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Abstract
We evaluated the performance of amyloid PET textural and shape features in discriminating normal and Alzheimer’s disease 
(AD) subjects, and in predicting conversion to AD in subjects with mild cognitive impairment (MCI) or significant memory 
concern (SMC). Subjects from the Alzheimer’s Disease Neuroimaging Initiative with available baseline 18F-florbetapir and 
T1-MRI scans were included. The cross-sectional cohort consisted of 181 controls and 148 AD subjects. The longitudinal 
cohort consisted of 431 SMC/MCI subjects, 85 of whom converted to AD during follow-up. PET images were normalized 
to MNI space and post-processed using in-house software. Relative retention indices (SUVr) were computed with respect 
to pontine, cerebellar, and composite reference regions. Several textural and shape features were extracted then combined 
using a support vector machine (SVM) to build a predictive model of AD conversion. Diagnostic and prognostic performance 
was evaluated using ROC analysis and survival analysis with the Cox proportional hazard model. The three SUVr and all 
the tested features effectively discriminated AD subjects in cross-sectional analysis (all p < 0.001). In longitudinal analysis, 
the variables with the highest prognostic value were composite SUVr (AUC 0.86; accuracy 81%), skewness (0.87; 83%), 
local minima (0.85; 79%), Geary’s index (0.86; 81%), gradient norm maximal argument (0.83; 82%), and the SVM model 
(0.91; 86%). The adjusted hazard ratio for AD conversion was 5.5 for the SVM model, compared with 4.0, 2.6, and 3.8 for 
cerebellar, pontine and composite SUVr (all p < 0.001), indicating that appropriate amyloid textural and shape features predict 
conversion to AD with at least as good accuracy as classical SUVr.
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Introduction

Considerable effort is ongoing to identify and develop reli-
able biomarkers of incipient Alzheimer’s disease (AD) in 
order to target individuals who would most benefit from 
early treatment intervention (Jack et al. 2010), especially 
among subjects with mild cognitive impairment (MCI) 
(Petersen et al. 2013; Ellendt et al. 2016).

Positron emission tomography (PET), using 11C-labeled 
Pittsburgh B compound (PiB) or fluorinated tracers such 
as 18F-florbetapir, allows in vivo visualization and quanti-
fication of cortical amyloid-β deposition, with high sensi-
tivity and specificity compared to amyloid plaque burden 
at autopsy (Pontecorvo et al. 2011; Clark et al. 2012). The 
prognostic value of amyloid PET using fluorinated tracers 
(rated visually (Doraiswapy et al. 2014), semi-quantitatively 
(Landau et al. 2012; Ong et al. 2015), or both (Schreiber 
et al. 2015)) regarding cognitive decline and conversion to 
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AD has been highlighted in MCI patients. Its clinical impact 
in terms of diagnostic confidence and drug treatment has 
recently been demonstrated (Boccardi et al. 2016).

Semi-quantitative measures of cortical retention with 
respect to a reference subcortical region provide accu-
rate and robust evaluation of amyloid burden with high 
test–retest reliability (Joshi et al. 2012, 2015). Although the 
standardized uptake value (SUV) has historically been nor-
malized using the brainstem, pons, or whole cerebellum as 
reference region, evidence is growing that composite refer-
ence regions that include subcortical white matter induce 
less variability in sequential measurements, yielding greater 
power to detect Aβ accumulation (Chen et al. 2015; Landau 
et al. 2015; Brendel et al. 2015; Schwaz et al. 2017; Ben 
Bouallègue et al. 2017). Measures of cortical retention in 
small specific cortical regions are, however, limited by par-
tial volume effect (PVE) due to the limited spatial resolu-
tion of PET scanners and image post-smoothing (Brendel 
et al. 2015; Schwarz et al. 2017; Gonzalez-Escamilla et al. 
2016; Rullmann et al. 2016). PVE appears particularly criti-
cal when quantifying cortical tracer uptake in subjects with 
brain atrophy consecutive to aging and neurodegenerative 
disease. Another shortcoming of the SUV ratio (SUVr) per-
tains to the variability in SUVr estimates depending on the 
partitioning method used to define the cortical and subcorti-
cal regions. MRI based templates provide higher accuracy 
and should be preferred whenever an MR scan is available 
(Saint-Aubert et al. 2014), although dedicated PET tem-
plates have been developed to overcome the lack of MR data 
in clinical routine (Akamatsu et al. 2016; Hsiao et al. 2013).

