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Abstract—Fusion analysis of disease-related 
multi-modal data is becoming increasingly important to 
illuminate the pathogenesis of complex brain diseases. 
However, owing to the small amount and high dimension of 
multi-modal data, current machine learning methods do 
not fully achieve the high veracity and reliability of fusion 
feature selection. In this paper, we propose a 
genetic-evolutionary random forest (GERF) algorithm to 
discover the risk genes and disease-related brain regions 
of early mild cognitive impairment (EMCI) based on the 
genetic data and resting-state functional magnetic 
resonance imaging (rs-fMRI) data. Classical correlation 
analysis method is used to explore the association 
between brain regions and genes, and fusion features are 
constructed. The genetic-evolutionary idea is introduced to 
enhance the classification performance, and to extract the 
optimal features effectively. The proposed GERF algorithm 
is evaluated by the public Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database, and the results 
show that the algorithm achieves satisfactory 
classification accuracy in small sample learning. Moreover, 
we compare the GERF algorithm with other methods to 
prove its superiority. Furthermore, we propose the overall 
framework of detecting pathogenic factors, which can be 
accurately and efficiently applied to the multi-modal data 
analysis of EMCI and be able to extend to other diseases. 
This work provides a novel insight for early diagnosis and 
clinicopathologic analysis of EMCI, which facilitates 
clinical medicine to control further deterioration of 
diseases and is good for the accurate electric shock using 
transcranial magnetic stimulation. 

 
Index Terms—Early mild cognitive impairment, fMRI, 

gene, genetic-evolutionary random forest, imaging 
genetics. 
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I. INTRODUCTION 

ARLY mild cognitive impairment (EMCI) is a clinical 

state between normal aging and Alzheimer's disease (AD). 

It is very dangerous to develop into AD, which is a high-risk 

state of dementia [1, 2]. Once it develops into AD, this process 

will be irreversible, adding heavy burden to families and 

medical institutions [3]. Therefore, early detection of EMCI is 

of great significance to prevent or delay the occurrence and 

development of dementia [4]. With the rapid development of 

complex brain disease detection technologies, the amount of 

biomedical data has increased significantly, such as functional 

magnetic resonance imaging (fMRI) data and genetic data [5, 

6]. In the comprehensive and systematic studies of the brain 

diseases, the fusion research of gene and neuroimaging has 

attracted more and more attentions [7]. It is worthy to reveal the 

multifactorial pathogenesis, and further help with clinical 

diagnosis and precision medicine of complex brain diseases. 

The fusion study of multi-modal data is an emerging field in 

brain science, but it is developing rapidly [8]. The fMRI is a 

widely used imaging technique that is often combined with 

other data including structural MRI (sMRI) and genes to detect 

the pathogenesis of brain diseases such as autism and 

schizophrenia [9, 10]. French et al. found out the link between 

CNR1 gene and schizophrenia in the cortical maturation 

process [11]. Romme et al. explored that the white matter 

disconnectivity was related to the cortical gene expression 

based on the findings of French [12]. Wang et al. proposed a 

multi-modality regression method to discover the relationships 

of risk genes and brain connectivities based on sMRI and fMRI 

[13]. These studies can be divided into two types. The one is the 

study of multi-modal neuroimaging technology to obtain 

multiple data of brain for information complementarity and 

cross verification [14]. The other is a combination of 

neuroimaging and genetics to illustrate that how the gene 

affects the structure and function of the brain, which is 

proposed by Hariri and Weinberger [15]. We pay attention to 

the latter in this paper. 

The complex brain diseases such as EMCI often involve 

different omics of data, such as fMRI and gene. Gene 

expression is a complex process, and abnormal gene expression 

is also reflected in brain lesions. All these factors will jointly 

affect the development of brain diseases. Therefore, the 

integration of these multivariate data is expected to expose the 
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genetic basis of brain function, thereby further explaining the 

relationship between risk genes and brain diseases. At the same 

time, many studies show that the fusion of fMRI and gene will 

provide more comprehensive analysis of complex brain 

diseases. Yang et al. applied support vector machine (SVM) to 

combining fMRI data with genetic data for disease 

classification [16]. Based on MRI, clinical, and genetic data, 

Greenstein et al. used the random forest to conduct 

classification research by yielding an accuracy of 73.7% [17]. 

Lin et al. presented the sparse canonical correlation analysis 

approach to study the correlation between gene and 

high-dimensional fMRI data and explored the disease-related 

region of interests (ROIs) and genes for complex diseases [18]. 

