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A B S T R A C T

The level of prediction error in the brain age estimation frameworks is associated with the authenticity of
statistical inference on the basis of regression models. In this paper, we present an efficacious and plain bias-
adjustment scheme using chronological age as a covariate through the training set for downgrading the pre-
diction bias in a Brain-age estimation framework. We applied proposed bias-adjustment scheme coupled by a
machine learning-based brain age framework on a large set of metabolic brain features acquired from 675
cognitively unimpaired adults through fluorodeoxyglucose positron emission tomography data as the training set
to build a robust Brain-age estimation framework. Then, we tested the reliability of proposed bias-adjustment
scheme on 75 cognitively unimpaired adults, 561 mild cognitive impairment patients as well as 362 Alzheimer's
disease patients as independent test sets. Using the proposed method, we gained a strong R2 of 0.81 between the
chronological age and brain estimated age, as well as an excellent mean absolute error of 2.66 years on 75
cognitively unimpaired adults as an independent set; whereas an R2 of 0.24 and a mean absolute error of 4.71
years was achieved without bias-adjustment. The simulation results demonstrated that the proposed bias-ad-
justment scheme has a strong capability to diminish prediction error in brain age estimation frameworks for
clinical settings.

1. Introduction

“Brain age” estimation through advanced machine learning and
brain imaging has become a gripping topic in neuroimaging circles
(Cole, Marioni, et al. 2019). The brain age-delta (i.e., Δ: the brain's
estimated age minus the individual's chronological age) has been shown
as a heritable metric for monitoring cognitively healthy aging, as well
as for the early identification of individuals with high-risk of age-as-
sociated disorders or mortality (Cole et al., 2018). For example, a brain
age delta equal to zero indicates that the individual under study is
following a healthy aging trajectory, whereas a higher delta-age would
be indicative of an “older-appearing” brain and advanced cognitive
aging. However, any accurate judgment about the individual under
study forcefully relies on the prediction accuracy of the model.

From a design perspective, most brain age frameworks use a
training set of cognitively unimpaired subjects coupled with supervised
learning to build this predictive model from brain imaging features as
the dependent variable (Franke et al., 2010). Then, for each new sample
under study, the estimated brain age is computed by applying the re-
spective brain imaging features to the predicting model. Lately, several

brain age estimation studies have reported an age-dependent bias in
these predicted results, which contributes to the uncertainty of the in-
terpretation at the clinical level (Le et al., 2018; Cole et al., 2018).
Designing and developing a robust and highly accurate brain age pre-
diction framework is therefore needed for any clinical application.

In this study, we propose an adjustment scheme for brain age esti-
mation using fluorodeoxyglucose positron emission tomography (FDG
PET) data, as per the technique described by (Goyal et al., 2019)
(Sections 2.1–2.3). The adjustment is based on a linear regression
model of the brain age bias that includes chronological age as a cov-
ariate (Section 2.4). We assessed the proposed bias-adjustment scheme
on a large training set of metabolic brain features and compared the
results of the proposed adjustment procedure with and without bias-
adjustment, as well as the method suggested by Cole (Cole et al., 2018)
(Section 3.1). We will show that the proposed bias-adjustment scheme
not only removes age-dependency in predicted results, but also can
effectively improve the robustness of the brain age prediction results in
an independent test set (Section 3.2).
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2. Material and methods

2.1. Participants

We selected adults between the ages of 47 and 94 years from various
open and closed source databases to which we had access, namely the
Alzheimer's Disease Neuroimaging Initiative (ADNI), Alzheimer's
Disease Repository Without Borders (ARWIBO), Banner Alzheimer's
Institute (BAI), Centre Hospitalier Universitaire de Sherbrooke (CHUS)
and the Open Access Series of Imaging Studies (OASIS). In all studies
participants gave informed consent.

In total, 1673 participants were included in the present study in-
cluding 750 cognitively unimpaired adults, 561 mild cognitive im-
pairment (MCI) patients, and 362 probable Alzheimer's disease (AD)
patients. In our simulation, we randomly split the 750 cognitively un-
impaired adults into a training set (90%, N=675) and an independent
cognitively unimpaired test set (10%, N=75). Furthermore, MCI pa-
tients and AD patients were considered as independent test sets.