These last decades have seen considerable development 
in image-based feature extraction (Lambin et al. 2012), and 
textural and morphological characterization of metabolic 
patterns in 18FDG PET has become an emerging topic in 
oncological nuclear medicine (Chicklore et al. 2013; Orlhac 
et al. 2016; Buvat et al. 2015; Miwa et al. 2014; Apostolova 
et al. 2016). Shape assessment of computed tomography or 
MR images using fractal analysis has also been exploited 
successfully for abdominal or cerebral tumor characteri-
zation (Goh et al. 2009; Hayano et al. 2014; Smitha et al. 
2015). Yet, textural and shape feature extraction has scarcely 
been investigated in the field of neurological PET (Klyuzhin 
et al. 2015), and particularly in amyloid PET. The study by 
Nemmi et al. (Nemmi et al. 2014) demonstrated that histo-
gram analysis of florbetapir uptake in gray matter yields bet-
ter performance than SUVr to discriminate between healthy 
and AD subjects in a small cross-sectional cohort. Shokouhi 
et al. showed that specific auto-correlation metrics measured 
on PiB (Shokouhi et al. 2015) and florbetapir (Shokouhi 
et al. 2016) PET images were more robust and better cor-
related with cerebrospinal fluid (CSF) markers than SUVr. 
Chincarini et al. proposed a global geometrical/intensity 
score allowing dichotomic assessment of florbetapir scans, 

based on the observation that both shape and contrast of 
amyloid deposition differ in normal and AD subjects (Chin-
carini et al. 2016).

In the present study, we systematically evaluated the 
ability of several textural and shape parameters extracted 
from baseline amyloid PET to discriminate healthy and AD 
subjects. Their predictive value regarding AD conversion in 
cognitively impaired subjects was assessed against classical 
semi-quantitative rating using SUVr.

Materials and methods

Subjects

In this study, we used participant data from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), a multicenter pro-
ject with approximately 50 medical centers and university 
sites across the United States and Canada (Petersen et al. 
2010). The ADNI was launched in 2003 as a public–pri-
vate partnership, led by Principal Investigator Michael W. 
Weiner, MD. Its primary goal was to examine how brain 
imaging and other biomarkers can be used to measure the 
progression of MCI and early AD. Determination of sensi-
tive and specific markers of very early AD progression is 
expected to help researchers and clinicians to develop new 
treatments and monitor their effectiveness, as well as lessen 
the time and cost of clinical trials. A detailed description of 
the inclusion criteria can be found on the ADNI webpage 
(adni-info.org). Subjects were between 55 and 90 years old 
and willing and able to undergo all test procedures including 
neuroimaging, and all had agreed to longitudinal follow-up.

Cognitively normal participants were the control subjects 
in the ADNI study. They showed no signs of depression 
using the Geriatric Depression Rate, mild cognitive impair-
ment or dementia. Significant memory concern (SMC) par-
ticipants scored within the normal range for cognition but 
indicated concerns and exhibited slight forgetfulness. Early 
and late MCI participants reported a subjective memory con-
cern either autonomously or via an informant or clinician. 
However, other cognitive domains showed no significant 
impairment, activities of daily living were essentially pre-
served, and there were no signs of dementia. AD participants 
met the NINCDS/ADRDA criteria for probable AD (McK-
hann et al. 1984; Dubois et al. 2007).

Data were downloaded from the ADNI database (adni.
loni.usc.edu) and included all subjects from the ADNI-2 
with available baseline florbetapir PET and cerebral MRI. 
Patients were recruited between January 2011 and Septem-
ber 2013. Seven patients for whom the automatic registration 
of amyloid PET with T1 weighted MRI failed were excluded. 
Our cross-sectional sample was made up of 181 normal 
controls and 148 AD subjects. Our longitudinal sample 
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was made up 431 subjects who were rated as SMC (104) 
or MCI (173 early MCI and 154 late MCI) at baseline and 
underwent an average clinical follow-up of 32 ± 15 months. 
Baseline and follow-up visits at 3, 6, and 12 months, then 
yearly, included complete cognitive assessment using the 
Alzheimer’s Disease Assessment Scale–cognitive subscale 
(ADAS-cog). Diagnostic status at each follow-up visit was 
extracted from the latest available dataset (‘DXSUM_PDX-
CONV_ADNIALL.csv’). The last known status was the one 
mentioned at the time of the last visit listed in the dataset. 
Table 1 details the characteristics of the study population.

