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1. Introduction

Magnetic resonance imaging (MRI) can provide valuable information for the detection of degenerative diseases, 
not just qualitatively but even measurement of volumes, areas and distances between different sections, especially 
when magnitudes vary, due to the presence of severe deformation. In these cases, one of the main problems is 
the identification of the optimal slice on which to make these measurements. In this framework, identification 
of the mid-sagittal plane (MSP) in brain MRI scans is crucial for detecting many of the most important 
neurodegenerative diseases such as Parkinson’s disease (PD) (Nigro et al 2014), Huntington’s disease (HD) (Di 
Paola et al 2010, 2012), multiple sclerosis (MS) (Bilotta et al 2010, 2012, Cerasa et al 2012) and Alzheimer’s 
disease (AD) (Di Paola et al 2015). In this paper, we present a fully automated method for identifying the MSP in 
brain MRI scans of subjects with progressive supranuclear palsy (PSP), PD, MS and AD as well as healthy control 
subjects.
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Abstract
Objective: The process of diagnosing many neurodegenerative diseases, such as Parkinson’s and 
progressive supranuclear palsy, involves the study of brain magnetic resonance imaging (MRI) 
scans in order to identify and locate morphological markers that can highlight the health status of 
the subject. A fundamental step in the pre-processing and analysis of MRI scans is the identification 
of the mid-sagittal plane, which corresponds to the mid-brain and allows a coordinate reference 
system for the whole MRI scan set. Approach: To improve the identification of the mid-sagittal plane 
we have developed an algorithm in Matlab® based on the k-means clustering function. The results 
have been compared with the evaluation of four experts who manually identified the mid-sagittal 
plane and whose performances have been combined with a cognitive decisional algorithm in order to 
define a gold standard. Main results: The comparison provided a mean percentage error of 1.84%. To 
further refine the automatic procedure we trained a machine learning system using the results from 
the proposed algorithm and the gold standard. We tested this machine learning system and obtained 
results comparable to medical raters with a mean absolute error of 1.86 slices. Significance: The 
system is promising and could be directly incorporated into broader diagnostic support systems.
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6 Some of the data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete 
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf
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PD, for example, presents with a variety of neurological malfunctions resulting from pyramidal cerebellar, 
vegetative and cognitive degeneration. The disease affects the nigro-striatal pyramid and involves the cerebellum 
and deep cerebral structures, but also neuronal degeneration in the neo-striatum. Accurate early diagnosis of PD 
is important for both therapeutic purposes—to target therapy more precisely to the various symptoms—and 
in terms of prognosis. However, although advanced diagnostic techniques have recently been developed for PD 
(Oba et al 2005, Quattrone et al 2008) it suffers from a lack of universally accepted diagnostic criteria, making it 
difficult to distinguish; therefore PD is characterized by a high rate of misdiagnosis (Litvan et al 1996). Structural 
MRI is routinely used to detect early signs of PD, from hyper-intensity of the lateral edge of the putamen and atro-
phy of the brainstem; cross-shaped hyper-intensity of the bridge and middle cerebral peduncles (Bhattacharya 
et al 2002) is also an indicator of this disease. Axial T2-weighted MRI is used to measure the arrangement of basal 
ganglia. It is particularly worth noting that MRI morphometry (Oba et al 2005) allowed a series of studies that 
led to the creation of the Quattrone index (Quattrone et al 2008). To allow this index to work properly, it is very 
important to correctly detect the mid-sagittal slice in MRI. This slice, usually seen as an indicator of variation, 
allows one to observe the main internal anatomical structures in the MSP (Ruppert et al 2011), taking advantage 
of the mirror image symmetry of the human brain. Determination of the exact location of this plane is required 
for many applications; however, there is no universal agreement about the identification of the MSP, as the divid-
ing plane between the brain hemispheres often does not correspond to the plane of symmetry of the head.

Changes in the neurotransmitter systems and signal transduction mechanism are very frequent in patients 
with AD, altering the cholinergic signaling system and the production of the neurotransmitter acetylcholine 
(Crews and Masliah 2010). Moreover, we can observe other cerebral alterations both macroscopic (a decrease in 
the weight and volume of the brain, due to cortical atrophy and ventricular dilatation) and microscopic (neu-
ronal loss, glial and astroglial reaction, microvessel alteration). As a consequence of these brain modifications it 
becomes impossible for the neurons to transmit nerve impulses; these neurons then die and progressive atrophy 
of the brain as a whole ensues (Crews and Masliah 2010).