2.2. Image processing

T1-weighted images - First, T1-weighted magnetic resonance images
(MRI) were obtained for anatomical reference purposes. All T1w MRIs
were segmented using FreeSurfer 6.0 image analysis suite using the
Desikan–Killianny–Tourville (DKT) (Klein and Tourville, 2012) and
FreeSurfer subcortical atlases with default parameters (http://surfer.
nmr.mgh.harvard.edu/). The technical details have been described
previously (Fischl and Dale, 2000). In summary, image processing in-
cluded motion correction, removal of non-brain tissue, automated Ta-
lairach transformation, intensity normalization, segmentation of the
subcortical white matter and deep grey matter volumetric structures,
tessellation of the grey matter and white matter boundary, automated
topology correction, and surface deformation to optimally place the
grey/white and grey/cerebrospinal fluid boundaries (Reuter et al.,
2012).

FDG PET images - FDG-PET images that did not have a corresponding
T1w MRI acquired within one year of each other were not included in
our database. Otherwise, all FDG-PET image pre-processing was per-
formed using the MINC 2.2.00 toolkit. Images were first converted to
the MINC2 format, then co-registered to the first frame and timeframe
averaged, with the exception of FDG-PET images downloaded from the
ADNI database, which were already co-registered to the first frame of
the raw image file and timeframe averaged, also known as “post-pro-
cessed #2” (Jagust et al., 2015). Images were then co-registered to their
respective T1w MRI and partial volume corrected (PVC) using region-
based voxel-wise correction, an extension of the geometric transfer
matrix method. PVC was implemented using PETPVC, which is avail-
able on GitHub (https://github.com/UCL/PETPVC). Further details
may be found at (Robert et al., 2011). Next, PET images were converted
to standard uptake value ratios (SUVR) by the voxel-wise division of the
average activity of the paracentral cortex, which had been reported as
the optimal region for FDG-PET image normalization in normal aging
studies (Jiang et al., 2018). Finally, images were smoothed to a uniform
resolution of 8mm full-width half maximum and the parcellated Free-
Surfer regions of interest were used to extract estimates of SUVR.

2.3. FDG PET based brain age estimation framework

To estimate brain age values, we conducted a prediction model
using standard support vector regression algorithm with linear kernel
and default settings. For each prediction model, the real age and me-
tabolic brain features were considered as the dependent and in-
dependent variables, respectively. We estimated uncorrected brain age
using FDG PET data first on the training set (i.e., cognitively unim-
paired, N=675) through a k-fold cross validation strategy (k=10).
We then calculated the bias-adjusting offset using the entire training set

(i.e., cognitively unimpaired, N=675), and then applied the model
and the offset to independent test sets (i.e., cognitively unimpaired,
N=75; MCI patients, N=561; AD patients, N=362) to estimate
brain age in these respective groups.

2.4. Proposed bias-adjustment scheme

The proposed bias-adjustment scheme relies on the slope (α) and
intercept (β) of a linear regression model of brain age delta against
chronological age through the training set followed by chronological
age as a covariate. To better illustrate the problem at hand, the re-
lationship between brain age delta and chronological age for a training
set achieved through a 10-fold cross validation strategy is shown in
Fig 1. As can be seen, there is a significant dependence of the brain age
delta on chronological age (r=−0.88, p < 0.001; equation line:
y=−0.7 x +50). This dependence seems independent of the method
being used, as it has been reported by multiple authors (Cole et al.,
2019; Boyle et al. 2019) and is likely a result of regression dilution bias
(Le et al., 2018). Based on the linear regression line between brain age
delta and chronological age, the model either overestimates (i.e., false
positive) or underestimates (i.e., false negative) brain age by +16 years
to −17 years.

We propose to compute, for each sample under study with a real age
of Ω, an offset as follow:

= +α βOffset Ω (1)

where α and β stand respectively for the slope and intercept of a linear
regression model of brain age delta against chronological age achieved
from a training set. Then, this offset can be subtracted from the in-
dividual estimated brain age to achieve a bias-free brain age value for
each sample under study.

2.5. Alternative method

The technique proposed by Cole et al. is to use the slope and in-
tercept of a linear regression model of estimated brain age versus
chronological age obtained from training results(Cole et al., 2018).
Indeed, for each sample under study, the bias-free Brain-age value was
achieved by subtracting the intercept from predicted brain age and then
divided by the slope of a linear regression model of estimated brain age
on chronological age obtained from the training set as follow:

=
−

Predicted
Predicted β

αBias free
raw

(2)

where Predictedraw stands for predicted brain age. Besides, α and β are

Fig. 1. Example of the age-related bias in brain age delta in our training set,
where Δ is the estimated brain age minus the real chronological age. The da-
shed red line shows the reference line (y=0), while the solid black line states
the regression line. The result of the training set was generated through a 10-
fold-cross validation strategy. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the slope and intercept of a linear regression model of estimated brain
age as a function of chronological age achieved from a training set,
respectively. The bias-adjustment method suggested by Cole
(Cole et al., 2018) is considered as a part of a pre-train voxel-based
brain age estimator (https://github.com/james-cole/brainageR).

