neuroimaging measures of structural changes
and functional activities in the brain may be a good method for
early detection of AD. Among the several neuroimaging techniques
used in AD diagnosis, such as magnetic resonance imaging (MRI),
positron emission tomography (PET), and single-photon emission

computed tomography (SPECT), MRI is more widely used because of
its excellent spatial resolution with good tissue contrast [3] without
the need for radioactive pharmaceutical injection, as is required
with PET and SPECT [4,5]. Regional and global (whole-brain)
atrophy measurements are provided via MRI, and atrophy mea-
sured on structural MRI is a powerful biomarker of the stage and
intensity of the neurodegenerative aspect of AD pathology [6].
Several studies have used structural MRI feature extraction for
classification. Some of these studies are based on morphometric
methods [7–9], region of interest (ROI)/volume of interest (VOI)
[10–12], and gray matter voxels in the automatic segmentation of
images [13].

The aim of this study was to introduce a novel statistical feature
selection method based on the probability distribution function
(PDF) of the VOI, which can be considered a lower-dimensional
feature vector representing sMRI images. The PDF is assumed to be
the statistical pattern of the VOI representing the entire sMRI.

The dimensionality of the PDF-based feature vector can be
adjusted by changing the number of bins of the PDF. The proposed
PDF-based method not only extracts the selected statistical fea-
tures but also reduces the dimensionality of the input vectors to
feature vectors. The PDF-based feature vector calculation process
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does not require matrix operations, making the feature extraction
process computationally cheaper compared to alternative dimen-
sionality reduction methods such as partial least squares (PLS). In
this context, it is apparent that the computational cost of PDF
calculation is negligibly low when compared to PLS. The proposed
work was accomplished using four steps to develop an automatic
computer-aided diagnosis (CAD) technique for AD diagnosis. First,
a statistical method was used based on the VBM technique plus
Diffeomorphic Anatomical Registration using the Exponentiated
Lie algebra (DARTEL) approach to analyze group-wise comparisons
between a cross-sectional structural MRI scans diseased group and
normal controls [6,14,15]. Based on the VBM plus DARTEL
approach, overall and regional structural gray matter alterations
were investigated to define regions with a significant decline of
gray matter in patients with AD compared to the healthy controls
(HCs). Second, these specified areas (gray matter loss in AD
patients) were employed as masks with the template and
extracted voxel values from the VOI to form the raw feature
vectors. These raw feature vectors went through further data
reduction or selection processes before being used by the classifier.
Third, a novel statistical feature vector generation using probabil-
ity distribution functions (PDFs) extracted from the respective 3D
mask regions of sMRI was used for classification. The PDF
approach can help in two ways: (1) dimensionality reduction
and (2) compressing the statistical information of the high-
dimensional data into a lower-dimensional vector. PDF pattern
recognition has been used successfully in a number of applica-
tions, including face recognition [16–18]. In addition, an automatic
approach based on the Fisher criterion was used to determine the
optimal number of bins of the histogram generating the PDF. This
approach adaptively determines the number of PDF bins based on
the training data in each fold instead of using a fixed one. Fourth,
the performance of the proposed statistical feature-selection
technique was evaluated using SVM classifiers.

The remainder of this paper is arranged as follows: Section 2
provides statistics of the data used in the work and Section 3
describes the methodology used to design an automatic CAD tool
based on the PDF. The evaluation experiments and an analysis of
the proposed method are described in Section 4, and the conclu-
sion is drawn in Section 5.

2. Material

2.1. Image acquisition

MRI images and data used in this work were obtained from the
3 T MRI protocol of the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (www.loni.ucla.edu/ADNI). Briefly, the

protocol included T1-weighted MRI images based on a scanner
by Siemens with acquisition plane¼sagittal, acquisition type¼3D,
coil¼PA, flip angle¼9.0 degrees, matrix X/Y/Z¼240.0/256/
176 pixel, mfg model¼Skyra, pixel spacing X/Y¼1.0/1.0 mm, pulse
sequence¼GR/IR, slice thickness¼1.2 mm, and TE/TI/TR¼2.98/
900/2300 ms.