These fusion methods recognized effectively the relationship 

between brain function and gene, and took advantage of the 

complementarity from two types of data, which made us 

deepen the understanding of biological mechanisms behind 

complex brain diseases [19-21]. 

In bioinformatics, there are several public, multi-modal, and 

reliable databases with small amount and high dimensionality 

of data [22, 23]. Some researchers have tried to improve the 

problem through small sample learning methods. In machine 

learning or deep learning, the small sample learning and 

dimensionality reduction methods are SVM [24], decision tree 

[25], neural network [26, 27], and many others [28-31]. 

However, the results are often unsatisfactory in practical 

problems. Therefore, the design of an efficient and robust 

method for small sample data is a motivation of this paper. 

On the other hand, there are few overall research frameworks 

of feature fusion scheme, feature extraction, and sample 

classification in most multi-modal data studies. Hu et al. 

proposed a feature fusion approach of the distance canonical 

correlation analysis (DCCA) to study complex imaging-genetic 

associations, and the results revealed that the DCCA was a 

powerful method for analyzing the multi-modal data [32]. 

However, neither of them mentioned the classification task. It is 

very meaningful to construct a integral framework of fusion 

scheme, feature extraction, and sample classification for 

multi-modal data in small samples. Consequently, another 

underlying motivation of this paper is to design a more 

reasonable effective fusion method and further design 

subsequent methods of feature extraction and classification task 

in the context of rapid development of multi-modal data fusion 

analysis. 

Specifically, we design the fusing method combining brain 

regions with genes, and construct fusion features via correlation 

analysis. The fusion features are called as brain region-gene 

(BR-gene) pairs. Subsequently, we propose a 

genetic-evolutionary random forest (GERF) method to 

overcome the limitations of few and high-dimensional data and 

incomplete research framework. Using the GERF model, we 

extract the most distinguishable features as the optimal features. 

Based on the optimal features, the classification accuracy of 

samples from Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database is up to 86.21%, which fully shows that the 

method of GERF could effectively extract features. Moreover, 

we also find out disease-related brain regions and risk genes by 

the optimal features, such as some pathogenic brain regions like 

Rolandic operculum (ROL.L), Superior frontal gyrus, orbital 

part (ORBsup.R), Amygdala (AMYG.L), Angular gyrus 

(ANG.R), Middle frontal gyrus, orbital part (ORBmid.L), and 

Insula (INS.R), and some risk genes like CNTN5, GRM7, and 

FHIT. Therefore, our works will provide researchers with new 

insight to explore EMCI. 

The remain of this paper is arranged as following. Section II 

introduce the method presented in this paper in full and detail. 

The experimental results and method performance 

demonstration are presented in Section III. Section VI and V 

are related discussions and conclusions, respectively. 

II. METHODOLOGY 

In this section, an overall framework including feature fusion, 

feature extraction, and sample classification is proposed to 

explore the etiologies of EMCI (e.g., abnormal genes and brain 

regions). Firstly, the framework applies the processed rs-fMRI 

and gene data to constructing BR-gene pairs by a correlation 

analysis method. Secondly, the proposed GERF method is used 

to find out the optimal fused features and classify EMCI 

patients and normal controls (NC) efficiently. Furthermore, 

some abnormal genes and brain regions are discovered through 

the optimal fused features. Fig. 1 shows the multi-task 

framework with GERF. 

A. Data Acquisition and Preprocessing  

The data are provided by the public database of ADNI 

(http://adni.loni.usc.edu/). The database provides neuroimaging, 

biomarkers, and gene data for studies of EMCI, AD, and other 

cognitive disorders. We consider data from a population of 73 

samples, composing of 37 EMCI patients (age: 72.97 ± 7.40, 11 

females) and 36 NC samples (age: 75.84 ± 6.27, 14 females). 

The data contain the rs-fMRI data and corresponding genetic 

data. ADNI has approved and authorized the use of data. We 

strictly screen data to ensure the homology of EMCI patients 

and NC. Subjects without MMSE and CDR scores are selected 

here because these scores cannot guarantee that the data are 

homologous and the robustness of the model cannot be assessed 

by adding these scores. Additionally, our study is conducted by 

suggestions of Federal Regulations, etc., which is also 

supported by Institutional Review Board of each participating 

site. All subjects have signed the informed consent. In order to 

make out the discrepancy of gender or age between EMCI and 

NC, two statistical tests are performed. Table I displays the 

information of participants and the results of tests. The results 

show that there are no differences in terms of gender and age 

between EMCI patients and NC (both 𝑝 > 0.05). 