2.6. Evaluation and model comparison

The prediction accuracy was assessed on the basis of mean absolute
error (MAE), root mean square error (RMSE) and R2 (i.e., coefficient of
determination between chronological and estimated brain age). To
compare prediction accuracies between procedures, we calculated p
values based on the MAE confidence intervals (95%) computed from
bootstrapping with 1000 random sampling with replacement for the
test set.

3. Results

3.1. Performance measures on training set

We used metabolic-brain features from 675 cognitively unimpaired
adults as the training set to build a brain age estimation model, through
a 10-fold cross-validation strategy. We then computed the Offset for
each subject in the left-out fold in accordance to Eq. (1), and finally
report the bias-free brain age value by subtracting the offset from the
predicted brain age value.

Fig. 2 shows the scatter plot of estimated brain age versus chron-
ological age, as well as the estimated brain age delta versus chron-
ological age for the training set. The prediction accuracies were as
follows: without bias-adjustment, an MAE=5.11 years (RMSE=6.53
years, R2= 0.38); with Cole's method, an MAE=8 years
(RMSE=10.39 years, R2= 0.38); and with our proposed method, an
MAE=2.36 years (RMSE=3.66 years, R2= 0.88). As can be seen
from Fig. 2(D), there was a significant age-related variance in the
predicted results (i.e., brain age delta vs. chronological age) without
bias-adjustment (r=−0.88, p < 0.001) in the training set. Fig. 2 (E

and F) show predicted results (i.e., brain age delta vs. chronological
age) after applying bias-adjustment proposed by Cole's method and the
proposed scheme. Although both bias-adjustment schemes successfully
removed the age-dependency for the predicted results (i.e., r=0,
p=1), the proposed scheme significantly diminished the variance
further (F=448.88, p < 0.001; Levene's test).

3.2. Performance measures on test sets

We computed an estimated brain age model and Offset using the
complete training set, and then applied this model on the independent
test sets. The scatter plot of estimated brain age versus chronological
age, as well as brain age delta versus chronological age for the cogni-
tively unimpaired participants (N=75) is shown in Fig. 3. The pre-
diction accuracies followed by different procedures were as follows:
without bias-adjustment (MAE=4.71 years, RMSE=6.08 years,
R2= 0.24), Cole's method (MAE=9.02 years, RMSE=11.27 years,
R2= 0.24), and the proposed method (MAE=2.66 years,
RMSE=3.33 years, R2= 0.81). The mean of metabolic brain age delta
were: without bias-adjustment 0.20 years [95% confidence intervals
(CI) −1.19:1.61], Cole's method 0.13 years [95% CI −2.48:2.74], and
our proposed method 0.03 years [95% CI −0.73:0.80]. After applying
bias-adjustment, the correlation between brain age delta vs. chron-
ological age was about zero (both methods: r=−0.05, p=0.64), in
contrast to the significant age-dependency of the uncorrected results
(Fig. 3 D; r=−0.84, p < 0.001). Again, while both methods removed
the age bias, our technique reduced variance significantly (F=53.79,
p < 0.001; Levene's test). Furthermore, the prediction accuracy of the
proposed method was significantly superior to without bias-adjustment
(p < 0.0001), and Cole's method (p < 0.0001).

Fig. 4 illustrates the relationship between the prediction results and
chronological age on MCI (N=561) and probable AD (N=362) sets
followed by different procedures. The means of metabolic brain age
delta values were as follows: without bias-adjustment (MCI= 0.13
years, [95% CI −0.43:0.69]; AD=0.61 years, [95% CI −0.16:1.40]);
Cole's method (MCI= 6.74 years, [95% CI 5.85:7.63]; AD=13.87

