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Introduction

Machine-learning methods have been used extensively to dis-
tinguish people with Alzheimer disease and its prodromes 
from healthy controls.1–5 However, predicting symptomatic 
severity at the individual level remains a challenging problem 
that may be more intimately related to personalized care and 
prognosis. Prediction is confounded by the substantial patho-
physiological and clinical heterogeneity observed in prodro-
mal stages such as mild cognitive impairment (MCI) or sig-
nificant memory concern.6–11 Although much is known about 
the temporal and neuroanatomical specificity regarding the 
aggregation of amyloid plaques and neurofibrillary tangles 
and resulting downstream neurodegeneration,12 little is 
known about the variations in brain anatomy associated with 
these processes and how they inform cognitive impairment 
related to Alzheimer disease. Understanding the complex 
pathophysiological processes that characterize the varying 
clinical presentations is essential for biomarker development 

and early detection.13–15 Furthermore, neuroanatomically 
 informed prediction of clinical performance is an important 
step toward biomarker assessment and the development of 
assistive tools for prognosis and treatment planning.

As a structural biomarker, the hippocampus has long been 
associated with the pathophysiology of Alzheimer disease 
and related impairment.1,16–21 However, measures of hippo-
campal volume lack the sensitivity to act as stand-alone bio-
markers.22–26 To achieve nuanced characterization of disease 
states, studies have explored hippocampal subfield-based 
biomarkers23,27,28 and other neurodegeneration indicators, 
such as cortical atrophy quantified by cortical thick-
ness.19,21,29–32 Nevertheless, no characteristic localized patterns 
of atrophy have been associated with prodromal disease 
states or symptomatic severity levels, which are likely to be 
heavily influenced by cognitive reserve.8,32 This motivates 
 approaches that incorporate multiple, distributed pheno-
types to predict clinical severity in service of robust diagnos-
tic and prognostic applications.
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Background: The development of diagnostic and prognostic tools for Alzheimer disease is complicated by substantial clinical hetero­
geneity in prodromal stages. Many neuroimaging studies have focused on case–control classification and predicting conversion from mild 
cognitive impairment to Alzheimer disease, but predicting scores from clinical assessments (such as the Alzheimer’s Disease Assess­
ment Scale or the Mini Mental State Examination) using MRI data has received less attention. Predicting clinical scores can be crucial in 
providing a nuanced prognosis and inferring symptomatic severity. Methods: We predicted clinical scores at the individual level using a 
novel anatomically partitioned artificial neural network (APANN) model. The model combined input from 2 structural MRI measures rele­
vant to the neurodegenerative patterns observed in Alzheimer disease: hippocampal segmentations and cortical thickness. We evaluated 
the performance of the APANN model with 10 rounds of 10­fold cross­validation in 3 experiments, using cohorts from the Alzheimer’s Dis­
ease Neuroimaging Initiative (ADNI): ADNI1, ADNI2 and ADNI1 + 2. Results: Pearson correlation and root mean square error between 
the actual and predicted scores on the Alzheimer’s Disease Assessment Scale (ADNI1: r = 0.60; ADNI2: r = 0.68; ADNI1 + 2: r = 0.63) 
and Mini Mental State Examination (ADNI1: r = 0.52; ADNI2: r = 0.55; ADNI1 + 2: r = 0.55) showed that APANN can accurately infer clin­
ical severity from MRI data. Limitations: To rigorously validate the model, we focused primarily on large cross­sectional baseline data 
sets with only proof­of­concept longitudinal results. Conclusion: The APANN provides a highly robust and scalable framework for pre­
dicting clinical severity at the individual level using high­dimensional, multimodal neuroimaging data.
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Previously, computational approaches using neuroim-
aging measures in the context of Alzheimer disease have 
 focused on predicting diagnosis in cross-sectional data 
sets,2–5 or conversion from MCI to Alzheimer disease in 
 longitudinal analyses.33–35 However, clinicians are more 
likely to treat symptoms based on the results of structured 
assessments rather than on a specific diagnosis. In this 
work, we focused on predicting clinical scores of disease 
 severity (i.e., Alzheimer’s Disease Assessment Scale [ADAS-
13],36 Mini Mental State Examination [MMSE]37) directly 
from neuroimaging data.38,39 Such neuroanatomically in-
formed prediction of clinical performance at baseline and at 
future time points — particularly in people with MCI or sig-
nificant memory concern — can help clinicians manage the 
clinical heterogeneity and make accurate diagnostic and 
prognostic decisions. Although our ultimate clinical goal is 
to provide longitudinal prognosis, in this report we focused 
primarily on a thorough validation of data sets from a single 
time point (baseline), an important first step in model devel-
opment for longitudinal tasks. We also performed a proof-
of-concept analysis to verify the ability of the proposed 
model to provide longitudinal prediction.

For this prediction task, we proposed an anatomically par-
titioned artificial neural network (APANN) model. Artificial 
neural networks (ANNs) and related deep-learning ap-
proaches have delivered state-of-the-art performance in clas-
sification and prediction problems for computer vision, 
speech recognition, natural language processing and other 
domains.40–45 The ANNs provide highly flexible computa-
tional frameworks that can be used to extract latent features 
corresponding to the hierarchical structural and functional 
organization of the brain and are well suited for problems 
with high dimensional data, unlike more standard models.41,43 
To this end, the primary objective of this study was to assess 
whether ANN models could accurately predict ADAS-13 and 
MMSE clinical scores using T1-weighted brain MRI data. In a 
larger context, we aim to build an ANN-based computational 
framework that can process high dimensional, distributed 
structural changes captured by multiple phenotypic meas-
ures to make prognostic predictions.