MS is a complex neurodegenerative disease characterized by inflammation which results in multifocal demy-
elinating lesions and degeneration, with diffuse axonal loss leading to brain atrophy in the central nervous sys-
tem (Lombardo et al 2017). Given the cyclical relapsing/remitting behavior of MS, MRI is fundamental in the 
diagnosis and monitoring of treatment. Traditional quantitative parameters include whole brain and white and 
gray matter volumes, as well as the brain lesions load, with the use of sequences and complex post-processing 
techniques, which are usually time-consuming procedures if they are not automated by particular segmentation 
algorithms (Bilotta et al 2010, Cerasa et al 2012).

The improvement of MRI techniques is also useful for the novel field of network physiology, in particular to 
reach its main goal of building the first complex atlas of dynamic interactions between different brain locations 
and organ systems (Bartsch et al 2015). The human organism comprises a complex and integrated network of 
different organ systems, each with its own regulatory dynamic mechanism and dynamic interactions between 
each system that define different physiological states (Ivanov and Bartsch 2014). Changes in these networks of 
interactions indicate not only changes between different physiological states but also the transition between a 
physiological situation and a pathological one. Since the different organ systems are closely connected, a failure 
in one organ can lead to total failure of the organism; therefore mapping and studying changes in the network 
of interactions could aid early diagnosis neurodegenerative diseases such as PD and MS that involve other organ 
systems. Further steps in brain imaging could help to reconstruct anatomical brain connectivity, providing a 
powerful tool for diagnosis of neurodegenerative disorders as well as for extracting information about the func-
tional network connectivity of the brain.

The problem with identifying the MSP (and in general with morphometric measurements of the brain) is 
that measurements are made in an environment with variability characteristics that are relevant. Consider, for 
example, the difference in the resolution of brain scans: this depends on the type of brain scan employed, the time 
taken for shooting, the variability of the morphology of individual patients and the multiplicity of motion arti-
facts due to technical problems or casual movements of the skull during recording. Moreover, the method most 
often used to analyze these changes in measurements of volumes, areas and distances is to return the set of images 
to the standard model in order to segment the new dataset. But very often this approach is not useful because it 
reveals that interpolation techniques modify original data and alter brain images, making subsequent measure-
ments unsuitable for the correct identification of the proper disease markers. This happens when, for instance, an 
entire set of MRI scans is tilted in order to make the scan plane parallel to the sagittal plane. In this case, rigid rota-
tion is the first step in the pre-processing of the MRI scans. Then, an interpolation is required in order to repre-
sent the new MRI set as an imaginary cube, the three-dimensional (3D) reconstructed image of whole brain, and 
the same is done for each voxel. In this last operation some information is lost, for example information about the 
ratio between the different dimensions of some brain areas—the distances and volumes change, especially in the 
mid-brain, the area of interest in the diagnostic process for the above-mentioned diseases.

Physiol. Meas. 40 (2019) 115009 (14pp)
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To meet these needs, and to support medical diagnosis, we have implemented a computational method for 
the automatic identification of the MSP from the raw data. Developed in Matlab, it uses a classic k-means based 
algorithm to localize the slice of the DICOM file containing the MSP among all the structural MRI (sMRI) brain 
scans. To validate the method, we compared its performance with manual measurements conducted by four 
expert raters who carefully analyzed the MRI brain scans of the healthy, PSP, PD, AD and MS subjects. In order 
to carefully compare the manual segmentation results with the results of our proposed algorithm we introduced 
a definition of ‘gold standard’ for MSP location, by imposing majority rules and developing a ‘cognitive’ deci-
sional algorithm for the human raters’ measurements. Furthermore, we trained a machine learning system with 
the results of our proposed algorithm and the ‘gold standard’. The ultimate purpose of this study is to provide 
computational tools that can be used to develop fully automated systems with the capability to recognize patterns 
relevant to medical diagnosis and clinical investigation.

The paper is organized as follows. In section 2 the dataset used and the methods are outlined. The results fol-
low in section 3, with the main conclusions and further developments in section 4.

2. Materials and methods

2.1. Datasets
The datasets comprised a total of 109 MRI scans as described in the following paragraphs.

Brain scans of 37 individuals comprising 14 healthy control subjects (mean age 52 years; six women, eight 
men), 13 PD subjects (mean age 69 years; four women, nine men) and 10 PSP subjects (mean age 71 years; three 
women, seven men) provided by the CNR Catanzaro (CZ, Italy). The scans were acquired by a 3.0 T magnetic 
resonance (MR) scanner (GE Medical Systems Discovery MR750) using a 3D T1-weighted sequence [sagittal 
acquisition plane, inversion time 650 ms, repetition time (TR)  =  9.15 ms, echo time (TE)  =  3.67 ms, slice thick-
ness 1.0 mm, resolution 256  ×  256 pixels, voxel size 1.0 mm  ×  1.0 mm  ×  0.5 mm]. This set of data was used in a 
previous paper by some of the authors (Nigro et al 2014).