2.2. Subjects

The group of patients with AD contained 130 people aged 57 to
91 years (mean 75.8877.54 years). The Mini Mental State Exam-
ination (MMSE) and Clinical Dementia Ratio (CDR) scores ranged
from 10 to 28 (mean 22.3373.27) and 0.5 to 2 (mean 0.8070.37),
respectively. The second group contained 130 HCs aged 56 to 88
years (mean 74.4976.13 years). The MMSE for this group ranged
from 27 to 30 (mean 29.2670.80) and the CDR was zero. In a
direct comparison between the HC and AD groups, there were no
significant differences in age or the number of gender subjects.

3. Methodology of the CAD system

In this section, the methodology is presented based on the PDF
approach to design an automatic CAD system for MRI classifica-
tion. First, the VBM plus DARTEL approach process was used to
perform pre-processing on 3D MRI data. Second, a feature-
extraction method was employed based on VBM plus DARTEL
analysis. Third, an adaptive PDF-based data-selection method was
proposed, as a novel statistical data-selection mechanism repre-
senting the statistical pattern of VOI of high-dimensional sMRI
data in a low-dimensional space. The dimension of the PDF-based
vector depended directly on the number of bins used in the
histogram of the VOI, which was then normalized into the PDF.
The optimal number of bins was obtained by maximizing the
Fisher criterion among the possible number of bins. Finally, to
evaluate the proposed technique, classifiers such as SVM were
used. Fig. 1 illustrates the framework of the proposed CAD system.

3.1. MRI data pre-processing

Data pre-processing was performed using Statistical Parameter
Mapping (SPM) software version 8 (Welcome Trust Centre for
Neuroimaging, London, UK; available at: http://www.fil.ion.ucl.ac.
uk/spm) and the voxel-based morphometry toolbox version 8
(http://dbm.neuro.uni-jena.de/vbm). VBM, introduced by Ashburner
and Friston, is a method used to assess whole-brain structure with
voxel-by-voxel comparisons, which has been developed to analyze
tissue concentrations or volumes between subject groups to distin-
guish degenerative diseases with dementia [4,14]. Recently, VBM has
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Fig. 1. The framework of proposed PDF-based CAD system classifying AD.
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been applied to detect early atrophic changes in AD [3,19–21]. It can
provide statistical results in comparisons of patients with AD to HCs
[3,22]. To enhance inter-subject registration of the MRI images,
DARTEL was applied [23,24], which has been found to optimize the
sensitivity of such analyses by using the Levenberg–Marquardt
strategy as compared to standard VBM [23,25]. Moreover, the
DARTEL algorithm provides precise and accurate localization of
structural damage on the MRI images [3,4]. In the VBM8 toolbox,
registration to standard Montreal Neurological Institute (MNI) space
is an important process, which contains linear affine transformation
and nonlinear deformation by using high-dimensional DARTEL
normalization. This process involves using the DARTEL template
generated from 550 healthy control participants (defined by default
settings of VBM8) [26]. The normalized segmented images were
modulated by using a nonlinear deformation, which allows for
comparing absolute amounts of tissue corrected for individual
differences in brain size [26]. Finally, the segmented images were
spatially smoothed with an 8 mm full-width-half-maximum
(FWHM) Gaussian kernel. After spatial pre-processing, the smoothed,
modulated, DARTEL warped and normalized gray matter datasets
were used for statistical analysis. Regional gray matter volume
changes were generated by voxel-based analysis over the whole
brain. Fig. 2 illustrates the processing pipeline of the VBM analysis. To
detect gray matter volume reductions in patients with AD, a two-
sample t-test in SPM8 was used. Age was applied into the matrix
design as a nuisance variable. To avoid possible edge effects between
gray matter and white matter or cerebrospinal fluid (CSF), the
absolute threshold masking was 0.1. Significance was set at a p-value
of □0.01 with correction for family-wise error (FWE) and an extent
threshold of 1400 adjacent voxels for two-sample comparisons.
Between-group differences in demographics and clinical parameters
among or between subgroups were executed by Statistical Package
for Social Sciences software (SPSS version 16.0) by using an inde-
pendent sample t-test, and p□0.05 was considered significant.