Image acquisition and pre‑processing

Amyloid-β deposition was visualized using 18F-florbetapir PET. 
The florbetapir images consisted of 4 × 5 min frames acquired 
at 50–70 min after injection, which were realigned, averaged, 
resliced to a common voxel size, and smoothed to a common 
resolution of 8 mm in full width at half maximum (Joshi et al. 
2009) (further technical details regarding PET acquisition and 
pre-processing are available online at adni.loni.usc.edu/meth-
ods/pet-analysis/). Structural MR images acquired concurrently 
with the baseline florbetapir images (mean delay 34 ± 32 days) 
were used as a structural template to spatially normalize the 
PET images and define regions of interest (ROI) for each sub-
ject using SPM12 (Wellcome Trust Centre, London, UK). In 
brief, for each subject, the baseline florbetapir scan was rigidly 
co-registered to the baseline structural T1 weighted MR scan 
by maximizing normalized mutual information. The individual 
T1-MR scan was non-linearly co-registered to the standard 
Montreal Neurological Institute (MNI) space MRI template 
using tissue probability maps delivered with SPM. The non-
linear transformation was then applied to the co-registered PET 
data in order to spatially normalize the PET images to the MNI 
space. Resulting PET data were sampled on a 135 × 155 × 128 
grid with cubic voxels of 1.5 × 1.5 × 1.5  mm3 (i.e., the original 
resolution of the standardized images provided by the ADNI). 
PET image voxels were labeled according to the maximum 
probability tissue atlas derived from the “MICCAI 2012 grand 
challenge and workshop on multi-atlas labeling” and provided 
by Neuromorphometrics, Inc. (neuromorphometrics.com) 
under academic subscription.

PET data post‑processing

Spatially normalized PET images were post-processed using 
in-house dedicated software 1 (Ben Bouallègue et al. 2017). 
Cortical retention indices (SUV) were computed within six 

cortical ROIs (frontal, parietal, temporal, precuneus, ante-
rior and posterior cingulate cortices) that were averaged to 
create a mean cortical SUV. Cortical SUV ratios (SUVr) 
were obtained by normalizing the cortical SUV with the 
mean uptake in a subcortical reference region. For the pre-
sent study, candidate reference regions were the pons, whole 
cerebellum, and a composite region made up of the whole 
cerebellum, pons, and eroded subcortical white matter (Lan-
dau et al. 2015; Chen et al. 2015). In the sequel, the corre-
sponding SUVr will be respectively referred to as pontine 
SUVr, cerebellar SUVr, and composite SUVr. The bounda-
ries of the three subcortical reference regions are shown in 
Fig. 1. White matter erosion was performed by selecting 
voxels which neighborhood in a 9 mm radius sphere was 
composed of at least 90% of white matter. For comparison, 
cerebellar and pontine SUVr provided by the University 
of California (UC), Berkeley, were retrieved from the lat-
est available dataset on the ADNI website (‘UCBERKE-
LEYAV45_10_17_16.csv’).

Textural and shape features were extracted in a volume 
of interest (VOI) that was built using region growing with a 
threshold constraint. The maximal intensity voxels in each 
cerebral hemisphere were chosen as seed voxels. Connected 
voxels that were above a given threshold were iteratively 
aggregated to the growing region. VOIs were constrained 
within a 1400 cm3 enclosing envelope excluding extra-cer-
ebral and sub-tentorial structures (see Fig. 1). Voxel values 
were normalized so that the maximal intensity inside the 
enclosing envelope was equal to 1. The segmentation thresh-
old was sequentially set to 0.95 to 0 by steps of 0.05 (0.95, 
0.90, 0.85…0.10, 0.05), each threshold resulting in a cere-
bral VOI. For each subject and each segmentation threshold, 
the following VOI parameters were computed.

Shape parameters

– Volume and surface of the VOI were computed on a 
voxel basis.

– Asphericity was defined as A =
1

36�

Surf 3

Vol2
− 1 with Vol 

and Surf  the volume and surface of the VOI, and 36� 
the value of the ratio Surf

3

Vol2
 for a perfectly spherical VOI 

(Apostolova et al. 2016). This depicted how the VOI 
departed from a sphere.

– The convex hull of a VOI was defined as the smallest 
convex set of voxels containing the VOI. Convexity 
(sometimes referred to as solidity) was defined as the 
ratio of the volume of the VOI to the volume of its con-
vex hull (El Naqa et al. 2009). Extension was defined as 
the ratio of the surface of the convex hull to the surface 
of the VOI.