To test if our methods are independent with respect to the specific MRI scanner used and to PD and its vari-
ants, data from 15 MS subjects (mean age 45 years; 12 women, three men) were used. Data related to MS were 
collected at the neurodiagnostic unit of Cetraro Hospital (CS), in compliance with the Privacy Act and current 
legislation (Declaration of Helsinki), which provided MRI files. Brain scans were acquired using a 1.5 T MR 
scanner (Philips Achieva Rev R5 v3-rev.00) with slice thickness 1.0 mm, resolution 336  ×  336 pixels, voxel size  
0.762 mm  ×  0.762 mm  ×  1.0 mm, TR  =  7.0286 ms and TE  =  3.178 ms. Subjects’ data were treated according to 
the current laws on privacy. The ethics committee of the Cetraro Hospital approved the research.

Furthermore, MRI scans for 57 AD subjects (mean age 75 years, 29 women, 28 men) were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). The ADNI was 
launched in 2003 as a public–private partnership, led by principal investigator Michael W Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial MRI, positron emission tomography (PET), other biologi-
cal markers and clinical and neuropsychological assessment can be combined to measure the progression of 
mild cognitive impairment (MCI) and early AD (for up-to-date information see http://adni.loni.usc.edu/). All 
these brain MRIs were acquired using a 3.0 T MR scanner (Siemens) with inversion time 900 ms, TE  =  2.98 ms, 
TR  =  2300.0 ms, resolution 240  ×  256 pixels, slice thickness 1.0 mm and voxel size 1.0 mm  ×  1.0 mm  ×  1.0 mm).

In summary: for each group of subjects there are different technical specifications related to the type of brain 
scan performed and the physical characteristics of the system used. To test our methods, we used 3D T1-weighted 
sequences (sagittal acquisition plane), restricting our interest to a range of 100/101 central slices, depending on 
whether the total number of slices was even or odd, respectively, in order to always choose a central interval and 
not computationally overburden the software. Technical features of the datasets are summarized in table 1. All 
data scans were anonymized to comply with the current ethical requirements.

2.2. k-means
The k-means algorithm is an exclusive or partitioning-type algorithm. Given a set of n objects D and a number of 
clusters k, it organizes objects into separate partitions k (k � n), where each one represents a cluster (MacQueen 
1965). Clusters are used in order to optimize a grouping criterion, generally a function based on the distance 
between the objects. In this case, the similarity measure is based on the average value of the objects in a cluster, 
which can be seen as the centroid or center of gravity of the cluster.

Given a set of n elements S = {xi,i=1,...,n} defined in a space where it is possible to state a metric d , and the 

number of clusters k in which to partition the set, k elements c−j εS, jε {1, . . . , k} are randomly chosen among all 

the elements of S. Each c−j  will be at first the centroid of the corresponding cluster Cj , with jε {1, . . . , k}. Then, 

another element x−iεS is randomly chosen. x−i will be associated with the cluster Cj0 whose centroid c−j0 is the closest 

of all the centroids c−j , in accordance with the metric d :

Physiol. Meas. 40 (2019) 115009 (14pp)
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xiε Cj0 so that d
Ä

xi, cj0

ä
= min1�j�k d(xi, cj)

Cluster Cj0 will have a new centroid, calculated considering both c−j0 and x−i. This is repeated by identifying the 

cluster to which another random element x−iiεS belongs. The process is iteratively repeated until the whole set S 

has been partitioned as follows:

∀ i ε {1, . . . , n} ∃ j ∈ {1, . . . , k} such that xi ∈ Cj.

For the aim of this work, we considered the T1-weighted sequences of sMRI brain scans of the experimental 
subjects acquired along the sagittal plane, and using a k-means clustering based algorithm we segmented each 2D 
image, corresponding to a slice, into four clusters (figure 1).

2.3. Image pixel intensity (IPI)
In order to reduce the computational cost, and since we are trying to locate the mid-sagittal reference slice, we can 
just consider the central 100/101 slices. These will be placed in an INPUT folder and we repeat the procedure for 
each subject. The goal is to identify the slice in which the difference in term of gray-scale pixel intensity between 
the different brain tissues is more marked. For this reason we called our algorithm the image pixel intensity (IPI) 
algorithm. In our proposed algorithm we used two main Matlab scripts: k_mean.m and peaks.m.