3.2. Feature extraction and data reduction and selection

A feature-extraction procedure based on VBM plus DARTEL
analysis was applied to isolate the VOI. The regions of decreased
gray matter volume obtained using VBM plus DARTEL analysis in
patients who suffered from AD were segmented using a 3D mask.
This mask was applied to the gray matter density volumes
resulting from the VBM plus DARTEL analysis to extract voxel
values as raw feature vectors. It is important to separate the data
used for VBM 3D mask generation from the data used for
classification. In other words, the data to model the 3D mask
must explicitly come from the training set. In this context, we
divided the dataset for VBM mask generation within each outer
cross-validation fold separately. In other words, we randomly
divided our subjects into 10 folds with the same number of AD
and HC subjects in each fold. In each iteration, we used one fold for
testing and 9 folds for training. Based on each training dataset, we
performed VBM plus DARTEL analysis to reveal regions of
decreased gray matter volume in patients as a 3D mask. In total,
we defined 10 different masks with different lengths (e.g. from
59,395 to 69,170 voxels). The respective 3D masks were used in

the respective iteration to extract features from the training and
testing datasets. The raw feature space in the VBM extracted
feature set was very high in comparison to the number of samples.
Because the sample feature vectors spanned a very small region in
the feature vector space, data reduction was desired in post-
processing. In this context, it is preferable to reduce the dimen-
sionality of sMRI datasets. Therefore, the dimensionality of
extracted raw feature vectors is reduced statistically by means of
PLS and PDF.

3.2.1. Feature reduction based on PLS
PLS is a statistical algorithm for modeling the relationship

between two datasets: X � RN and Y � RM . Recently, the PLS
data-reduction approach has been used successfully in a number
of applications for machine-learning in AD [27–30]. After obser-
ving n data samples, PLS decomposes the n� N and the n�M
matrices of zero mean variables X and Y , respectively, into the
following form [27,31]:

X ¼ TPT þE

Y ¼ UQT þF ð1Þ

where T and U are n� A matrices of the A extracted score vectors,
P and Q are N � A and M � A matrices of loadings, and E and F are
n� N and the n�M error matrices [27]. In this study, in each fold
the PLS algorithm was applied to X (training dataset) and Y
(training data label) in order to obtain score and loading matrices.
In addition, a weight matrix was obtained from the training
dataset to compute a score matrix for the testing dataset [27].
Next, score vectors obtained from the training and test datasets
were used as feature vectors by SVM classifiers. Fig. 3 illustrates
the pipeline of the PLS feature-reduction procedure.

3.2.2. Statistical feature selection based on PDF
The PDF of a raw feature vector extracted from VOI is a

statistical description of the distribution of occurrence probabil-
ities of voxel values that can be considered a feature vector
representing a high-dimensional vector in a lower-dimensional
space. In a mathematical sense, a PDF can be defined as a vector of
probabilities representing the probability of the voxel values that
fall into various disjointed intervals, known as bins. Given a raw
vector extracted from VOI, the PDF, H, of the raw vector met the
following conditions [16,18]:

H¼ ½p1; p2; p3;…;pm�; pi ¼
ηi
N
; i¼ 1;2;…;m ð2Þ

where ηi, is the number of voxels falling into the ith bin, m is the
number of bins, and N is the total number of voxels in the 3D
mask. In the classification stage, the PDF, H, of raw vectors was
used in the representation of the training and test data. The
number of bins adjusts the dimensionality of a PDF vector. In this
work, the number of bins was assumed to vary from 2 to 100.

Original NifTi
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Fig. 2. The VBM plus DARTEL processing pipeline on sMRI data using SPM8.
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3.2.3. Optimal number of bins based on Fisher criterion
To select the optimal number of bins, an automatic method was

used, based on the Fisher criterion, JðwÞ, given in Eq. (3):

JðwÞ ¼ wTSBw
wTSWw

ð3Þ

where SB is the between-class scatter matrix and SW is the within-
class scatter matrix, respectively [32]. For the two classes, C1 and
C2, the between-class scatter and within-class scatter matrices are
defined as:

SB ¼ ðμ1�μ2Þðμ1�μ2ÞT ð4Þ

SW ¼
X

Hi AC1
ðHi�μ1ÞðHi�μ1ÞT þ

X
Hi AC2

ðHi�μ2ÞðHi�μ2ÞT ð5Þ

where μ1 is the mean of the PDF vectors in class 1 and μ2 is the
mean of the PDF vectors in class 2, and w¼ S�1

W ðμ1�μ2Þ.
The main steps in the proposed algorithm are summarized in

the pseudo code shown in algorithm 1. The number of bins (Nbin)
of histogram Hi was iteratively incremented from 2 to 100, using a
training set of each fold for calculating the respective Fisher
criterion values. The optimal number of bins,Nopt , maximizing
the Fisher criterion was selected to be used as the optimal
dimension of the test and training data in each fold through the
cross-validation process.