We designed, trained and tested our model using partici-
pants from 2 Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) cohorts. We used a combination of high dimensional 
(> 30 000) features derived from 2 neuroanatomical measures 
in the T1-weighted images: hippocampal segmentation and 
cortical thickness. We generated these measures using 
MAGeT Brain and CIVET pipelines (see Methods), respec-
tively. We present a model with an innovative modular 
 design that enables the analysis of this high dimensional, 
multimodal input. It also allows for inclusion of new input 
modalities without having to retrain the entire model, and it 
offers simultaneous prediction of multiple clinical scores 
(e.g., ADAS-13 and MMSE). Given the high dimensionality of 
the input data, we have addressed the need for large training 
examples by introducing a novel data augmentation method. 
The method presented in this paper is not limited solely to 
the prediction of severity in Alzheimer disease; it can be 
 applied to train a variety of deep-learning models that use 
high dimensional neuroimaging data to tackle many diag-
nostic and prognostic questions.

Methods

Data sets

We used baseline data from participants in the ADNI1 (n = 
818) and ADNI2 (n = 788) databases46 (http://adni.loni.usc.
edu). After exclusions based on quality control of the image 
preprocessing outputs, the final number of participants we 
used was 669 from ADNI1 and 690 from ADNI2 (see Table 1 
for demographic details). 

Our objective was to predict MMSE and ADAS-13 scores. 
The MMSE is one of the most widely used cognitive assess-
ments for the diagnosis of Alzheimer disease and related 
 dementias;47,48 its scores range from 0 to 30, with lower scores 
indicating greater cognitive impairment. The ADAS-13 is a 
modified version of the ADAS-cog assessment, and it has a 
maximum score of 85. Although ADAS-13 has some overlap 
with the MMSE, it also includes components that target 
memory, language and praxis. In contrast to the MMSE, 

Table 1: Data set demographics for ADNI1 and ADNI2 cohorts* 

Parameter ADNI1 (n = 669) ADNI2 (n = 690)

Acquisition Scanner: 1.5 T
Voxel sizes: 1.2 mm × 1.25 mm × 1.25 mm

Scanner: 3.0 T
Voxel sizes: 1.2 mm × 1 mm × 1 mm

Diagnosis, no. Cognitively healthy: 198
Late mild cognitive impairment: 326 

Alzheimer disease: 145

Cognitively healthy: 179 
Significant memory concern: 77 

Early mild cognitive impairment: 162 
Late mild cognitive impairment: 149 

Alzheimer disease: 123

Sex, no. Male: 377 
Female: 292

Male: 361 
Female: 329

Age, yr 75.0 ± 6.7 72.6 ± 7.2

Education, yr 15.5 ± 3.1 16.3 ± 2.6

ADAS­13 score 18.4 ± 9.2 (1.0, 54.7) 16.1 ± 10.14 (1.0, 52.0)

MMSE score 26.7 ± 2.7 (18.0, 30.0) 27.5 ± 2.7 (19.0, 30.0)

ADAS­13 = Alzheimer’s Disease Assessment Scale; MMSE = Mini Mental State Examination; SD = standard deviation.
*Findings are presented as mean ± SD (minimum, maximum) unless otherwise specified. 
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higher scores on the ADAS-13 indicate greater cognitive 
 impairment. 

We pooled participants from all diagnostic categories to 
build models for the entire spectrum of clinical performance. 
We did not use diagnostic grouping, because we modelled 
Alzheimer disease progression on a continuum, a method 
that has been shown to be useful in other studies of 
 Alzheimer disease progress.49,50

MRI processing

First, we preprocessed the MRIs using the bpipe pipeline 
(https://github.com/CobraLab/minc-bpipe-library/), con-
sisting of N4-correction,51 neck cropping to improve linear 
registration and BEaST brain extraction.52 We then used the 
preprocessed data to extract hippocampal segmentations and 
cortical thickness measures, referred to as input modalities in 
this work. We performed computations using the GPC 
 supercomputer at the SciNet HPC Consortium.53

Hippocampal segmentation
We produced hippocampal segmentations of T1-weighted 
MRIs using the MAGeT brain pipeline.24,54 Briefly, this pipe-
line began with 5 manually segmented, high-resolution 3 T 
T1-weighted images,55 each registered nonlinearly to 15 ADNI 
images selected at random (known as the template library). 
Then, each image in the template library was registered in a 
nonlinear fashion to all images in the ADNI data sets, and the 
segmentations from each atlas were warped via the template 
library transformations to each ADNI image. This process 
 resulted in 75 (no. atlas × no. templates) candidate segmenta-
tions for each image, which were fused into a single segmen-
tation using voxel-wise majority voting.

Cortical thickness measures
We input the preprocessed images into the CIVET pipe-
line29,56–59 to estimate cortical thickness at 40 962 vertices per 
hemisphere, which could then be grouped by region of inter-
est (ROI) based on a surface atlas.

Anatomically partitioned artificial neural network

Artificial neural networks are a biologically inspired family 
of graphical machine-learning models that can perform pre-
diction tasks using high dimensional input (Fig. 1A). These 
ANN models can be designed to contain multiple hidden 
layers, which hierarchically encode latent features that in-
form the objective task. The neuron connections represent a 
set of weights for the preceding input values, which are then 
combined and filtered with a nonlinear function. In neuro-
imaging, a few variants of ANN models (such as autoencod-
ers and restricted Boltzmann machines) have been investi-
gated for classification and prediction tasks.43,60 The model 
used in the current study differs significantly from these 
 approaches in both design and implementation.

From a design perspective, we leveraged the hierarchical 
structure of ANNs to build a modular (Fig. 1B) architecture 
that was capable of multimodal input integration (Fig. 1C) 

and multitask predictions (Fig. 1D). We achieved the fol-
lowing objectives in 3 stages (Fig. 1E). Stage I consisted of 
anatomically partitioned modules (2 hidden layers per 
module) that extracted features from individual anatomic 
input sources (hippocampus and cortical surface). These 
 individual anatomic features served as input to stage II, 
where they were combined at a higher layer in the hidden-
layer hierarchy. Finally, we used these integrated features 
to perform multiple tasks simultaneously; these task-specific 
hidden layers were represented by the higher layers in 
stage III (4 hidden layers total). This APANN mitigated 
overfitting by reducing the number of model parameters 
compared with classical, fully connected hidden-layer 
 architectures. It also allowed for independent pretraining of 
each input source in a single branch. These individual pre-
trained branches could then be used to train stage II to inte-
grate features efficiently.