 1.  k_mean.m
We can divide this script into three sub-parts:
a.  Iteration of the k-means method to all DICOM files in the INPUT folder of each subject. In this case:

 •  the set S is a 2D image (the slice on sagittal plane);

 •  the elements xi are the points in the image corresponding to the pixels;

 •  the metric d  is defined by

d(xi, xj) = |v (xi) − v
(
xj

)
|.

 •  k = 4
We chose a cluster number equal to four because experimentally we observed that with this choice 
we can obtain the best slice partition. Indeed, by partitioning the image into four clusters it is 
possible to distinguish quite well the different areas of the mid-brain, the region of greatest interest 
in defining the MSP (figure 1). Moreover, with this choice we can distinguish the different brain 
tissues from each other. Next, the clusters are sorted in ascending order depending on the number of 
pixels they contain. Therefore, cluster 1 will contain the points corresponding to pixels representing 
the cerebrospinal fluid, cluster 2 will contain the points corresponding to pixels representing gray 
matter, cluster 3 will contain the points corresponding to pixels representing white matter, and 
finally cluster 4 will contain the points corresponding to pixels representing the background. It is 
possible to determine this order because at the variation of the slice, within the central slices, the 
ratio between the numbers of pixels of the different brain tissues is always the same. The process is 
repeated iteratively for all files (sMRI central slices) in the INPUT folder for each subject.

Table 1. Technical features of the datasets used in this work.

Dataset Subsets Scanner machine

Slice resolution 

(pixels)

Voxel size  

(mm)

Slice  

thickness 

(mm)

Total  

number  

of slices

Range considered 

(slice number)

CNR  

Catanzaro

Healthy GE Medical Systems  

Discovery MR750 

3.0 T

256  ×  256 1.0  ×  1.0  ×  0.5 1.0 367/368 133–233/134–233

PD 256  ×  256 1.0  ×  1.0  ×  0.5 1.0 367/368 133–233/134–233

PSP 256  ×  256 1.0  ×  1.0  ×  0.5 1.0 367/368 133–233/134–233

Cetraro  

Hospital

MS Philips Achieva Rev 

R5 v3-rev.00 1.5 T

336  ×  336 0.762  ×  0.762  ×  1.0 1.0 210 55–154

ADNI AD Siemens 3.0 T 240  ×  256 1.0  ×  1.0  ×  1.0 1.0 176/208 38–137/54–153

Physiol. Meas. 40 (2019) 115009 (14pp)
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b.  Graph creation.
    This part of the script concerns the creation of the graphs for each subject. Each graph represents the 

number of pixels contained in each cluster by varying the slice index, always considering only the 
100/101 central slices. Note the clusters for each slice are sorted in increasing order. This step is crucial 
since the choice of the number associated with each cluster in the k-means iteration occurs randomly 
as the initial centroids in the first part are randomly chosen among all points in the image. Therefore, 
once number 1 can be associated with the cluster containing the points representing the cerebrospinal 
fluid, another time, when applying the same method to another slice, the number 1 can be associated 
with the cluster corresponding to the white matter and so on for the other brain tissues. Sorting clusters 
every time in ascending order can ensure two-way correspondence between the cluster identification 
number and the cerebral tissue (figure 2(a)).

c.  Finally, the script creates a graph representing the differences in the number of pixels in different 
tissues, by varying the slice index (figure 2(b)).Note that the difference in the number of pixels 
between region 4 and the others is not considered because cluster 4 contains pixels corresponding to 
the background, and for the central slices there are no substantial differences between one slice and 
another in the number of pixels representing the background.

 2.  peaks.m
  This script allows us to automatically identify the peaks of each ‘difference curve’ for each subject, 

whether they are absolute or relative maximum or minimum, provided that the jump between the 
function valuated at the critical point and the average of the values that the function assumes elsewhere 
is relevant. In particular, suppose we analyze a ‘difference curve’ that we call v. Now we can consider two 
cases:
a.  The peak of the curve is situated within the 40 central slices. In this case only the 40 central slices are 

considered to be established if the curve has a maximum or a minimum in the formulae

   •  if | min30�i�70 v (i)− v(30)+v(70)
2 | > |max30�i�70 v (i)− v(30)+v(70)

2 |, then v has an absolute 
minimum in j such that ( j) = min30�i�70v (i);

   •  if 
∣∣∣min30�i�70v (i)− v(30)+v(70)

2

∣∣∣ < | max30�i�70v (i)− v(30)+v(70)
2 |, then v has an absolute 

maximum in j  such that v ( j) = max30�i�70v (i).