– The Minkowski-Bouligand fractal dimension (FrDim) of 
an m-dimensional hypersurface Φ was defined as 

1 The software is currently under beta-testing for routine exploitation 
and will soon be made available for download at: http://scint i.edu.
umont pelli er.fr/reche rche/logic iels-a-telec harge r/.

http://scinti.edu.umontpellier.fr/recherche/logiciels-a-telecharger/
http://scinti.edu.umontpellier.fr/recherche/logiciels-a-telecharger/
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dim(Φ) = lim
�→0

log(n�)
log(1∕�)

 with n� the total number of m-dimen-

sional boxes of side length � required to cover Φ . It was 
evaluated by computing n� for decreasing values of � 
using a box-counting method, then estimating the slope 
of 

{
log

(
1

�

)
;log

(
n�
)}

 through a linear regression (Fal-

coner 1990). In two dimensions (2D, m = 2), it stood for 
the fractal dimension of the surface of the VOI. In three 
dimensions (3D, m = 3), it stood for the fractal dimension 
of the 3D radioactive distribution inside the VOI pro-
cessed as a 3D hypersurface.

Textural parameters

Let D be the radioactive distribution indexed by voxel num-
ber i(i = 1…N) , and �(i) denotes the three-dimensional 
27-neigborhood of voxel i . The following features were 
computed inside the VOI. For the sake of simplicity, these 
features are referred to as ‘textural’ features in the sequel of 
the paper, although some of them  (L2 norm and histogram-
derived parameters) do not strictly speaking reflect the spa-
tial arrangement of adjacent voxels.

– Image  L2 norm defined as 
�∑

iD
2
i

N
 , gradient  L2 norm 

defined as 

�
∑

i

∑
k=x,y,z(∇kD)

2

i

3N
 , and Laplacian  L2 norm 

defined as 
�

∑
i(�D)

2
i

N
.

– Skewness of the voxel intensity distribution.
– Area under the curve (AUC) of the voxel intensity cumu-

lative histogram sampled on 100 bins between 0 and 1.
– Number of local minima of D as the number of voxels 

such that Di = min
{
Dj|j ∈ �(i)

}
.

– Moran’s index I = N∑
i

∑
j wij

∑
i

∑
j wij(Di−

−

D)(Dj−
−

D)

∑
i (Di−

−

D)
2 and Geary’s 

index C =
N−1

2
∑

i

∑
j wij

∑
i

∑
j wij(Di−Dj)

2

∑
i (Di−

−

D)
2  with 

−

D the average 

value of D and w a local weighting kernel based on a 

distance decay function ( wij = 1∕dij when dij ∈ ]02[ , 
wij = 0 otherwise, with dij the distance between voxels i 
and j).

The isotropic gray-level co-occurrence matrix (GLCM) 
G was defined as (Haralick et al. 1973):

where D̂ was the discrete re-sampled distribution 
D̂ = round{LD} , and where a, b = 0…L with L the number 
of gray levels (here we set L = 50). GLCM-based textural 
features were defined as follows (El Naqa et al. 2009):

– Energy:E =
∑

a

∑
b G

2
ab

– Entropy:S = −
∑

a

∑
b Gablog

�
Gab

�

– Contrast:T =
∑

a

∑
b (a − b)2Gab

– Homogeneity:H =
∑

a

∑
b

Gab

1+�a−b�

– Correlation: O =
∑

a

∑
b

(a−μa)(b−μb)
σaσb

Gabwith μa , μb , σa , σb 

respectively the marginal means and standard deviations 
along the a and b dimensions.

Statistical analyses

For each of the studied textural and shape parameters, 
the optimal segmentation threshold was defined as that 
maximizing the z-score between normal controls and AD 
patients in the cross-sectional cohort. That optimal thresh-
old was retained for all subsequent statistical analyses and 
will be indicated as a subscript of the parameter in the 
sequel. Four parameters (surface, extension, 2D FrDim, and 
gradient norm) exhibited a modal distribution as a func-
tion of the segmentation threshold. Hence, maximal argu-
ment (argmax) of surface, 2D FrDim, and gradient norm, 
and minimal argument (argmin) of extension were investi-
gated as potential diagnostic and prognostic markers. The 

Gab =
∑

i=1…N

∑

j∈�(i),j≠i

{
1if D̂i = aandD̂j = b

0otherwise

Table 1  Baseline demographics, ApoE status, and ADAS-cog score in the study population

*: p ≤ 0.001 vs normal. †: p ≤ 0.001 vs MCI
(a) : among these, 93 were baseline SMC, 12 were baseline early MCI, and 8 were baseline late MCI

Baseline status Last known 
status

N Follow-up 
(months)

Male gender Age (years) ApoE4 carriers Baseline ADAS-
cog

Cross-sectional 
cohort

Normal ─ 181 ─ 87 (48%) 74 ± 6 52 (29%) 9 ± 5
AD ─ 148 ─ 86 (58%) 75 ± 8 97 (66%) * 31 ± 8 *

Longitudinal 
cohort

Normal 113(a) 25 ± 12 43 (38%) 71 ± 6 41 (36%) 9 ± 4
SMC/MCI MCI 233 34 ± 16 * 136 (58%) * 72 ± 8 95 (41%) 14 ± 6 *

AD 85 36 ± 13 * 45 (53%) * 73 ± 7 61 (72%) *† 22 ± 7 *†
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distributions of the tested parameters in normal and AD 
patients were compared using the Wilcoxon rank-sum test.