Empirical distributions

The input dimensionality of MRI data greatly exceeds the 
available number of samples, leaving machine-learning 
models susceptible to overfitting.14,30 This necessitates the 
critical step of feature engineering: the transformation of 
high dimensional raw input to a meaningful and computa-
tionally manageable feature space.61 Techniques for ad-
dressing high dimensionality include downsampling, hand-
crafting features based on biological priors (e.g., atlases), 
principal component analysis and others. One can also 
 increase the sample size by adding transformed data (e.g., 
linear transformations, image patches) to deal with the high 
dimensionality. In this study, we used a novel data aug-
mentation method that leveraged the MRI preprocessing 
pipelines to produce a set of empirical samples for both the 
hippocampal and cortical thickness input modalities in 
place of a single point estimate per participant. This boost in 
training sample size made it feasible to train these models 
with a large parameter space and helped prevent overfitting 
by exposing the model to a large set of possible variations in 
anatomic input associated with a given severity level. Add-
ing linear and nonlinear transformations of original input 
data is a common practice in machine learning.42,44 In com-
puter vision applications, this typically means translation, 
rotation or dropping of certain pixels to capture a larger set 
of commonly encountered variations in input features to 
which the classifier should be invariant. In structural MRI 
data, we were more interested in modelling the joint voxel 
distribution of anatomic segmentations than in achieving 
high translational invariance, because the location of ana-
tomic structures is relatively consistent across individuals. 
Thus, the empirical samples that were generated as part of 
the common segmentation and cortical surface extraction 
pipelines helped train the model to be invariant to the 
methodologically driven perturbations of input values. In 
turn, this mitigated overfitting and helped the model learn 
anatomic patterns relevant to clinical performance.

For the hippocampal inputs, the empirical samples 
 referred to a set of “candidate segmentations” generated 
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from a multi-atlas segmentation pipeline (Fig. 2A)24,54 that 
model the underlying joint label distribution over the set of 
voxels for a given participant. For the cortical thickness 
 inputs, the empirical samples referred to cortical thickness 
values from a set of vertices belonging to a given cortical 
ROI (Fig. 2B). In traditional approaches, these samples are 
usually fused to produce a point estimate of the feature.3,32 
We have detailed the sample-generation process for both 
input types below.

Hippocampal segmentation
We produced 75 candidate segmentations and 1 fused seg-
mentation for each participant via the MAGeT brain pipe-

line.24 We segmented the ADNI1 and ADNI2 data sets using 
2 separate template libraries of 15 images for each cohort. 
These candidate segmentations were binary masks of the left 
and right hippocampal voxels.

We rigidly aligned candidate segmentations to a common 
space (a participant chosen at random from the ADNI1 data 
set) to maximize anatomic correspondence across partici-
pants. We split each segmentation into left and right hemi-
spheres and aligned both rigidly to this common space using 
the ANTS registration toolkit.62

To remove outlier segmentations resulting from misregis-
tration or poor segmentation, we computed the Dice κ 
 between rigidly aligned candidate segmentations and the 

Fig. 1: (A) Structure of a generic ANN model. A neural net may consist of multiple hidden layers that encode a hierarchical set of features 
from input, informative of the prediction/classification task at hand. The connections between layers represent the model weights, which are 
updated via backpropagation based on loss function associated with the task. (B) A single feature module consisting of multiple hidden lay­
ers. This is a building block of the APANN architecture, which facilitates pretraining of individual branches per input modality. (C) A multi­
modal ANN with a single output task. This design consists of stage I and stage II feature modules. Stage I modules learn features from each 
modality that are combined in the stage II feature module. Only single­task performance is used to update the weights of the model in this 
 architecture. (D) A multi­task ANN with a single input modality. This design consists of stage I and stage III feature modules. The stage I 
module learns individual features from a given modality, which are then fed into task­specific feature modules connected to the output nodes 
for joint prediction of the 2 tasks (ADAS­13 and MMSE score prediction). Prediction performance from both tasks is used to update the 
weights of the stage I feature module. Left hippocampal, right hippocampal and cortical thickness input modalities are trained separately 
 using this design to learn input feature modules from each modality. (E) The proposed multimodal, multitask APANN model comprising ana­
tomic partitioning. This design consists of stage I, stage II and stage III feature modules. Stage I consists of pretrained feature modules from 
each modality. These input features are fed into stage II to learn integrated features, which in turn are fed into the task­specific feature mod­
ules in stage III. The stage III modules are connected to the output nodes for joint prediction of the 2 tasks (ADAS­13 and MMSE score pre­
diction). Prediction performance from both tasks is used to update the weights of the stage I and stage II feature modules. The partitioned 
 architecture reduces the number of model parameters, which along with the pretrained feature modules helps mitigate overfitting issues. 
 Input data dimensionality is as follows: 16 086 (left hippocampal), 16 471 (right hippocampal) and 686 (cortical thickness). For details regard­
ing hyperparameters (number of hidden nodes, learning policies, weight regularization etc.) of APANN, see Table 2. ADAS­13 = Alzheimer’s 
Disease Assessment Scale; ANN = artificial neural network; APANN = anatomically partitioned artificial neural network; MMSE = Mini Mental 
State Examination; ROI = region of interest. 
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preselected common space segmentation, and then excluded 
any candidate segmentations with a Dice κ of less than 
1 standard deviation from the mean over all participants.

To further compact the bounding box of all candidate seg-
mentations, we excluded voxels with low information den-
sity by keeping only structural voxels present in at least 25% 
of candidate segmentations across the ADNI1 and ADNI2 

data sets. After filtering operations, the 3-dimensional vol-
umes were flattened into a 1-dimensional vector of included 
voxels per candidate segmentation.