Figure 1. First step of the code. The 2D MRIs are divided into four clusters according to their gray-scale values. Each cluster 
corresponds, approximately, to a different brain tissue.

Physiol. Meas. 40 (2019) 115009 (14pp)
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 Note that we do not consider the average of the values that v assumes elsewhere to reduce the com-
putational cost and also because we notice that there are no substantial changes between v (30) and 
v (i) , i{1, . . . , 30}, or between v (70) and v (i) , i{71, . . . , 100}.

 b.  The peak of the curve is situated outside the 40 central slices or too close to the edges of the central 
range (in particular if the peak is located in [m, m + 3] or in [M − 3, M] where m and M  are, 
respectively, the minimum and the maximum extremes of the 40-slice central range) to surely establish 
if that point is a maximum or minimum for the curve (this point could be part of the ascending or 
descending section of the curve before reaching the maximum or minimum outside the central range). 
In this case we consider the whole interval of the central 100/101 slices. The minimum or maximum of 
the curve is chosen using the same procedure explained in 2a.

We indicate the ‘difference curve’ between clusters i and j as dij, i, j ∈ {1, 2, 3}. Finally, we compute the  
arithmetic average between the indices of the slice corresponding to the peak of each curve. The output of  
the previous script is a vector p = (p1, p2, p3), where ph,h{1,2,3} is the index of the slice corresponding to 

the maximum or minimum of the ‘difference curve’ d12, d13, d23, respectively. We calculated the average 

m = 1
3 (p1 + p2 + p3) and the value is approximated to the nearest integer. The same procedure is repeated for all 

subjects.

2.4. Implementation of the IPI algorithm
A block diagram of our proposed IPI algorithm is shown in figure 3.

Regardless of the resolution of the brain scans, the central 100/101 slices for each subject are provided as input 
to the developed system. The first script k_mean.m works on each slice improving the k-means method, shown 
from the second cycle. The first cycle ends when all the slices have been analyzed. Then the script creates a graph 
representing the number of pixels in the different clusters by varying the slice index and computes the difference 
between the number of pixels in the clusters. Finally, the script peaks.m gives the critical points of ‘difference 
curves’, thus identifying the index of the mid-sagittal reference slice.

2.5. Inter-rater reliability and gold standard definition
To obtain a gold standard with which to compare the performance of the developed IPI algorithm, we considered 
an independent evaluation of the sMRI images by human experts. We invited the opinions of four human experts 
(raters of sMRI images) who manually segmented the MSP for each subject in the considered sample.

In order to arrive at a perfect agreement with the mathematical algorithms in delineating the mid-sagittal 
slice that could be used as a standard to compare the performance of the algorithm, we used a statistical–mathe-
matical model that allows us to outline an evaluation of the performance of the individual rater and an analysis 
of the characteristics of each item studied (Lord and Novick 1968). There are two ways of applying this method: 
dichotomous and polychromous ratings. For dichotomous rating, values correct/incorrect is assigned to each rater’s 
response to obtain a proportional rating. The results gave us the percentage of agreement among raters. This 
means, for instance, that if raters agree in 61% of the 109 cases considered they do not agree in the remaining 39% 
of cases. Some limitations of this method are related to the fact that this measure does not discriminate exactly 
between agreement on positive and negative ratings and, having such a low percentage of success, it could not be 
considered an optimal gold standard by which test the performance of our automatic algorithm.

Figure 2. (a) Second step of the code. The graph shows the number of pixels present in each cluster by varying the slice number. (b) 
Third step of the code. Every curve shows the difference in the number of pixels between two different clusters.

Physiol. Meas. 40 (2019) 115009 (14pp)
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The central problem the raters found in the measurement of the MSP was that there is no single unique 
slice that identifies the subtle morphological differences of the midbrain pattern in the mid-sagittal, but rather a 
dynamical interval with the rise and fall of the correct mid-sagittal configuration. Therefore, the choice could be 
from among those slices belonging to previously defined sets of slices to which we assigned the values for the rat-
ing categories or levels. To satisfying this requirement we implemented a polychromous rating, giving scores of 2, 
3 and 4, for differences among raters of two, three and four slices. This method, while showing improved percent-
age agreement, also exhibited many downsides: we can have a high enough percentage agreement only when the 
raters identify exactly the same slice, and the measurements of the expert raters always differed by at least one to 
two slices. Therefore, we decided to discard the polychromous approach.

In order to find agreement between raters’ measurements we needed to implement a procedure that could 
not take in account small variations (one to two slices); thus we considered the arithmetic average between the 
slices identified by raters as mid-sagittal. Nevertheless, this approach is not much more reliable. For instance, if 
we have three raters who have indicated the same value x and only one who has indicated the value y, it seems 
reasonable that the correct value is x and not the average of {x, x, x, y}.