TABLE I 
BASIC INFORMATION OF EMCI AND NC 

Variables 

(Mean ± SD) 
EMCI (n = 37) NC (n = 36) 𝑝 value 

Gender (M/F) 26/11 22/14 0.410∗ 

Age (years) 72.97±7.40 75.84±6.27 0.078∗∗ 

* The 𝑝 value is obtained via the chi-square test. 
** The 𝑝 value is obtained via the two-sample t-test. 
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The rs-fMRI data are acquired by a magnetic resonance 

scanner. The image quality may be poor due to the noise in the 

data, which affects the experimental results. Therefore, based 

on the MATLAB 2014a platform, we use DPARSF software 

(http://rfmri.org/DPARSF) to preprocess the rs-fMRI data [33]. 

The preprocessing steps include transferring format, 

eliminating first 10 time volumes, correcting slice-time, 

correcting motion, normalizing space, smoothing, removing 

linear trend, filtering, and removing the covariates. The genetic 

data are stored on the Illumina Omni 2.5 M chip, including 

single nucleotide polymorphism (SNP) data. Owing to the 

subsistent noise in the data on the chip, we use the PLINK 

software to preprocess the genetic data. The preprocessing 

steps are as follows:  

1) measuring the SNP call rate to detect the quality of data;  

2) calculating the minimum allele frequency to get rid of the 

 data that has less information;  

3) calculating the genotyping rate to reduce errors;  

4) carrying out the Hardy-Weinberg equilibrium to test 

 whether the frequencies of alleles or genotypes remain 

 stable;  

5) transferring format to extract the required data from a 

 large amount of data;  

6) extracting the SNP data of subjects to reduce time 

 complexity;  

7) extracting genetic data from SNP data to facilitate 

 subsequent experiments. 

B. Construction of Multi-modal Fusion Features 

As mentioned in the Introduction, factors such as brain 

appearance and genes can jointly affect the development of 

brain diseases. Here we will conduct a fusion study on brain 

regions and genes to study the relationship between them. 

Suppose we have 𝑛 ∈ 𝑁  subjects. Each subject contains 𝑏 

ROIs from rs-fMRI data 𝐵 ∈ 𝑅𝑛×𝑏 and 𝑔 genes from genetic 

data 𝐺 ∈ 𝑅𝑛×𝑔 , where the average time series for ROIs are 

represented by 𝑤𝑏  and the gene sequences for genes are 

represented by 𝑠𝑔 . The fused approach is first designed for 

measuring the correlations between data 𝐵 and 𝐺 to construct 

fusion features. Firstly, 𝑤𝑏  and 𝑠𝑔 are clipped to ensure that the 

length of each ROI is equal to that of each gene sequence, 

resulting in 𝑤𝑏
′ and 𝑠𝑔

′. Secondly, gene sequences are encoded 

discretely by the way of using 1, 2, 3, and 4 to replace A, T, C, 

and G. Note that 1, 2, 3, and 4 are just markers. We have 

repeated experiments by changing their order or replacing them 

with different numbers, which does not make a difference to the 

result. Finally, the different correlation analysis methods are 

utilized to calculate the correlation coefficients between 𝑤𝑏
′  

and 𝑠𝑔
′ . The Pearson correlation coefficient is defined as 

𝜌𝑏,𝑔 =
𝛼 ∑ 𝑤𝑏

′ 𝑠𝑔
′ −∑ 𝑤𝑏

′ ∑ 𝑠𝑔
′

√𝛼 ∑ 𝑤𝑏
′ 2

−(∑ 𝑤𝑏
′ )

2
√𝛼 ∑ 𝑠𝑔

′ 2
−(∑ 𝑠𝑔

′ )
2
               (1) 

where 𝛼  represents the length of each gene or ROI. The 

canonical correlation coefficient is defined as 

𝜃𝑏,𝑔 =  
𝛽𝑇 ∑ 𝛾12

√𝛽𝑇 ∑ 𝛽11 √𝛾𝑇 ∑ 𝛾22
                           (2) 

where 𝛽 and 𝛾 represent two weight parameters that maximize 

the correlation between brain regions and genes. ∑11 denotes a 

covariance matrix of 𝑤𝑏
′  and ∑22 denotes a covariance matrix 

of 𝑠𝑔
′ . ∑12  denotes a covariance matrix of 𝑤𝑏

′  and 𝑠𝑔
′ . The 

correlation distance coefficient is defined as 

𝜇𝑏,𝑔 = 1 −
𝛼 ∑ 𝑤𝑏

′ 𝑠𝑔
′ −∑ 𝑤𝑏

′ ∑ 𝑠𝑔
′

√𝛼 ∑ 𝑤𝑏
′ 2

−(∑ 𝑤𝑏
′ )