Upon completion of this process, the vectorized voxels rep-
resented the hippocampal input for the APANN model. The 
lengths of the input vectors were 16 086 for the left hippocam-
pus and 16 471 for the right.

Fig. 2: (A) Schematic of a multi­atlas segmentation pipeline depicting registration and label­fusion stages. The box highlights the candidate 
 labels derived from different atlases that were treated as empirical samples in the context of structural labels. These labels are usually fused 
into a single label that serves as a point­estimate mask of a given structure. (B) Schematic of a cortical thickness estimation pipeline compris­
ing surface registration, parcellation and average thickness estimation. The box highlights the individual vertices in a given region of interest, 
which are treated as empirical samples in the context of the cortical thickness measure. The thickness values of these vertices are usually 
 averaged out to estimate mean thickness over a region of interest. CT = cortical thickness; ROI = region of interest.
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Cortical thickness
Preprocessing with CIVET produces cortical thickness values 
at 40 962 vertices per hemisphere. We assigned these cortical 
vertices to unique ROIs based on a predefined atlas. We cre-
ated a custom atlas (Fig. 3) consisting of 686 ROIs, maintain-
ing bilateral symmetry (343 ROIs per hemisphere) using data-
driven parcellation based on spectral clustering (http://
scikit-learn.org/stable/modules/generated/sklearn.cluster.
spectral_clustering.html). Spectral clustering allows for the 
creation of ROIs with a similar number of vertices, which is 
desirable for unbiased sampling of vertices to estimate corti-
cal thickness. Also, work by Khundrakpam and colleagues63 
suggests that increasing the spatial resolution of a cortical 
parcellation may improve predictive performance, further 
supporting the use of this data-driven atlas over neuroana-
tomically derived parcellations.64,65 During implementation, 
we used the connectivity information from the cortical mesh 
of the template as the adjacency matrix. Upon generating sets 
of vertices per ROI, we treated each vertex as a sample from a 
distribution that characterized the thickness of that ROI. 
Thus, the cortical thickness features for each individual could 
be characterized by a distribution of thickness values per 
ROI, instead of the mean thickness values computed as point 
estimates (Fig. 2B).

Standardization across modalities
The independent empirical sampling processes for hippocampal 
and cortical thickness inputs necessitated a standardization step, 
which is described in Appendix 1, available at jpn.ca/180016. 

Training procedure
The training procedure consisted of 2 parts: training indi-
vidual branches per input modality and fine-tuning the uni-

fied model consisting of pretrained branches and additional 
integrated and task-specific feature layers. In the first part, 
we trained separate models independently using individual 
hippocampal and cortical thickness modalities (Fig. 1D). We 
trained the model to jointly predict both tasks (ADAS-13 
scores and MMSE scores). At the end of this training pro-
cedure, we obtained the set of weights for the hidden layers 
in stage I for each input branch. We then extended the 
model with stage II and III hidden layers and further 
trained it to learn integrated and task-specific feature layers 
(Fig. 1E). We used both tasks in this training procedure as 
well. For both parts, we determined the hyperparameters of 
the model (Table 2) using an inner cross-validation loop. 
The code using Caffe toolbox (http://caffe.berkeleyvision.
org/) for the APANN design and training is available at 
https://github.com/CobraLab/NI-ML/tree/master/projects/
APANN. The computational resource requirements are pro-
vided in Appendix 1.

Performance validation

We compared the performance of the APANN model sepa-
rately for prediction of MMSE and ADAS-13 scores. We con-
ducted 3 experiments to compare the performance of each 
 cohort separately and together: ADNI1, ADNI2 and ADNI1 + 
2. The latter was an effort to evaluate model robustness in a 
context of multicohort, multisite studies, which is becoming 
increasingly prevalent in the field. In each experiment, we 
compared the performance of the 2 inputs separately and 
 together: hippocampal input, cortical thickness input and a 
combined hippocampal + cortical thickness input. We used 
Pearson correlation (r) and root mean square error (RMSE) 
values between true and predicted clinical scores as our 

Fig. 3: A custom cortical surface parcellation (atlas) made up of 686 regions of interest, each consisting of a roughly equal number of vertices. 
We obtained the parcellations using a triangular surface mesh obtained from a CIVET model. The vertices of the mesh were grouped based 
on spatial proximity using a spectral clustering method (http://scikit­learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.
html). Bilateral symmetry within the vertices of the hemispheres was preserved. The atlas was propagated to each participant to obtain thick­
ness samples per region of interest.
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 performance metrics. We evaluated all experiments using 
10 rounds of a 10-fold nested cross-validation procedure. The 
outer folds were created by dividing the participant pool into 
10 nonoverlapping subsets. During each run, we chose 9 of 
10 subsets as a training set and evaluated performance on the 
subset that was held back. During model training, we created 
3 inner folds by further dividing the training set under con-
sideration to determine the optimal combination of hyper-
parameters (e.g., number of hidden nodes) using a grid 
search. Then, we stratified the outer folds to maintain a simi-
lar ratio of ADNI1 and ADNI2 participants in each fold. We 
compared the performance of APANN in all experiments 
against 3 commonly used machine-learning models: linear 
regression with lasso, support vector machine and random 
forest. The results are provided in Appendix 1.

Our secondary, proof-of-concept analysis consisted of a 
longitudinal experiment to predict clinical scores at baseline 
and 1 year simultaneously, using only baseline MRI data. 
This was in an effort to demonstrate the applicability of 
APANN from a clinical standpoint, where the end goal was 
to predict a person’s future diagnostic and/or prognostic 
states. We limited our analysis to the ADAS-13 scale (because 
its larger score range offered better sensitivity to longitudinal 
changes) and to the individual ADNI1 and ADNI2 cohorts. 
Because of missing data, the number of participants for this 
experiment dropped to 553 for ADNI1 and 590 for ADNI2.