Therefore, we incorporated a decision-making process with majority rule and a ‘cognitive’ decisional algo-
rithm that we developed to support the choice. The following procedure has been applied to establish the agree-
ment between raters on the identification of the MSP for each subject:

 •  In the case of majority of agreement among the raters upon a slice as the mid-sagittal reference, that slice is 
chosen as the gold standard.

Figure 3. Diagram of the implemented IPI algorithm.

Physiol. Meas. 40 (2019) 115009 (14pp)
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 •  Otherwise, when there is a split decision (two of the raters versus the other two raters, or all four raters have 
different opinions) a random way of choosing the mid-sagittal reference slice from between the two or four 
different values proposed by the raters is employed.

We note that in the case where there is no majority in agreement, taking the average between the measure-
ments instead of a random choice between the values provided by the raters may not offer the best decision, since 
this could happen in the case where one of the raters is not sufficiently precise (due to tiredness or other reasons) 
for the particular measure and the average would take in account this rater’s evaluation but it would be different 
from the measurements of all the other raters, not picking any of them. To avoid this problem we decided to ran-
domly choose the index of the reference slice for the MSP from the different raters’ evaluations.

Finally, the defined gold standard was compared with the results obtained from the IPI algorithm for each 
subject. In particular, the slice corresponding to the peak for each ‘difference curve’ was taken into account as 
well as the arithmetic average of the index of the slices corresponding to the peak of all the three ‘difference 
curves’, in order to study the reliability of each curve and the average to the gold standard.

2.6. Machine learning approach
The last step of our work involves the development of a machine learning model to further test the reliability of 
the outcome of the IPI algorithm to automatically locate the MSP. Our aim is to apply an unsupervised machine 
learning technique in order to verify if the results of the proposed algorithm are useful as input to train a machine 
to automatically detect the MSP reference slice, given the gold standard as output.

We chose to apply an ensemble learning method for the regression task, namely the random forest (RF) 
model (Breiman 2001) with the following parameters: 

 •  number of trees  =  10;
 •  tree depth  =  5.

We chose a number of trees equal to 10 since, following the literature (Liaw and Wiener 2002, Oshiro et al 2012) 
and experimentally, this choice offered a good balance between computational cost and high accuracy for the 
model to predict the expected value for the MSP. Moreover, for simplicity and prevention of over-fitting, we 
chose a tree depth equal to 5 (Criminisi et al 2010, Bozkir and Sezer 2011).

We employed 10-fold cross-validation on the entire set of 109 subjects. In particular, in each iteration a subset 
of 98/99 random subjects was chosen to be the training set, and the rest (10/11 subjects) were reserved for the 
test set. Moreover, during each iteration the training set is randomly divided in five subsets of 19/20 subjects. 
Each sub-subset is used as a training set, then we double the size of the training set, using the previous sub-subset 
together with another sub-subset, and keep increasing the size of the training set, adding a sub-subset every time 
until the whole subset of 98/99 subjects has been used as training set. Therefore, we trained the machine with 20-, 
40-, 60-, 80- and 98/99-subject sets in sequence in order to check whether or not the IPI results constituted a good 
set of objects for training the machine (by analogy with human learning, the greater the amount of information 
used to help someone learn the more he or she should be able to recognize objects).

3. Results

3.1. The performance of the IPI algorithm
Results obtained by the automatic detection of the MSP as explained in the previous section are displayed in 
figure 4.

The first 37 subjects (CNR Catanzaro dataset in table 1) have a MRI set of 367/368 slices in total. There-
fore the IPI algorithm returns a proposed value for the MSP reference slice of 186.0 ± 8.8, 187.1 ± 6.3 and 
184.8 ± 8.3, respectively, for curves d12, d13 and d23, taking into account the arithmetic average and the standard 
deviation across all 37 subjects. For the other 72 subjects (Cetraro Hospital and ADNI datasets in table 1), who 
have a MRI set of 176/210 slices, the IPI algorithm returns a value for the MSP reference slice of 98.1 ± 10.3, 
98.5 ± 8.8 and 98.6 ± 8.4, respectively, for the curves d12, d13 and d23, taking into account the arithmetic aver-
age and the standard deviation across all 72 subjects.