The diagnostic and prognostic values of the tested 
parameters were assessed using receiver operating char-
acteristic (ROC) analysis with clinical status standing as 
the gold standard. The ROC area under the curve (AUC) 
stood as a measure of the global performance in discrimi-
nating normal and AD subjects, either in cross-sectional 
or longitudinal analysis. The optimal cutoff value was 
defined as that maximizing Youden’s index (sensitiv-
ity + specificity − 1) in the cross-sectional cohort. Sensi-
tivity was computed as the positivity rate in AD subjects, 
and specificity as the negativity rate in normal subjects. 
The same cutoff values were employed in cross-sectional 
and longitudinal analyses. Sensitivities, specificities, and 
accuracies were compared using McNemars’s test.

A least squares support vector machine (SVM) was 
used to construct a predictive model of AD conversion 
based on textural and shape features. An SVM is a non-
probabilistic binary classifier based on a set of hyper-
planes that are optimized using a training dataset (Vap-
nik 1999). Each tested SVM implied a combination of 
textural and shape features. The model was trained on 
the cross-sectional cohort using a quadratic kernel func-
tion and validated on the longitudinal cohort. Since an 
exhaustive search of the optimal combination of features 
was not computationally possible, the best SVM was built 
by first finding the optimal combination of three features 
then adding features one by one to the model. The opti-
mization criterion was the maximization of ROC AUC in 
predicting AD conversion.

The predictive value of SUVr, textural and shape 
features, and the SVM classifier regarding conversion 
to AD in the longitudinal cohort was assessed using 
Kaplan–Meier survival curves. Hazard ratios (HR) were 
adjusted using a Cox proportional hazard model includ-
ing gender, age, ApoE4 status, and baseline ADAS-cog 

score as explanatory covariates. For patients who did not 
convert to AD, survival data were considered censored 
from the time of the last visit on record.

A two-sided p-value ≤ 0.05 was considered statistically 
significant. All p-values related to parameter distributions 
and adjusted hazard ratios were corrected for multiple 
comparisons using the Dunn-Šidák correction:  pcorrected = 
1 − (1 − p)m with m the number of comparisons. All sta-
tistical computations were performed using Matlab R2013 
(The Math Works, Natick, MA).

Results

Figures 2 and 3 show the distribution (inter-quartile range) 
of textural and shape features as a function of the VOI seg-
mentation threshold and according to the diagnostic status. 
For each feature, the left panel refers to the cross-sectional 
cohort and distinguishes subjects in terms of baseline status 
(normal or AD), and the right panel refers to the longitudi-
nal cohort and distinguishes subjects in terms of last known 
status (normal, MCI, or AD). The vertical dashed lines stand 
for the optimal threshold maximizing the z-score between 
normal controls and AD subjects in cross-sectional analysis. 
It is noteworthy that the distributions in normal and AD 
subjects were highly similar in both cohorts for all the tested 
features. As already stated, surface, extension, 2D FrDim, 
and gradient norm were characterized by a modal distribu-
tion in which the argument of the local extremum was sen-
sibly different in normal and AD subjects.

Table 2 details the performance of SUVr, textural and 
shape features, and the SVM classifier in the cross-sec-
tional and longitudinal analyses. Inter-quartile ranges in 
normal controls and AD subjects were significantly dif-
ferent for all the tested parameters (all p < 0.001 after cor-
rection for multiple comparison). Regarding SUVr, the 
composite reference region yielded the best performance 

Fig. 1  Segmentation masks (in white) of the three subcortical references regions used for SUVr computation (a: whole cerebellum, b: pons, and 
c: eroded white matter). d: Limits of the enclosing envelope employed for PET feature extraction
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with ROC AUCs of 0.85 and 0.86 and accuracies of 83% 
and 81% in cross-sectional and longitudinal analyses 
respectively, and a hazard ratio for AD conversion of 7.4 
(adjusted 3.8; p < 0.001). As quality control, cerebellar and 
pontine SUVr were highly correlated with those provided 
by UC Berkeley (Pearson’s r = 0.98 for both SUVr, see 
Supplementary Fig. 1), attesting the goodness of image 
registration and ROI definition.