Results

The mean correlation (r) and RMSE performance values for 
all 3 experiments with 3 input modality configurations are 
summarized in Figure 4, Table 3 and Table 4. Scatter plots for 
predicted and actual ADAS-13 and MMSE scores are shown 
in Figure 5. We generated scatter plots using scores from all 
test subsets in a randomly chosen round of a 10-fold run. 

 Results for the longitudinal experiment are shown in 
Figure 6. Individual results for each experiment are detailed 
below. Comparisons with other models are provided in 
 Appendix 1. Briefly, results from all 3 experiments indicated 
that the APANN model offered better predictive perform-
ance with hippocampal inputs. The cortical thickness input, 
when used independently, did not offer improvement. How-
ever, the combined hippocampal + cortical thickness input 
offered significantly higher performance improvement over 
reference models across all 3 experiments.

Experiment 1: ADNI1 cohort

The combined hippocampal + cortical thickness input provided 
the best results for ADAS-13 prediction (r = 0.60, RMSE = 7.11). 
We observed similar trends for MMSE prediction with the 
combined hippocampal + cortical thickness input (r = 0.52, 
RMSE = 2.25). The hippocampal input alone yielded findings of 
r = 0.53, RMSE = 7.56 for ADAS-13 score prediction and r = 
0.40, RMSE = 2.41 for MMSE. The cortical thickness input alone 
yielded findings of r = 0.51, RMSE = 7.67 for ADAS-13 score 
prediction and r = 0.50, RMSE = 2.29 for MMSE.

Experiment 2: ADNI2 cohort

Similar to experiment 1, the combined hippocampal + corti-
cal thickness input provided the best results for ADAS-13 
prediction (r = 0.68, RMSE = 7.17). We observed similar 
trends for MMSE prediction with the combined hippocampal 
+ cortical thickness input (r = 0.55, RMSE = 2.25). The hippo-
campal input alone yielded findings of r = 0.52, RMSE = 8.32 
for ADAS-13 score prediction and r = 0.40, RMSE = 2.51 for 
MMSE. The cortical thickness input alone yielded findings of 
r = 0.63, RMSE = 7.58 for ADAS-13 score prediction and r = 0.52, 
RMSE = 2.31 for MMSE.

Table 2: Hyperparameter search space for the 4 models*

Model Hyperparameters

Linear regression with lasso L1­penalty: 0.001 to 1 (with increments of 0.01)

Support vector regression Kernel: {linear, rbf}, C: [0.001, 0.01, 1, 10, 100]

Random forest regression N_estimators: 10 to 210 (with increments of 25)
min_sample_split: [2, 4, 6, 8] 

APANN Fixed hyperparameters
Network architecture
Stage I (input features): 2 hidden layers with equal nodes in each layer
Stage II (integrated features): 1 hidden layer
Stage III (task features): 1 hidden layer
Activation nonlinearity: ReLU

Tunable hyperparameters
Stage I number of hidden nodes: [25, 50, 100, 200]
Stage II number of hidden nodes: [25, 50]
Stage III number of hidden nodes: [25, 50]
Learning rate: [1e­6, 1e­5, 1e­4]
Learning policy: [Nesterov, Adagrad]
Weight_decay: [1e­4,1e­3,1e­2]
Dropout rate: [0, 0.25, 0.5] (only for stage I)

APANN = anatomically partitioned artificial neural network; ReLU = rectified linear unit.
*We performed a grid search of the hyperparameters using a nested inner loop for each cross­validation round. For the APANN model, the fixed 
hyperparameters refer to a broader network of design choices that remained identical for all cross­validation rounds. The tunable hyperparameters 
for APANN were optimized for each fold.
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Experiment 3: ADNI1 + 2 cohort

Similar to experiments 1 and 2, the combined hippocampal + 
cortical thickness input provided the best results for ADAS-
13 prediction (r = 0.63, RMSE = 7.32). We observed similar 
trends for MMSE prediction with the combined hippocampal 
+ cortical thickness input (r = 0.55, RMSE = 2.25). The hippo-
campal input alone yielded findings of r = 0.54, RMSE = 7.99 
for ADAS-13 score prediction and r = 0.45, RMSE = 2.42 for 
MMSE. The cortical thickness input alone yielded findings 
of r = 0.57, RMSE = 7.79 for ADAS-13 score prediction and 
r = 0.50, RMSE = 2.37 for MMSE.

A further analysis of results in this experiment stratified by 
participant-cohort membership (ADNI1 v. ADNI2) showed 
that APANN had a smaller performance bias toward any par-

ticular cohort (i.e., models performing well on only a single 
cohort) than other models (see Appendix 1).

Longitudinal prediction

Similar to experiments 1 to 3, the combined hippocampal + 
cortical thickness input provided the best results (ADNI1: r = 
0.58, RMSE = 7.1 for baseline and r = 0.59, RMSE = 9.08 for 
1-year score prediction; ADNI2: r = 0.64, RMSE = 7.07 for base-
line and r = 0.65, RMSE = 9.07 for 1-year score prediction). The 
hippocampal input alone yielded better performance than the 
cortical thickness input alone for baseline and 1-year score pre-
diction in the ADNI1 cohort. The cortical thickness input alone 
yielded better performance than the hippocampal input alone 
for baseline and 1-year score prediction in the ADNI2 cohort.

Fig. 4: Performance of anatomically partitioned artificial neural network subject to individual and combined input modalities. The Pearson r  
and RMSE values were averaged over 10 rounds of 10 folds. All models were trained with a nested inner loop that searched for optimal 
 hyperparameters. ADAS­13 = Alzheimer’s Disease Assessment Scale; ADNI = Alzheimer’s Disease Neuroimaging Initiative; MMSE = Mini 
Mental State Examination; RMSE = root mean square error.