3.2. Inter-rater agreement and emergence of a gold standard
To verify the outcome of our proposed IPI algorithm we used an independent evaluation of the sMRI images 
by human experts. In order to arrive at a perfect agreement between raters and from their collective decision to 
obtain a ‘gold standard’ with which to compare the performance of our algorithm we employed the ‘cognitive’ 
decisional algorithm explained in section 2.5.
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Results for the manual segmentation of the mid-sagittal performed by expert raters in the different data sub-
sets are reported in figure 5. The agreement between raters has a standard deviation (SD) of 1.8555 for healthy 
subject, 1.2780 for PD subjects, 1.9195 for PSP subjects, 2.3208 for MS subjects and 1.4003 for AD subjects.

The raters’ opinions differ between themselves in a relevant way, if we consider a dichotomous approach 
whereby they can reach the identification target or not. To estimate the mutual agreement between raters in the 
manual identification of the MSP, we calculated the arithmetic average between the evaluations of the raters and 
obtained the distribution of the performance of each rater with respect to the average of all opinions (figure 6). 
We realized that each rater has a different performance which can diverge very much regarding the frequency of 
correct evaluation.

3.3. Comparison ‘gold standard’—the IPI algorithm
For definition of the gold standard we incorporated a decision-making process with the majority rule and a 
‘cognitive’ decisional algorithm, described in section 2.5. Then, we used the ‘gold standard’ thus defined to 
compare the performance of the IPI algorithm.

Figure 7 shows the results for slice distributions identified as the peak of the three curves compared 
with the ‘gold standard’, shown in the histograms (figure 7(a)), the distribution of the results grouped 
according to the absolute error frequency (figure 7(b)), and the corresponding distribution in quartiles 
of the algorithm results (figure 7(c)). From the tables in figure 7(b) we see that the first curve nicks the tar-
get slice 17 times while the other two algorithms hit the objective slice 26 and 25 times, respectively. The 
means of absolute errors are e12 = 5.009 17, e13 = 3.330 28, e23 = 3.082 57 respectively for d12, d13, d23. It 
is evident that the best prediction curve turns out to be the d23, whose error average is 3 slices. The standard 
deviations of the three prediction curve are SD12 = 6.065 23, SD13 = 4.708 26, SD23 = 4.497 18 respec-
tively. We note that the third algorithm has the least dispersion, as is also clear from figure 7(c). However, it 
is interesting to observe these averages in relation to the mean absolute errors of the raters and their stand-
ard deviations, which are respectively equal to e1 = 1.779 82, e2 = 1.5412, e3 = 0.834 862, e4 = 1 and 
SD1 = 4.048 82, SD2 = 3.189 56, SD3 = 2.415 02, SD4 = 2.462 81. Indeed, we can consider the results from 
the three curves as the opinion of three different people that can provide results more or less close to the gold 
standard. From this it emerges that the best algorithm has a 1.5 slice error compared with the worst rater, whereas 
the standard deviation of the best algorithm is close enough to the standard deviation of that obtained by the 
worst rater.

Rather than searching for an arithmetic average of the absolute error, it is more logical to compute a weighted 
average of the absolute error, taking into account the different number of slices for each subject. We noticed that 
data from CNR Catanzaro are brain MRI scans composed of 367/368 slices in total and the space between slices 
is 0.5 mm, while the data from Cetraro Hospital and ADNI are brain MRI scans composed of about 200 slices 
in total and the space between slices is 1.0 mm (table 1). Therefore, a certain number of slices from the first set 
of subjects cover a physical space smaller than the space covered by the same number of slices in the other two 
datasets. In the computation of the error from the comparison between the proposed IPI algorithm results and 
the ‘gold standard’, averaged across all subjects, we wanted to assign different weights to the data from different 
laboratories, according to the different sizes of the physical space covered by a certain number of slices. To each 
subject si  we assigned the weight wi = 1/Ni  where Ni  is the total number of slices for subject si . In this way the 
errors corresponding to subjects in the first dataset have a smaller weight than the errors for the subjects in the 
other two datasets. Then we computed the weighted mean absolute error as

Figure 4. Results of the IPI algorithm for the entire dataset of subjects analyzed in this study. dij, i, j ∈ {1, 2, 3} indicates the slice 
index of the critical point (maximum or minimum) of the corresponding difference curve.
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Figure 5. Medical expert identification of the MSP—agreement between raters.

Figure 6. Distribution of the raters’ performances on the arithmetic mean.
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ēw =
109∑
i=1

ei
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· 1∑109

i=1
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.

Using the same weights, we computed the weighted standard deviation

SDw =

Ã
109∑
i=1

(ei − ēw)
2

Ni
· 109

108
∑109

i=1
1�Ni

.

We obtained the weighted mean absolute errors ēW12 = 4.447 85, ēW13 = 3.18 746, ēW23 = 2.553 57 and 
weighted standard deviations SDW 12 = 5.52971, SDW 13 = 4.50097, SDW 23 = 3.84922.