The textural and shape indices whose diagnostic per-
formance (discrimination between normal controls and 
AD subjects in the cross-sectional cohort) was similar to 
that of composite SUVr were  volume60% (ROC AUC 0.84; 
accuracy 82%),  surface65% (0.84; 82%),  convexity60% (0.83; 
82%), image  norm35% (0.84; 82%),  skewness15% (0.88; 85%), 
cumulative histogram AUC 35% (0.84; 81%), local  minima55% 
(0.85; 83%), extension argmin (0.84; 82%), and gradient 
norm argmax (0.83; 83%). In longitudinal analysis, the tex-
tural and shape indices whose predictive value was similar 
to that of composite SUVr included  skewness15% (AUC 0.87; 
83% accuracy; adj. HR 4.0; p < 0.001), cumulative histogram 
AUC 35% (AUC 0.82; 80% accuracy; adj. HR 3.4; p < 0.001), 
local  minima55% (AUC 0.85; 79% accuracy; adj. HR 3.1; 
p < 0.01), Geary’s  C20% (AUC 0.86; 81% accuracy; adj. HR 
3.8; p < 0.001), and gradient norm argmax (AUC 0.83; 82% 
accuracy; adj. HR 4.3; p < 0.001).

The optimal SVM model built using the cross-sec-
tional cohort as training dataset consisted of the combi-
nation of seven textural and shape indices:  volume60%, 
 asphericity55%,  convexity60%, histogram  skewness15%, 
surface argmax, 2D FrDim argmax, and gradient norm 
argmax. Its validation on the longitudinal cohort yielded a 
ROC AUC of 0.91 (vs 0.86 for composite SUVr, p = 0.14), 
86% accuracy (vs 81%, p = 0.03), 85% sensitivity (vs 78%, 
p = 0.08), 88% specificity (vs 84%, p = 0.20), and a hazard 
ratio of 10.1 (adjusted 5.5; p < 0.001). Figure 4 shows the 
ROC curves of the three SUVr and the SVM classifier for 
predicting AD conversion. Figure 5 compares the predic-
tive performance of composite SUVr and the SVM model. 
The scatter plot of SUVr values and SVM scores accord-
ing to last known status (normal, AD, or MCI) is shown 
on the left. The dashed lines indicate the cutoff values for 
SUVr (0.88) and SVM (0). The Kaplan–Meier curves for 
AD conversion in the longitudinal cohort are shown on the 
right, according to the composite SUVr profile and SVM 
classification.

Figure  6 shows two examples from the longitudinal 
cohort for which SVM classification outperformed com-
posite SUVr rating (A: normal subject; B: AD converter). 
Composite SUVr and relevant textural and shape features 
are detailed along with the normalcy cutoffs established by 
ROC analysis of the cross-sectional cohort. Cerebral VOIs 
corresponding to segmentation thresholds ranging from 20 
to 70% are displayed on the right.

Discussion

In this study based on prospective data from the ADNI-2 
cohort, we investigated to what extent the texture and shape 
of amyloid deposition computed on baseline florbetapir 
PET were characteristic of AD status and predictive of 
AD conversion in MCI subjects. Concurrent baseline MRI 
scans were available and exploited for PET data normaliza-
tion in order to obtain accurate brain partitioning for SUVr 
measurements (Saint-Aubert et al. 2014). As expected, all 
three SUVr were significantly different in normal and AD 
subjects, in both cross-sectional and longitudinal analyses. 
Composite SUVr showed slightly better diagnostic and prog-
nostic performance than cerebellar and pontine SUVr, in line 
with previous evidence of the superiority of SUVr account-
ing for white matter (Chen et al. 2015; Landau et al. 2015; 
Brendel et al. 2015; Ben Bouallègue et al. 2017).

Our results demonstrate that amyloid PET textural and 
shape analysis is feasible and yields relevant semi-quanti-
tative markers of amyloid plaque burden. The underlying 
approach eliminates the need for count ratio (SUVr) com-
putations, which is appealing on both sides of the ratio. 
First, on the cortical side, the method does not require the 
segmentation of cortical regions of interest. Cortical ROIs 
are usually obtained after partitioning of the registered PET 
data using a reference atlas. Registration inaccuracies and 
segmentation imperfections related to inter-individual ana-
tomical variability have an impact on the measured cortical 
retention indices. Registration and segmentation are par-
ticularly critical in subjects with cortical remodeling due 
to aging and neurovascular or neurodegenerative disease. 
Ideally, PET data registration should rely on concurrent MR 
imaging (Saint-Aubert et al. 2014), which is often not avail-
able in routine clinical practice. Moreover, quantification 
of cortical ROIs inherently suffers from PVE, especially in 
subjects with cortical atrophy (Rullmann et al. 2016). Sec-
ond, on the subcortical side, our textural and shape charac-
terization is independent of any subcortical reference. There 
is currently no consensus regarding the ideal subcortical 
reference region. Pontine and cerebellar uptake is prone to 
noise and longitudinal variability due to the small size of 
the considered regions and their peripheral location in the 
PET scanner field of view (Chen et al. 2015; Landau et al. 