Modality
Hippocampal input Combined hippocampal and cortical thickness inputCortical thickness input

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

r

9

8

7

6

5

4

3

2

1

0

R
M

S
E

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

r 

9

8

7

6

5

4

3

2

1

0

R
M

S
E

ADAS-13

ADNI1 ADNI2

Cohort

ADNI1 + 2 ADNI1 ADNI2

Cohort

ADNI1 + 2

ADNI1 ADNI2

Cohort

ADNI1 + 2 ADNI1 ADNI2

Cohort

ADNI1 + 2

ADAS-13 MMSE

MMSE



Bhagwat et al. 

254 J Psychiatry Neurosci 2019;44(4)

Discussion

We have presented an ANN model for the prediction of cog-
nitive scores in Alzheimer disease using high dimensional 
structural MRI data. We showed that information from 
voxel-level hippocampal segmentations and highly granular 
cortical parcellations can be leveraged to infer cognitive per-
formance and clinical severity at the level of the individual. 
This ability of the APANN model to predict ADAS-13 and 
MMSE and scores based on structural MRI features may 

prove to be valuable from a clinical perspective in helping to 
build prognostic tools. Our proof-of-concept longitudinal 
experiment showed that APANN could successfully predict 
future scores (at 1 year) from baseline MRI data. The results 
comparing APANN to several other models are provided in 
Appendix 1. These findings highlighted the performance 
gains offered by using high dimensional features as inputs. 
In the sections that follow, we discuss the performance of the 
APANN model in terms of clinical scale, input modalities, 
data sets and  related literature.

Table 3: Prediction performance for ADAS-13 scores* 

Model

Hippocampal input
Cortical  

thickness input
Combined hippocampal and  

cortical thickness input

r RMSE r RMSE r RMSE

ADNI1

Linear regression with lasso 0.22 ± 0.11 8.72 ± 0.81 0.56 ± 0.08 7.44 ± 0.72 0.56 ± 0.08 7.42 ± 0.74

Support vector regression 0.23 ± 0.11 8.70 ± 0.85 0.52 ± 0.08 7.68 ± 0.76 0.53 ± 0.08 7.62 ± 0.78

Random forest regression  0.15 ± 0.10 9.27 ± 0.80  0.54 ± 0.08 7.55 ± 0.76 0.54 ± 0.08 7.51 ± 0.77

APANN 0.53 ± 0.09 7.56 ± 0.76 0.51 ± 0.10 7.67 ± 0.76 0.60 ± 0.08 7.11 ± 0.72

ADNI2

Linear regression with lasso 0.14 ± 0.11 9.69 ± 0.70 0.61 ± 0.07 7.77 ± 0.71 0.61 ± 0.07 7.78 ± 0.71

Support vector regression 0.21 ± 0.10 9.75 ± 0.79 0.63 ± 0.07 7.65 ± 0.68 0.63 ± 0.07 7.66 ± 0.70

Random forest regression 0.24 ± 0.09 9.77 ± 0.76 0.58 ± 0.07 7.97 ± 0.65 0.58 ± 0.08 7.97 ± 0.67

APANN 0.52 ± 0.07 8.32 ± 0.79 0.63 ± 0.07 7.58 ± 0.71 0.68 ± 0.06 7.17 ± 0.71

ADNI1 + 2

Linear regression with lasso 0.12 ± 0.08 9.37 ± 0.50 0.58 ± 0.06 7.71 ± 0.48 0.58 ± 0.06 7.71 ± 0.48

Support vector regression 0.18 ± 0.07 9.39 ± 0.54 0.59 ± 0.05 7.65 ± 0.42 0.59 ± 0.05 7.65 ± 0.42

Random forest regression 0.18 ± 0.09 9.63 ± 0.61 0.57 ± 0.05 7.76 ± 0.46 0.57 ± 0.05 7.75 ± 0.46

APANN 0.54 ± 0.06 7.99 ± 0.59 0.57 ± 0.05 7.79 ± 0.51 0.63 ± 0.05 7.32 ± 0.53

ADNI = Alzheimer’s Disease Neuroimaging Initiative; APANN = anatomically partitioned artificial neural network; RMSE = root mean squared error; SD = standard deviation.
*Findings are presented as mean ± SD.

Table 4: Prediction performance for MMSE scores* 

Model

Hippocampal input
Cortical  

thickness input
Combined hippocampal and cortical 

thickness input

r RMSE r RMSE r RMSE

ADNI1

Linear regression with lasso  0.23 ± 0.12  2.54 ± 0.18  0.49 ± 0.08  2.28 ± 0.17  0.50 ± 0.08  2.27 ± 0.17

Support vector regression  0.25 ± 0.12  2.59 ± 0.19  0.48 ± 0.07  2.31 ± 0.16  0.50 ± 0.07  2.28 ± 0.16

Random forest regression  0.22 ± 0.11  2.63 ± 0.21  0.48 ± 0.08  2.30 ± 0.17  0.49 ± 0.08  2.28 ± 0.17

APANN  0.40 ± 0.09  2.41 ± 0.15  0.50 ± 0.09  2.29 ± 0.20  0.52 ± 0.08  2.23 ± 0.17

ADNI2

Linear regression with lasso  0.19 ± 0.12  2.64 ± 0.19  0.46 ± 0.08  2.39 ± 0.19  0.47 ± 0.08  2.39 ± 0.19

Support vector regression  0.28 ± 0.14  2.72 ± 0.24  0.52 ± 0.07  2.32 ± 0.18  0.54 ± 0.07  2.30 ± 0.18

Random forest regression  0.25 ± 0.12  2.67 ± 0.24  0.50 ± 0.09  2.33 ± 0.17  0.51 ± 0.08  2.31 ± 0.17

APANN  0.40 ± 0.09  2.51 ± 0.21  0.52 ± 0.12  2.31 ± 0.25  0.55 ± 0.10 2.25 ± 0.21

ADNI1 + 2

Linear regression with lasso  0.15 ± 0.08  2.64 ± 0.12  0.50 ± 0.07  2.31 ± 0.13  0.50 ± 0.07  2.31 ± 0.13