The weighted mean relative errors are ēWr12 = 0.03765, ēWr13 = 0.02874, ēWr23 = 0.02039 respectively. 
Thus the weighted mean percentage error is about 2.04%for the best algorithm while it is 3.77% for the worst 
algorithm.

Since we want to localize the reference slice where the differences between brain tissues are more marked 
and there is no reason to assign a larger weight to one difference curve than another, we computed an arithme-
tic average of results extracted from the three ‘difference curves’. The weighted mean relative error between 
the arithmetic average of the different ‘difference curves’ and the gold standard averaged across the subjects 
is ēWrave = 0.01842, ēWpave = 1.84%, obtaining a better result even than the best algorithm d23. The weighted 
standard deviation is SDWave  =  3.67198, lower than SDW23 = 3.84922. A comparison with the other distributions 
(considering the absolute errors on the slices) is shown in figure 8.

All these results show that the developed system is already comparable to the performance of the raters.
For the machine learning approach we applied the RF model, employing a 10-fold cross-validation process 

on the entire set of 109 subjects. In each iteration a sub training set of 98/99 random subjects is partitioned into 
five subsets of 19/20 subjects. For each of these we trained the machine, increasing the size of the training set (20, 
40, 60, 80, 98/99 subjects), and tested the machine on the test set (10/11 subjects) corresponding to the iteration 
of the 10-fold cross-validation process. Therefore, in total we repeated the training process 250 times: five times 
increasing the size of the training set starting from each sub-subset of 19/20 subjects (five sub-subset in total for 
each iteration in the 10-fold cross-validation process). After the training and testing process we evaluated the 
performance of the model, computing the mean absolute error between the actual output of the machine and 
the expected value for the output (‘gold standard’) averaged over all the subjects in the test set. Figure 9 shows the 
evolution of the accuracy of the RF model, increasing the size of the training set. Starting from the smallest to the 

Figure 7. Results for slice distributions compared with the gold standard, shown in the histograms (a), distribution of the results 
grouped according to the error frequency (b), and the distribution in quartiles of the results of the algorithms (c).
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biggest training set the accuracy of the model increases by 30%, arriving at a mean absolute error, averaged over 
all the iterations ̄e = 1.8609 for the training set of 98/99 subjects.

We demonstrated that the output of our proposed IPI algorithm is good enough to train a machine in order 
to automatically localize the MSP reference slice, since by increasing the size of the training set the machine actu-
ally learns better and improves its performance.

4. Conclusions

The obtained results show how the performance the system has been improved, increasing its accuracy and 
making the extreme variability of the identification task more flexible. The human brain is highly variable. 
Although MRI systems are currently the most powerful machines for detecting this variability, they also have 
many drawbacks in the visual rendering of data. So the problem we face is highly sensitive to the initial data. 
Consequently, each subject in the sample has been carefully analyzed, adopting the technique of polychromous 
ratings, which by enlarging the intervals, better specified the accuracy of the developed tool. The IPI algorithm 
could be used to automatically segment the brain sMRI images and localize the MSP. Moreover, the machine 
learning system allows forecasting of the MSP from a MRI file, in an automatic way, without passing through the 
repetition of the procedure that we have described in this work. In fact, by means of the training set of data in this 
article, used as a computational benchmark, we can forecast any set of data, independently of the MRI system 
and neurodegenerative disease. Continuation along this path can provide excellent results, optimizing the system 
to make it as reliable as a human expert. Indeed, the next step in this framework is to collect a larger dataset and 
test the machine learning system on it. This method could also find application in the identification of different 
brain locations, key points in the understanding of brain network interactions and connections with other organ 
systems. Indeed, detecting particular brain areas responsible for the strongest connection with a particular organ 

Figure 8. Comparison of the distributions of the three algorithms and their average, considering the absolute error on the slices.

Figure 9. Evolution of the performance of the RF model increasing the size of the training set. On the x-axis the index of the 
iteration (in sequence 20, 40, 60, 80, 98/99 subjects), on the y -axis the value of the mean absolute error computed between the actual 
output of the machine and the expected output (‘gold standard’) averaged over all the subjects in the training set. Left panel: The 
performance of different iterations, considering different sub-subsets of 19/20 subjects as the starting point, is shown. Right panel: 
The curve shows the mean absolute error computed for each size of the training set, averaged over all iterations.
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system during a particular physiological state could help derive a pathological picture of the whole organism 
from a physiological one (Bashan et al 2012, Ivanov et al 2016).
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