Fig. 2  Distribution of textural and shape features according to the 
segmentation threshold in the cross-sectional and longitudinal 
cohorts. The vertical dashed lines stand for the optimal threshold 
maximizing the z-score between normal controls and AD subjects in 
cross-sectional analysis. Status (normal, AD, MCI) refers to baseline 
status in the cross-sectional cohort and last known status in the longi-
tudinal cohort. IQR: inter-quartile range
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2015). Although composite reference regions seem to allow 
more robust quantification (Chen et al. 2015; Landau et al. 
2015; Brendel et al. 2015; Schwaz et al. 2017), recent results 
tend to demonstrate that white matter uptake might not be as 
aspecific as it was thought to be (Nemmi et al. 2014).

Standard assessment of amyloid PET is based on 
qualitative binary reading using established interpreta-
tion criteria that are applicable to PiB and fluorinated 
tracers (Minoshima et al. 2016). Quantification of amy-
loid deposition based on count ratios may be used in 
addition, although its variability among tracers, scanners, 
and post-processing methods still requires substantial 
standardization effort (Klunk et al. 2015). The results 
presented here indicate that textural and shape analysis 
of cerebral tracer uptake are capable of translating visual 
impression into a relevant quantitative information. The 
validity of the proposed indices has been assessed using 
florbetapir images but should hold for other amyloid 
tracers. Indeed, although differences in pharmacokinetics 
and pharmacodynamics may induce variations in semi-
quantitative estimations, uptake patterns are expected to 
be similar.

The shape indices aimed to describe the loss of gray/
white matter contrast and the extension of tracer uptake 
to the edge of the cerebral cortex in pathological scans. 
These were thus characterized by a higher volume and 
surface, lower asphericity, higher convexity and exten-
sion, and lower 2D FrDim due to the smooth regular 
boundary of the cortical uptake (Fig. 6B). In negative 
scans, the confinement of tracer uptake to white matter 
with numerous concave arboreal ramifications yielded 
the inverse trend in the shape indices (Fig. 6A). These 
indices showed diagnostic and prognostic performance 
that was globally almost as good as that of SUVr. Of 
note, basic descriptors such as  asphericity55% and 
 convexity60% demonstrated diagnostic and prognostic 
accuracies and hazard ratio for AD conversion similar 
to those of optimal semi-quantitative rating. Although 
the 55% and 60% segmentation thresholds may appear 
limiting in the sense that they may vary in function of 
the tracer used or the scanner resolution, Fig. 2 clearly 
shows that the discriminative power of the shape param-
eters remained valid over a broad range of threshold 
values (40 − 70% as regards asphericity and convexity, 
for example). Besides, the shape parameters that exhib-
ited a modal distribution as a function of segmentation 

threshold, like surface or extension, were able to provide 
a pertinent global characterization of tracer uptake that 
was independent of any arbitrary segmentation, with 
excellent diagnostic and prognostic values.

Albeit broadly studied in the field of oncological PET 
imaging, textural features have been little investigated 
with regard to brain PET (and particularly amyloid PET) 
imaging. Textural markers of tracer uptake are known 
to carry subtle information that surpasses classical ROI 
quantification (Buvat et al. 2015). The textural param-
eters tested here included well-established first-order 
(histogram-based) and second-order (GLCM-based) 
parameters, as well as standard measures of spatial auto-
correlation (Moran’s I and Geary’s C). The  L2 norm of 
the image and its first and second derivatives, and the 
number of local minima, are less usual but appear as nat-
ural markers of global heterogeneity. Histogram-based 
indices  (skewness15% and cumulative histogram AUC 
35%) were highly correlated with the subject’s status and 
strong markers of progression to AD, as they reflected the 
prevalence of high-intensity voxels in positive scans and 
low-intensity voxels in negative scans. This was already 
highlighted in (Nemmi et al. 2014) based on separate his-
togram analysis of gray and white matter. Consistent with 
the results of Shokouhi et al. (Shokouhi et al. 2016), global 
measures of spatial auto-correlation were relevant indica-
tors of amyloid load distribution. Our results demonstrate 
their prognostic value, as Geary’s C performance in longi-
tudinal analysis was equivalent to that of composite SUVr 
(same AUC, accuracy, and adjusted HR).