Support vector regression  0.22 ± 0.07  2.71 ± 0.13  0.52 ± 0.07  2.31 ± 0.13  0.52 ± 0.07  2.30 ± 0.13

Random forest regression  0.17 ± 0.08  2.74 ± 0.14  0.50 ± 0.07  2.31 ± 0.14  0.50 ± 0.07  2.31 ± 0.14

APANN  0.45 ± 0.06  2.42 ± 0.14  0.50 ± 0.07  2.37 ± 0.15  0.55 ± 0.06  2.25 ± 0.12

ADNI = Alzheimer’s Disease Neuroimaging Initiative; APANN = anatomically partitioned artificial neural network; MMSE = Mini Mental State Examination; RMSE = root mean 
squared error; SD = standard deviation.
*Findings are presented as mean ± SD.
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Clinical scale comparisons

Performance comparisons between clinical scales based on 
correlation values indicated that predicting MMSE scores 
was more challenging across all inputs and cohorts. This dis-
parity between performances may have been due to the 
higher sensitivity of the ADAS-13 assessment, reflected in its 
comparatively larger scoring range, which improved its asso-
ciation with the structural measures.

Input modality comparisons

The results from all 3 experiments indicated that the APANN 
model offered better predictive performance with the com-
bined hippocampal + cortical thickness input. The use of cor-
tical thickness outperformed hippocampal segmentation in 
all 3 experiments for both scales, except in the ADNI1 cohort 
for ADAS-13 prediction, where the hippocampal segmenta-

tion input showed a slightly higher performance. This find-
ing highlighted the importance of incorporating multiple 
phenotypes for biomarker development that are indicative of 
cognitive performance. The ability of the APANN model to 
handle multimodal input is crucial for building clinical tools 
to leverage disparate MRI, clinical and genetic markers.

Data set comparisons

Between experiments 1 and 2, we observed that the ADNI2 
cohort yielded better performance than the ADNI1 cohort 
across all models. This may have been because of the differ-
ences in acquisition protocols, because ADNI2 images were 
acquired at a higher field strength with better resolution. 
Such an improvement in image acquisition would likely pro-
vide superior quality segmentations and cortical thickness 
measures.66 In experiment 3, we combined data from the 
ADNI1 and ADNI2 cohorts. Pooling data from different data 

Fig. 5: Scatter plots for predicted and actual ADAS­13 and MMSE scores for 3 cohorts (ADNI1, ADNI2 and ADNI1 + 2). Scatter plots were 
generated by concatenating scores from all the test subsets of a randomly chosen 10­fold validation run. ADAS­13 = Alzheimer’s Disease 
Assessment Scale; ADNI = Alzheimer’s Disease Neuroimaging Initiative; MMSE = Mini Mental State Examination. 
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Fig. 6: Simultaneous predictions of ADAS­13 scores at baseline and 1 year. The top 2 rows show the Pearson r values based on predicted and 
actual ADAS­13 scores over 10­fold cross­validation for ADNI1 and ADNI2 cohorts, respectively. The bottom 2 rows show the RMSE between 
predicted and actual ADAS­13 scores for ADNI1 and ADNI2 cohorts, respectively. The left column shows performance at baseline, and the right 
column shows performance at 1 year. Models were trained separately for each input. ADAS­13 = Alzheimer’s Disease Assessment Scale; ADNI = 
Alzheimer’s Disease Neuroimaging Initiative; APANN = anatomically partitioned artificial neural network; RMSE = root mean square error. 
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sets is increasingly important to verify the generalizability of 
the model in a larger population that extends beyond a single 
study. Interestingly, experiment 3 outperformed experiment 
1, but underperformed compared with experiment 2. This 
was partially expected because of substantial differences in 
the individual feature distributions (e.g., hippocampal seg-
mentations) resulting from differences in the acquisition pro-
tocols. In such cases, it becomes imperative to build models 
that are invariant to data set–specific biases resulting from 
nonuniform data-collection practices. The results from 
experi ment 3 showed that APANN offered consistent per-
form ance that was comparable to that of experiments 1 and 2, 
and it had low data set–specific bias compared with other 
models (see Appendix 1). We speculate that models incorpor-
ating high dimensional, multimodal input were less suscept-
ible to multicohort and multisite study-design artifacts, a 
characteristic that is desirable for the development of clinical 
tools in practical settings.

Longitudinal analysis

Consistent with the first 3 experiments, the combined hippo-
campal segmentation + cortical thickness input offered the 
best performance for 1-year score prediction, with similar 
correlation results but higher RMSE. This finding suggests 
that uncertainty is likely to increase with a larger time span 
for longitudinal tasks (1 year v. 2 years v. 5 years), making 
predictions more challenging. As well, further consideration 
is needed of cases in which information from multiple time 
points (baseline + 1 year) is used to generate subsequent 
(2  years +) performance prediction. Missing time points 
 become an increasingly important barrier to such tasks. 
 Nevertheless, APANN showed promising results for investi-
gating more sophisticated longitudinal predictions.