2
√𝛼 ∑ 𝑠𝑔

′ 2
−(∑ 𝑠𝑔

′ )
2
            (3) 

The best correlation analysis method is selected out through 

 
Fig. 1.  An overall framework with the proposed GERF. The image of one subject is preprocessed to gain the average time series of brain regions, 
and some genes of the corresponding subject are preprocessed to gain the gene sequences. Through the correlation analysis method, BR-gene 
pairs are constructed. Then the GERF model is constructed to carry out the classification task and optimal feature extraction task. Based on the 
optimal features, the abnormal brain regions and genes are analyzed. 
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the comparison of the above three methods in part of Method 

Comparison and Validation. Then the best correlation 

coefficient is replaced by 𝑐𝑏,𝑔 . The coefficient matrix C =

{𝑐1,1, ⋯ , 𝑐1,𝑔, ⋯ , 𝑐𝑏,1, ⋯ , 𝑐𝑏,𝑔} is used as fusion features and C𝑖 

represents the coefficient matrix of 𝑖𝑡ℎ subject. 

C. Design Idea and Presentation of the GERF 

The main work of this paper is the design of feature 

extraction and classification method, namely 

genetic-evolutionary random forest (GERF), to develop the 

fusion data analysis. In existing studies, conventional random 

forest methods have the characteristic of large randomness, 

reflecting in two aspects. One aspect is that the obtained 

numbers of sample subsets and feature subsets are generally 

determined based on previous experiences [34]. However, 

optimum values for the two parameters are discrepant in 

different experiments, which affects experimental results. On 

the other hand, the feature subsets are uncontrollable during 

constructing decision trees and may contain many irrelevant or 

redundant features, resulting in lower performance of random 

forest [35]. With the intention of making up for these 

deficiencies, we introduce an idea of genetic evolution on the 

basis of random forest and further propose the GERF method. 

The GERF has some advantages of automatic global 

optimization and automatic deletion of the irrelevant features. 

In a sense, the GERF method has carried out a transition from a 

black-box to a white-box, which has optimized the traditional 

random forest. Moreover, the GERF is designed to classify 

effectively and detect disease-related brain regions and genes 

through the persistent genetic evolutions. 

Assuming that the original data set is 𝐷 = {𝑋, 𝐴}, where 𝑋 

represents the original sample set and 𝐴 represents the original 

feature set. The original sample set is 𝑋 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛 , 𝑦𝑛)} , where 𝑥𝑛  denotes the 𝑛𝑡ℎ 

sample and 𝑦𝑛 denotes the classification label of this sample. 

The labels 𝑦𝑛 ∈ {+1, −1}, where “+1” represents NCs and 

“−1” represents patients. There are 𝑚 ∈ 𝑀  features in the 

feature set. The original feature set is 𝐴 =
{𝑎11, ⋯ , 𝑎1𝑚, ⋯ , 𝑎𝑛1, ⋯ , 𝑎𝑛𝑚} , where 𝑎𝑛𝑚  denotes the 𝑚𝑡ℎ 

feature of the 𝑛𝑡ℎ sample. 

The original data set 𝐷 = {𝑋, 𝐴} is divided into a training set 

𝐷1 = {𝑋1, 𝐴1} and a testing set 𝐷2 = {𝑋2, 𝐴2} according to a 

certain ratio, where 𝐷 = 𝐷1 + 𝐷2. 𝐷1 is applied to training the 

model and 𝐷2  is applied to testing the generalization 

performance of the model. The model adopts a binary form to 

characterize sample features for subsequent calculation. “0” 

represents irrelevant features that are unselected into the feature 

subset, and “1” represents relevant features that are selected 

into the feature subset. The 𝑖𝑡ℎ  feature takes the following 

form: 

𝑤𝑖 = {
1,      𝑓𝑢𝑠𝑖𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑   
0,    𝑓𝑢𝑠𝑖𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 

, 𝑖 = 1, ⋯ , 𝑚 (4) 

We randomly choose samples and sample features from 𝐷1 

to establish a base classifier. It is worth noting that the base 

classifier is built based on the classification and regression tree 

(CART) algorithm. We repeat this process for 𝑘 ∈ 𝐾 times to 

generate a premier random forest with 𝑘 base classifiers. Each 

base classifier is encoded as a binary vector of length 𝑚. As a 

result, 𝑚  features in 𝑘  base classifiers constitute a binary 

matrix 𝑤𝑘,𝑚 which is defined as 

𝑤𝑘,𝑚 =  [

𝑤1,1 ⋯ 𝑤1,𝑚

⋮ ⋱ ⋮
𝑤𝑘,1 ⋯ 𝑤𝑘,𝑚

]                         (5) 