As described in the Methods section, the image acqui-
sition protocols of ADNI-2 were designed to ensure the 
consistency of PET data within and between sites, particu-
larly in terms of spatial resolution (via post-smoothing) and 
signal-to-noise ratio (via injected doses, injection-to-acqui-
sition delay, and scan duration). This standardization step 
was an important prerequisite for obtaining reliable shape 
and texture indices with minimal intra-class variability. Our 
results attest that such indices extracted from multi-site data 
carry relevant information provided that the image quality 
has been harmonized. PET images were spatially normalized 
to the MNI space for SUVr computations. For texture and 
shape characterization, voxel registration and labeling were 
also required to mask extra-cerebral activity. The lack of 
small cortical ROIs, however, renders the registration pro-
cess and the template choice less demanding and dedicated 
PET templates should provide sufficiently accurate registra-
tion when MR data are not available (Akamatsu et al. 2016; 
Hsiao et al. 2013).

Automated multivariate data analysis tools like discri-
minant analysis, naïve Bayes classification, and support 
vector machine are powerful supervised learning tech-
niques meant to deal with complex, high-dimensional 

Fig. 3  Distribution of textural and shape features according to the 
segmentation threshold in the cross-sectional and longitudinal 
cohorts. The vertical dashed lines stand for the optimal threshold 
maximizing the z-score between normal controls and AD subjects in 
cross-sectional analysis. Status (normal, AD, MCI) refers to baseline 
status in the cross-sectional cohort and last known status in the longi-
tudinal cohort. IQR: inter-quartile range
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data sets. Yet, implementation of such automated com-
puterized methods in clinical routine requires care-
ful preliminary investigation and validation. SVM and 
similar classification methods based on PET and/or MR 
data have already been proved useful for diagnosis and 
prognosis purposes in MCI and AD patients (Westman 

et al. 2012; Padilla et al. 2012; Dukart et al. 2013). This 
study demonstrates that, when optimally combined, tex-
tural and shape features yield at least as good predictive 
accuracy as classical semi-quantitation using SUVr. Of 
note, adding the SUVr to the SVM model did not improve 
its overall performance, attesting that the chosen SVM 
parameters were self-consistent descriptors of amyloid 
deposition and independent predictors of AD conversion. 
Further improvement of the proposed model is ongoing 
and should include combining additional biomarkers (MR 
morphometry, 18FDG PET, CSF markers), training the 
model based on autopsy records, and long-term follow-up 
of the ADNI-2 cohort.

Conclusion

In this study, we demonstrated that textural and shape anal-
ysis of florbetapir images provide relevant diagnostic and 
prognostic information. Combining appropriately chosen 
textural and shape features yields a predictive model of AD 
conversion in cognitively impaired subjects that compares 

to classical SUVr rating in terms of predictive accuracy. 
The approach is innovative and appealing in so far as it 
does not require the segmentation of small cortical ROIs or 
impose the choice of a subcortical reference. Further inves-
tigations are needed to evaluate the robustness of optimal 

Fig. 4  ROC curves of cerebellar (crb), pontine (pons) and composite 
(comp) SUVr, and SVM classifier for predicting AD conversion in 
the longitudinal cohort

Fig. 5  Predictive value of composite SUVr and the SVM model in 
the longitudinal cohort. Left: Scatter plot of SUVr values and SVM 
scores according to last known status. The dashed lines indicate the 
cutoff values for SUVr (0.88) and SVM (0). Right: Kaplan–Meier 

curves for AD conversion according to the SUVr profile and SVM 
classification. Adj HR: adjusted hazard ratio (Cox model accounts for 
age, gender, ApoE status, and baseline ADAS-cog score)
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Fig. 6  Two examples from the longitudinal cohort. A: 66-year-old 
female subject with significant memory concern at baseline who 
was rated normal after a 36-month follow-up. Composite SUVr was 
pathological at 0.92. B: 57-year-old female subject with late MCI at 
baseline who converted to AD after a 24-month follow-up. Compos-
ite SUVr was normal at 0.83. Both subjects were correctly classified 

using support vector machine. Composite SUVr and relevant textural 
and shape features are detailed on the left of each panel, along with 
the normalcy cutoffs established by ROC analysis of the cross-sec-
tional cohort. On the right are detailed the limits of the cerebral VOIs 
corresponding to segmentation thresholds ranging from 20 to 70%
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segmentation thresholds and cutoff values when using other 
amyloid tracers and according to image resolution. Exploit-
ing additional well-established biomarkers of AD might help 
improve the performance of the model.
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