Algorithm 1. Optimal number of bins selection procedure.

1: V’component_setðDataTrain; LabelTrainÞ
2: number of bin’ Ø, Nbin ¼ 100
3: for n¼2 to Nbin do
4: Hi’compute_histogramðXi; nÞ
5: ðSB; SW Þ’compute_scatterðHi; LabelTrainÞ
6: μ1’meanðHi class1Þ
7: μ2’meanðHi class2Þ
8: w¼ S�1

W ðμ1�μ2Þ
9: φðnÞ’wTSBw

wTSWw

10: end for
11 Nopt’arg max φðnÞ

nA 2;…;Nbin
� �

3.3. Classification implementation

To distinguish patients with AD from the HCs, the classification
model in terms of the SVM algorithm was established [33].

3.3.1. The SVM
The SVM is a powerful classifier based on statistical learning

principles. In several papers, SVM is used to correctly classify
unseen patterns [9,34–36]. During SVM training, SVM maximizes
the distance from patterns to the class-separating hyper-plane.
Generally, the patterns are not linearly separable; therefore, non-
linear kernel transformation is performed. There are various
kernels that can be used during SVM training, including linear,
quadratic, polynomial, and radial basis function (RBF) kernels. SVM
was performed using the LIBSVM software package (http://www.
csie.ntu.edu.tw/�cjlin/libsvm/). In this work, SVM with linear and
RBF kernels were used. The RBF model has two parameters that
need to be selected, C (regularization) and γ (controls the kernel
width), in which the performance of the classifier depends on
these parameters. To evaluate the performance of the classifier, a
procedure of two cross-validations (CVs) was combined with a
grid search. This was done to elude unwarp bias in the estimation
of accuracies produced by the CV procedure. This procedure

consisted of two nested loops. In the outer loop, the data were
split into K1 folds. At each step, one fold was used as a test and the
remaining K1�1 folds were used for training and validation. In the
inner loop, the training data (K1�1 folds) were further divided
into K2 folds. For each combination of C and γ, the classifier was
trained using the training data and its performance was assessed
using the fold left for validation by estimating the classification
accuracy. One fold was left for validation and the remaining K2�1
fold for training was combined with the grid search to determine
the optimal parameters. In the grid search, the values of C and γ
varied logarithmically from 2�5 to 220 and from 2�15 to 215,
respectively. The inner loop was repeated K2 times and the
accuracy of the classifier was obtained across the K2 folds for
every combination of C and γ. Optimal parameters were selected
that produced maximum average accuracy across the K2 folds.
Then, the class label of the test data was predicted, which was left
out in the outer loop using selected optimal parameters. The above
procedure was repeated K1 times by leaving a different fold as test
data, which was used to compute the classification accuracy. For
SVM with a linear kernel, only the C parameter was optimized. In
this work, K1 ¼ 10 and K2 ¼ 10 were used. Fig. 4 illustrates the
pipeline of the 10-fold cross-validation procedure.

3.3.2. Classification performance
The performance of a classifier is measured by using the

accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under
the curve (AUC) based on 10-fold cross validation. These para-
meters are computed as follows [37]:

ACC¼ ðTPþTNÞ=ðTPþFPþFNþTNÞ ð6Þ

SEN¼ TP=ðTPþFNÞ ð7Þ

SPE¼ TN=ðTNþFPÞ ð8Þ

where TP, TN, FN, and FP are the number of true positives, true
negatives, false negatives, and false positives, respectively. TP, TN,
FN, and FP are determined as follows:

a) TP: By counting the number of patients with AD correctly
identified as AD.

b) TN: By counting the number of HCs correctly identified as HCs.
c) FN: By counting the number of patients with AD incorrectly

identified as HCs.
d) FP: By counting the number of HCs incorrectly identified as AD.
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Fig. 3. Diagram of the PLS based feature extraction [27].
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4. Experimental results and discussion

In this section, the experimental results of VBM plus DARTEL
analysis on 3D MRI are reported to reveal the significance of the
volumetric regions with atrophy in patients, contributing to VOI.
The performance of the classification of AD using a 10-fold cross-
validation is also presented for four cases: (1) performance of the
raw features (VBM features) dataset, (2) performance of the PLS
method, (3) performance of the proposed PDF technique, and
(4) performance of the PDF technique using the optimal number of
bins. Two types of SVM classifiers, namely SVM-linear and SVM-
RBF, were used for AD classification. ACC (%), SEN (%), SPE (%), and
AUC (%) performance metrics were used to assess the different
scenarios.