Fig. 2. First row (A, B and C): Scatter plot of estimated brain age and chronological age on training set followed by three different procedures. The dashed red line
shows the identity line (y= x), while the dashed black lines state a 95% prediction band on the model prediction. Second row (D, E and F): brain age delta (Δ:
estimated brain age minus chronological age) versus chronological age on training set followed by different procedures. The dashed red line shows the reference line
(y=0), while the dashed black lines state a 95% prediction band on the model prediction. The results of the training set were generated through a 10-fold-cross
validation strategy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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years, [95% CI 12.67:15.08]); and the proposed method (MCI= 2.00
years, [95% CI 1.73:2.25]; AD=4.09 years, [95% CI 3.74:4.45]). The
statistical results showed no significant difference among these in-
dependent test groups without bias-adjustment (F(2995)= 0.53,
p=0.58; ANOVA, Posthoc analyses using Tukey's HSD), whereas both

bias-adjustment methods showed a significant and similar difference in
terms of metabolic brain age delta (both methods: (F(2995)= 70,
p< 0.001; ANOVA, posthoc analyses using Tukey's HSD). Furthermore,
we assessed the difference among test groups using bias adjustment
technique as proposed in (Le et al., 2018) by including the real age as

Fig. 3. First row (A, B and C): Scatter plot of estimated brain age and chronological age on the independent cognitively unimpaired test set followed by three different
procedures. The dashed red line shows the identity line (y= x), while the dashed black lines state a 95% prediction band on the model prediction. Second row (D, E
and F): delta age versus chronological age for the independent cognitively unimpaired set after different procedures. The dashed red line shows the reference line
(y=0), while the dashed black lines state a 95% prediction band on the model prediction. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. First row (A, B and C): Scatter plot of brain estimated age and chronological age on MCI (orange spot, solid orange regression line) and AD (dark blue spot,
solid dark blue regression line) sets followed by different procedures; The dashed red line shows the identity line (y= x). Second row (D, E and F): delta age versus
chronological age on MCI (orange spot, solid orange regression line) and AD (dark blue spot, solid dark blue regression line) followed by different procedures; the
dashed red line shows the reference line (y=0). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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covariate. According to Le's method, there was a significant difference
in terms of metabolic brain age delta among these independent test
groups (F=1322, p < 0.001; ANOVA, posthoc analyses using Tukey's
HSD). Indeed, the MCI and AD subjects showed a conspicuously higher
metabolic brain ages compared to the independent cognitively unim-
paired set (mean of metabolic brain age delta= 0) regardless of the
bias-adjustment method. Both bias-adjustment methods showed the
same effect sizes (AD/ cognitively unimpaired: d=1.19; MCI/ cogni-
tively unimpaired: d=0.60). Once again however the variance in the
results was significantly smaller for our proposed solution, whereas
Cole's technique increased variance from the non-bias adjusted results
solution (MCI: F=326.70, p < 0.001; AD: F=239.85, p < 0.001;
Levene's test).

4. Discussion

The bias (i.e., age-dependency) is a substantial issue in brain-age
frameworks. This bias may be caused by dilution bias (also known as
attenuation) of the prediction model, which drives the prediction slope
to zero rather than a true slope due to measurement error in the pre-
dictors (Young, 2017). This bias therefore has an adverse effect on the
outcomes for unseen data. The mathematical details of dilution bias is
given in (Young, 2017). To diminish this age-dependency, Cole and
colleagues suggested an adjustment procedure as a part of the voxel-
wise brain age framework on the basis of the slope and intercept of a
linear regression model of estimated brain age versus chronological age
(Cole et al., 2018). Cole's method was then successfully applied in a
series of voxel-wise brain age estimation studies (Cole et al., 2019).
However, when faced with a similar bias, we attempted to apply Cole's
method to our PET-FDG data and noticed that it was increasing var-
iance, as well as decreasing accuracy. Therefore, we aimed to design a
new method that would not affect nor lower variance, all the while
maintaining, if not improving, accuracy. The key idea behind our
proposed method is to use the chronological age of each subject under
study as a covariate coupled by the slope and intercept of a linear re-
gression model of brain age delta against chronological age driven from
the model training set. We used a linear model as a function of real age
(Eqn. (1)) to compute the offset for each subject under study as we
observed a linear relationship between the bias (i.e., Brain age delta)
and chronological age in our training set (Fig. 1). For other modalities
that could have a nonlinear relationship with age, our bias-correction
method can also be extended using a nonlinear basis functions. Indeed,
our proposed bias adjustment only shifts the model slope to a true one
rather than a false one due to dilution bias. We expected our proposed
bias-adjustment scheme to yield more robust brain-age prediction re-
sults than other state-of-the-art bias-adjustment techniques (e.g.
(Cole et al., 2018)). The latter removed the age-dependency issue
however both training and independent testing results demonstrated
that it may not be a robust way to ameliorate the prediction accuracy,
as it has a tendency to increase the final variance in the results. Con-
versely, our proposed bias-adjustment technique achieved a strong R2