Related work

Prediction of clinical scores is a relatively underexplored 
task. For a fair comparison, we have limited our discussion 
to 2 recent studies involving baseline prediction with MRI 
features by Stonington and colleagues38 and Zhang and col-
leagues.39 Both works used structural MRI from the ADNI1 
baseline data set to predict MMSE and ADAS-cog scores 
(which uses 11 of the 13 subscales of ADAS-13; http://adni.
loni.usc.edu/data-samples/data-faq/). The ADAS-cog and 
ADAS-13 scores are strongly correlated (r > 0.9 for the 
ADNI1 and ADNI2 cohorts considered in this manuscript). 
Stonington and colleagues38 used relevance vector regres-
sion models with a sample size of 586; correlation values 
were r = 0.48 (MMSE) and r = 0.57 (ADAS-cog). Zhang and 
colleagues39 proposed a computational framework called 
Multi-Modal Multi-Task (M3T) that offers multitask feature 
selection and multimodal support vector machines for 
 regression and classification tasks. With only MRI-based 
features, M3T achieved correlations of r = 0.50 (MMSE) and 
r = 0.60 (ADAS-cog) with a sample size of 186. In compari-
son, the APANN model offered correlations of r = 0.52 
(MMSE), and r = 0.60 (ADAS-13) with a much larger cohort 

(669 ADNI1 participants). Although APANN offered simi-
lar performance for the ADNI1 data set, it had several key 
advantages over the other models. In contrast to M3T, 
which implemented 2 separate stages for feature extraction 
and regression (or classification) tasks, APANN provided a 
unified model that performed seamless feature extraction 
and multitask prediction using multimodal input. From a 
scalability perspective, APANN was capable of handling 
high dimensional input and extending to incorporate new 
modalities without retraining the entire model. In contrast, 
M3T had 93 magnetic resonance atlas-based features64 with 
a total of 189 multimodal (MRI, FDG-PET and cerebrospinal 
fluid) features.39 Moreover, with APANN we replicated 
performance in the ADNI2 cohort and demonstrated an 
improved correlation performance of r = 0.55 (MMSE) and 
r = 0.68 (ADAS-13) with 690 participants, further validating 
the model’s generalizability. 

Other recent works have addressed clinical score predic-
tion using sparse Bayesian learning67 and graph-guided fea-
ture selection,68 with 98 and 93 imaging features, respectively. 
Both works reported strong performance in Alzheimer dis-
ease and cognitively normal groups, but performance de-
graded after inclusion of people with MCI. For example, Yu 
and colleagues68 reported correlations of r = 0.745 (MMSE) 
and r = 0.74 (ADAS-cog) for specific subsets of Alzheimer 
disease/cognitively normal participants, but performance 
degraded to r = 0.382 (MMSE) and r = 0.472 (ADAS-cog) for a 
subset of MCI/cognitively normal participants. Clinically, 
the prognosis of people with MCI is of high interest. Predict-
ing their cognitive performance is crucial for early interven-
tions, potential lifestyle changes and treatment planning. To 
the best of our knowledge, APANN is the first work to tackle 
high input dimensionality (>  30 000 features), validated 
across the continuum from healthy controls to patients with 
Alzheimer disease, in multiple cohorts with site and scanner 
differences. Such validation is increasingly important with 
the availability of newer and larger data sets, such as the UK 
biobank (www.ukbiobank.ac.uk/about-biobank-uk/).

Clinical translation

The ultimate clinical goal of this work is to provide longi-
tudinal prognosis and to predict individuals’ future clinical 
states. The rigorously validated APANN provides a compu-
tational platform for a variety of longitudinal tasks, such as 
the 1-year ADAS-13 prediction task investigated in the 
proof-of-concept experiment. We envision the APANN 
model applied to the MRI data of people at risk from pro-
dromal stages (MCI, significant memory concern etc.) and 
even early stages of Alzheimer disease to predict their future 
clinical scores and other clinical-state proxies. The ability of 
the APANN model to capture relevant subtle neuroanatom-
ical changes from high dimensional, multimodal MRI data 
can be leveraged to provide nuanced diagnosis and progno-
sis for various symptom subdomains, assisting or verifying 
clinicians’ decision-making. Having a clear prognosis can 
help with early intervention, clinical trial recruitment and 
caregiver arrangements.
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Limitations

In this work we applied APANN primarily to cross-sectional 
data sets and a proof-of-concept longitudinal data set. From a 
clinical perspective, it is crucial to note that the use of a specific 
clinical or cognitive test is subjective, contingent on availability 
and associated with its own set of biases. Further, similar to 
the clinical diagnosis that uses several sources of information 
to create a composite of the patient’s clinical profile, we envi-
sion the proposed MRI-based prediction framework as an-
other assistive instrument that will be interpreted in the larger 
context of an overall clinical picture. We acknowledge that the 
cross-sectional experiments in this work were a first step 
 toward building assistive MRI-based models. We believe that 
the design flexibility of APANN can be used for handling mul-
timodal input and multiple scale predictions that could min-
imize modality-specific and scale-specific biases, respectively.

Large-scale models such as APANN that are subjected to 
high dimensional input require significant computational 
 resources. Thus, we have limited the scope of this work to 
classical ANNs as a prototypical example to demonstrate the 
feasibility of large-scale analysis with structural neuroim-
aging data. Nevertheless, the training regimens discussed in 
this work should motivate further development of state-of-
the-art neural network architectures, such as 3-dimensional 
convolutional networks, toward various neuroimaging appli-
cations. Another common drawback of models with deep 
 architectures is the lack of interpretability of the model par-
ameters compared with simpler models; this prohibits local-
izing most predictive brain regions. In our view, this limita-
tion is a model design trade-off that in turn allows for the 
capture of distributed changes that are often present in the 
heterogeneous atrophy patterns of Alzheimer disease pro-
dromes. The computational flexibility of ANNs allow us to 
model the collective impact of these atrophy patterns and 
predict clinical performance more accurately.

Conclusion

The presented APANN model, together with empirical sam-
pling procedures, offers a sophisticated machine-learning 
framework for high dimensional, multimodal structural 
neuro imaging analysis. By going beyond low-dimensional, 
anatomic prior-based feature sets, we can build more sensi-
tive models capable of capturing the subtle neuroanatomical 
changes associated with cognitive symptoms in Alzheimer 
disease. The results validate the strong predictive perform-
ance of the APANN model across 2 independent cohorts, as 
well as its robustness when these 2 cohorts were combined. 
From clinical standpoint, these attributes make APANN a 
promising approach for building diagnostic and prognostic 
tools that would help identify people at risk and provide 
clinical-trajectory assessments, facilitating early intervention 
and treatment planning.
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