4.1. Voxel-based morphometry on gray matter

VBM plus DARTEL revealed a significant decline of gray matter
volume in the right hippocampus, left hippocampus, right inferior
parietal lobe, and right anterior cingulate in patients with AD
compared to the HCs. Fig. 5 shows the brain regions where there
was significant atrophy in gray matter volume in AD patients
compared to HCs in fold 1 training. The voxel locations of these
significant regions were used as a 3D mask in each fold. This mask
was applied to the gray matter density volume results from the
segmentation step in the VBM plus DARTEL analysis to extract
voxel values as raw feature vectors.

4.2. Performance of raw feature representation

The complete MRI dataset from the ADNI database consisted of
260 samples. Table 1 presents the ACC, SEN, SPE, and AUC obtained
by 10-fold cross validation using SVM-linear and SVM-RBF classi-
fiers for raw feature vectors obtained by masking after VBM plus
DARTEL analysis.

4.3. Performance of PLS method

The feature reduction using PLS was accomplished by extracting
raw feature data from VOI obtained from VBM analysis. The extracted
raw feature vectors were reduced to lower-dimensional feature
vectors of up to 100 components using PLS. Table 2(a) presents the
ACC, SEN, SPE, and AUC obtained from 10-fold cross-validation for
SVM classifiers for changing dimensionality. According to Table 2(a), it
is clear that the maximum accuracy (90.76%) is yielded with SVM-RBF
when the dimensionality is 80. The accuracy is 4.74% higher than the
same classifier with all raw features used in Table 1. The reset of the
results in Table 2(a) are also higher than the raw data for SEN, SPE, and
AUC. The results reported in Tables 1 and 2(a) indicate that the PLS
performance using SVM-linear and SVM-RBF classifiers is higher than
with the raw data.

4.4. Performance of proposed PDF-based technique

The feature selection using PDF was accomplished by extract-
ing raw feature data from VOI obtained using VBM analysis. The

Fig. 4. Pipeline of the 10-fold cross validation procedure.

Fig. 5. Comparison of gray matter volume among 117 patients with AD and 117 HCs in fold 1 training by VBM using SPM8 plus DARTEL (FWE corrected at p˂0.01 and extend
threshold K¼1400).
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extracted raw feature vectors were reduced to lower-dimensional
feature vectors of up to 100 components by changing the number
of bins of the PDF. Table 2(b) and Fig. 6 present the ACC, SEN, SPE,
and AUC obtained by 10-fold cross-validation using SVM-linear
and SVM-RBF classifiers. The results reported in Table 2(a) and
(b) show that the PDF-based method is with higher ACC than the
PLS-based method in most of the dimensions using linear and
SVM-RBF classifiers. For example, for 20 components, the PDF-
based ACC performance is 88.50% while PLS ACC performance is
81.96% using SVM-linear. There are few cases in which PLS ACC is
higher. The same observation is valid for AUC and SPE, where the
PDF-based method is mostly superior to the PLS-based method.
On the other hand, although for SEN the PDF-based method is
better than the PLS-based method in SVM-linear, the PLS-based
method is higher for the SVM-RBF classifier.

4.5. Performance of PDF technique using optimal number of bins

As proposed in Section 3.2.3, the optimal number of bins is
determined by maximizing the Fisher criterion applied to the two
classes (AD and HC) of the training data in each fold through the
cross-validation process. Table 3 presents the average of the
performances of the classifiers with the optimal number of bins
obtained in each fold, through 10-fold cross-validation. The
proposed method of determining the optimal number of compo-
nents (i.e. the number of bins) is also applied to PLS. By examining
the results of Table 3, it was observed that the overall performance
of the proposed PDF-based method with the optimal number of

bins is superior to PLS for SVM-linear, where the results of both
methods are comparable for SVM-RBF.