of 0.81 between chronological age and brain estimated age, an ex-
cellent MAE of 2.66 years on independent data, and a statistically re-
duced variance. In our simulated data, before bias correction, we ob-
served a lower prediction accuracy (R2= 0.38) with a higher age
dependency bias on our training set compared to studies using T1-
weighted MRI using different techniques (Le et al., 2018; Cole et al.,
2017; Beheshti et al. 2019). Thus, the nature of the data predicting age
appears to induce more or less age dependency biases. Since FDG-PET
data is inducing a prominent bias, the prediction is therefore markedly
improved after correcting this bias. The association between brain age
delta with clinical features, as a heritable neuroimaging-based metric,
has been widely investigated in clinical research (Cole, Underwood,
et al. 2017; Cole, Annus, et al. 2017). For example, Cole and colleagues
(Cole et al., 2015) explored the association between brain age delta and
neuropsychological measures among traumatic brain injury subjects,

and reported significant correlations between brain age delta values
and memory as well as information processing speed. In another study,
the correlation between brain age delta and body mass index as well as
intelligence quotient was investigated among adults who suffer from
Prader–Willi syndrome (Azor et al. 2019). Of note, the exactness of
these analyses relies on the prediction accuracy of the brain age models.
While many factors might have a strong impact on prediction results
(e.g. scanner properties, imaging modality, pre-processing, training size
and population characteristics), the models might also suffer from an
age-dependency issue due to regression dilution bias (Le et al., 2018).
This bias has been reported in a series of brain age estimation studies
(Cole et al., 2019; Boyle et al. 2019; Cole et al., 2018). For instance,
Boyle and colleagues (Boyle et al. 2019) reported a significant age-
dependency between delta age and chronological age among their
training set on the basis of voxel-based features (r=−0.44,
p < 0.001). Using Cole's method, they removed this age-dependency
from the prediction results followed by a MAE of 7.28 years on training
set (Boyle et al. 2019). Consequently, a robust bias-adjustment tech-
nique for achieving bias-free brain age values was needed, which our
proposed method seems to accomplish. In this line, statistical testing on
brain age delta values among independent data showed that the pro-
posed bias-adjustment scheme has the potential ability of distinguishing
clinically different populations (i.e., MCI and AD patients) from cog-
nitively unimpaired participants. It is documented that the brain age
frameworks often require large training sets (Franke et al., 2010).
Likewise other bias correction methods, a large training set helps to
archive more accurate bias adjustment's parameters. Moreover, char-
acteristics such as sex may influence brain-age prediction, thus an un-
balanced sample on sex might not be as generalizable as a balanced
one. Regarding the difference among these independent test groups, the
Le's method and our proposed bias adjustment technique showed a si-
milar significant difference among these independent test groups
(p < 0.001). However, the Le's technique is appropriate for group
comparison only whereas our proposed method is also capable of pro-
ducing bias free brain age values at the individual level. While our
method markedly reduced the variance of the predicted age compared
to Cole et al.’s method, both bias-adjustment methods showed the same
effect sizes in AD and MCI clinical groups (AD vs cognitively healthy:
d=1.19; MCI vs cognitively healthy: d=0.60). Hence, one aiming to
compare brain age in MCI or AD and healthy controls can choose either
method and should obtain similar results. However, our method is
simpler to apply than Cole et al.’s, and more importantly in studies on
other clinical groups or with other objectives than group comparison
one could benefit from using our approach since it leads to more ac-
curate age predictions.

In this study, we assessed the proposed bias-adjustment scheme on a
brain age estimation framework followed by metabolic brain features
acquired from PET imaging however, the proposed method can also be
readily applied to other brain age frameworks such as voxel-based es-
timations (Franke et al., 2010), EEG signal-based (Al Zoubi et al. 2018),
and patch-based techniques (Beheshti et al. 2019) (see supplementary
materials for details). The example Matlab code to compute the brain
age delta values through current dataset is available at: https://github.
com/medicslab/Bias_Correction.

5. Conclusion

In this paper, we presented a unique and simple bias-adjustment
scheme as a potential solution to remove age-dependency for predicted
brain age results. For each test individual, we computed the respective
offset value on the basis of a linear regression model of brain age delta
against chronological age driven from a brain FDG PET brain age model
using a training set of 675 cognitively unimpaired adults. Following this
strategy, the respective offset value was considered to compute the final
bias-free brain age value. We assessed the reliability of this proposed
bias-adjustment technique on 75 cognitively unimpaired adults, 561
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MCI patients and 362 AD patients as independent test sets. We de-
monstrated that the proposed bias-adjustment scheme has strong po-
tential to be considered as part of a robust brain age framework for a
clinical setting.
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