4.6. Performance comparison to other methods

Recently, several studies have reported classification results to
distinguish AD and HC based on MRI. Zhang et al. [38] used
multimodal classification of AD based on the combination of MRI,
CSF, and PET. They reported ACCs of 86.2%, 82.1%, and 86.5% in the
classification of AD/HC by MRI, CSF, and PET imaging modalities,
respectively. Also, they achieved a high accuracy performance
(93.2%) by combining the MRI, CSF, and PET results. Querbes
et al. [39] achieved an ACC of 85% based on the cortical thickness
feature from MRI data. Hinriches et al. [40] reported an ACC of
75.27% based on MRI data and increased it to 81% by combining
MRI and PET. Vemuri et al. [41] announced an SEN/SPE of 86/86%
in 380 subjects using the STructural Abnormality iNDex (STAND)
score from MRI data. Westman et al. [42] presented an ACC of 87%
from MRI data and increased it to 91.8% by combining MRI data
with CSF measures. Papakostas et al. [43] applied two methods to
analyze MRI data, namely, VBM and deformation-based morpho-
metry (DBM), on 98 female subjects. They extracted features based
on three different models: MSD, displacement magnitude (DM),
and Jacobian determinant (JD). They also investigated their meth-
ods with several classifiers. They reported ACCs of 85%, 84%, and
79% for the three models, respectively. Aguilar et al. [44] used
FreeSurfer software to compute cortical thickness and volumetric
measures, yielding an ACC of 84.9% for the artificial neural net-
work (ANN) classifier from MRI data and of 88.8% for the SVM
classifier by combining MRI data with educational and demo-
graphic data. Zhou et al. [45] employed FreeSurfer software to
calculate 55 volumetric variables from MRI data. They reported an
ACC of 78% for MRI data and 92.4% by combining MRI data with
the MMSE. Savio et al. [9] studied the feature-extraction process
with VBM analysis on 98% female subjects only and achieved the
best results with 86% accuracy for the RBF-AB-SVM classifier.
Khedher et al. [30] reported an ACC of 88.49% by combining
GM and WM modalities in MRI. Klöppel et al. [13] employed

Table 1
Performance comparison on VBM features data sets on 10 fold cross validation for
raw feature vectors.

Classifier ACC (%) SEN (%) SPE (%) AUC (%)

SVM-linear 83.58 82.04 85.12 92.10
SVM-RBF 86.02 89.70 82.35 93.13

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area under curve; SVM,
Support vector machine; RBF, Radial basis function.

Table 2
Performance analysis of the PDF based method in comparison to PLS based method.

(a) Performance comparison on PLS reduced features data sets on 10 fold cross
validation

(b) Performance comparison on PDF reduced features data sets on 10 fold cross
validation

No. of components ACC (%) SEN (%) SPE (%) AUC (%) Classifier No. of components ACC (%) SEN (%) SPE (%) AUC (%) Classifier

2 87.34 84.65 90.03 95.33 SVM 2 86.19 83.88 88.50 94.85 SVM
10 85.42 81.57 89.26 93.31 10 87.73 86.19 89.26 95.62
20 81.96 81.57 82.34 92.25 20 88.50 86.19 90.80 95.50
30 81.19 80.03 82.34 91.66 30 88.50 88.50 88.50 94.73
40 81.96 80.03 83.88 92.19 40 86.96 83.88 90.03 94.91
50 82.73 80.03 85.42 92.49 Linear Kernel 50 87.34 86.96 87.73 94.91 Linear Kernel
60 82.73 80.03 85.42 92.66 60 88.11 86.96 89.26 95.15
70 83.88 82.34 85.42 92.90 70 87.34 87.73 86.96 95.21
80 84.26 82.34 86.19 93.14 80 88.50 89.26 87.73 95.80
90 85.03 83.88 86.19 93.26 90 86.96 86.96 86.96 94.62
100 85.03 83.88 86.19 93.31 100 88.50 87.73 89.26 96.21
2 86.53 88.46 84.61 91.60 SVM 2 88.07 87.69 88.46 95.86 SVM
10 74.61 96.15 53.07 90.41 10 89.61 89.23 90.00 96.39
20 79.23 94.61 63.84 93.20 20 88.84 86.92 90.76 96.51
30 86.76 93.07 78.46 94.50 30 90.00 90.00 90.00 96.09
40 88.84 92.30 85.38 94.73 40 88.84 88.46 89.23 95.92
50 88.07 90.76 85.38 95.27 50 89.61 88.46 90.76 96.15
60 88.46 90.76 86.15 95.38 RBF Kernel 60 89.61 90.00 89.23 96.27 RBF Kernel
70 90.38 90.76 90.00 95.74 70 88.84 86.92 90.76 96.21
80 90.76 90.76 90.76 95.86 80 90.00 90.00 90.00 96.75
90 90.76 90.76 90.76 95.92 90 90.00 88.46 91.53 96.75
100 90.76 90.76 90.76 95.92 100 90.76 90 91.53 97.04

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area under curve; SVM, Support vector machine; RBF, Radial basis function.
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leave-one-out as a validation method in three different groups
(Groups I, II, and III) with different severity of atrophy in AD. The
ACC of Group I was 95%, of Group II was 92.9%, and of Group III was
81.1%. The severity of atrophy in Group I was the highest, making
this group the most successful among the three. A study by
Cuingnet et al. [46] comprised 10 methods using the ADNI
database. They reported a SEN of 81% and a SPE of 95% as the
best performances. In this paper, a set of a total of 260 MRI
samples was used in the AD and HC groups, with superior results
with respect to ACC, SEN, and AUC in Table 4 except for the results
of Klöppel et al. [13] for Groups I and II. One of the main reasons
for this observation stems from the fact that the severity of the
atrophy of Groups I and II was higher than that of Group III and our
dataset. Additionally, using the leave-one-out method already
gives an advantage to the method employed by Klöppel et al.
[13] against the 10-fold cross-validation technique used in the
proposed method. The experimental results using the proposed

PDF-based approach with SVM by linear Kernel generates 89.65%
accuracy, 87.73% sensitivity, 91.57% specificity, and 95.33% AUC.
The details of the parameters used in classification performance
with different methods by using MRI data are provided in Table 4.
Some of the results reported in Table 4 use ADNI data-set, where
the others use different or private data-sets. Additionally, the
results from ADNI data-set are using different number of AD/HC
samples. In order to have comparable results, we have used ADNI
data-set with high number of samples (130 AD and 130 HC), which
we believe provides a suitable ground for acceptable comparisons.

5. Conclusion

In this paper, an automatic CAD technique was introduced based
on a novel statistical feature-selection process, namely, PDF of VOI, for
the classification of AD. The proposed feature-selection method
compresses the statistical information of high-dimensional data into
a lower-dimensional vector. This approach was used for high-
dimensional classification, especially for feature-extracted VOI of gray
matter atrophy. The PDF-based feature-selection approach was com-
pared to the standard PLS-based classification using SVM classifiers.
The results clearly indicated that the PDF-based feature-selection
method is a reliable alternative to the PLS-based method, in which
the performance of the proposed PDF-based method with the optimal
number of bins is superior to PLS for SVM-linear, and the results of
both methods are comparable for SVM-RBF. Moreover, PDF generation
does not require complex matrix operations, making the feature-
extraction process computationally cheaper than alternative
dimensionality-reduction methods, such as PLS. The proposed

Fig. 6. Classifier performance based on PLS and PDF feature selection: (a) Accuracy, (b) sensitivity, (c) specificity and (d) area under curve.

Table 3
Performance results of the PDF and PLS based methods with optimal number
of bins.

Classifier ACC (%) SEN (%) SPE (%) AUC (%)

PDF-SVM-linear 89.65 87.73 91.57 95.33
PDF-SVM-RBF 88.83 87.73 90.03 95.39
PLS-SVM-linear 85.42 84.65 86.19 93.32
PLS-SVM-RBF 89.26 89.26 89.26 95.09

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area under curve; PDF,
Probability distribution function; PLS, Partial least squares; SVM, Support vector
machine, RBF, Radial basis function.
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PDF-based method not only extracts the selected statistical features
but also reduces the dimensionality of the input vectors to feature
vectors with acceptably low dimensions. It is apparent that the
computational cost of PDF calculation is negligibly low when com-
pared to PLS. As part of future prospects on PDF-based pattern
recognition in neuroimaging, it is suggested to use data fusion
techniques for the proposed MRI modality with other modalities, such
as PET, CSF, and WM, and to combine them using the proposed PDF-
based approach in order to achieve higher accuracy. The PDF-based
data fusion technique has already been used successfully in recent
studies for the improvement of face-recognition performance [16,17].
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