To better evaluate the classification ability of each feature 

subset, the model regards classification accuracy of base 

classifiers as a fitness function. If the classification accuracy is 

the lowest, the corresponding feature subset is replaced by that 

having the highest classification accuracy. Otherwise, the 

corresponding feature subset is preserved. This process is 

called as the selection. Thus, the formalization of the fitness 

function is expressed as 

ℎ𝑖 =
𝑡𝑟𝑖𝑔ℎ𝑡,𝑖

𝑇
                                     (6) 

where ℎ𝑖  represents the value of the fitness function, 𝑡𝑟𝑖𝑔ℎ𝑡,𝑖 

represents the total of participants in the testing set correctly 

classified by the 𝑖𝑡ℎ  base classifier. 𝑇  represents the total 

quantity of samples in the testing set. Then we carry out the 

genetic evolution. Each base classifier in the random forest is 

evaluated by the fitness function, irrelevant or redundant 

sample features are gradually removed, and sample features 

with high classification ability are retained. The sample 

features in the random forest are further crossed and mutated to 

form the first-generation random forest. The process of 

selection, cross and mutation is repeated continually, which is 

referred to as the genetic evolution. However, the 

genetic-evolutionary process cannot continue indefinitely. We 

set up termination conditions to generate the ultima random 

forest. When the classification accuracy of random forest 

remains stable or the genetic-evolutionary times reach a 

threshold, the genetic-evolutionary process is stopped and the 

ultima random forest is formed. The Algorithm 1 gives the clear 

construction procedure. 

D. Classification of the GERF 

We adopt the GERF model for classification and use the 

majority voting to predict the classification label of each 

sample. The majority voting method is given as 

𝑀𝑉(𝑥𝑛) =

 {
 𝑦𝑛

𝑗
,          𝑖𝑓 ∑ 𝑚𝑣𝑖

𝑗(𝑥𝑛)𝐾
𝑖=1  >  0.5 ∑ ∑ 𝑚𝑣𝑖

𝑧(𝑥𝑛)𝐾
𝑖=1

𝑍
𝑧=1

𝑟𝑒𝑗𝑒𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             
   (7) 

where 𝑀𝑉(𝑥𝑛) represents predicted classification label of 𝑥𝑛, 

𝑦𝑛
𝑗
 represents the 𝑗𝑡ℎ  classification label. The ∑ 𝑚𝑣𝑖

𝑗(𝑥𝑛)𝐾
𝑖=1  

represents the quantity of base classifiers labeled as 𝑦𝑛
𝑗
 which is 

the predicted value of sample 𝑥𝑛 , and 𝑧 ∈ 𝑍  represents the 

number of categories in the original data. The classification 

labels of all samples are predicted and the classification 

accuracy of GERF is computed by 

𝐴𝐶𝐶 =
𝐸𝑡𝑟𝑢𝑒

𝑇
                                           (8) 
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where 𝐸𝑡𝑟𝑢𝑒  represents the number of correctly classified 

samples in the testing set. 

E. Extraction of Optimal Fusion Features 

The extraction of optimal fusion features (i.e., optimal 

BR-gene pairs) is a crucial application of the GERF model. The 

optimal BR-gene pairs extracted can accurately distinguish 

between patients and NC. The specific extraction process is as 

follows. The first step is the extraction of important BR-gene 

pairs. Based on the random forest which has the optimal 

quantity of base classifiers, the classification accuracy tends to 

be stable. Each base classifier corresponds to a feature subset 

containing 𝑝 features. The frequency of each feature included 

in all feature subsets is counted and sorted in descending order. 

Finally, the first 𝑞  features are taken as important BR-gene 

pairs which are denoted as 𝑂 = {𝑜1, 𝑜2, ⋯ , 𝑜𝑞  }. The second 

step is the extraction of optimal BR-gene pairs. The first 𝑟 (𝑟 ≤
𝑞) features are selected from 𝑂 and their classification abilities 

are evaluated. Then the above procedure is repeated in a range 

of 𝑟 to 𝑞 with a step of 5. Eventually, the highest classification 

accuracy is found out from all classification accuracies. The 

corresponding feature subset is recorded as the optimal 

BR-gene pairs (i.e. optimal fusion features), which are denoted 

by 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑟 } . These optimal fusion features are 

automatically selected by GERF because they have more 

scientific value. The reason why it is called the optimal fusion 

feature is that it has strong classification ability for EMCI and 

normal people. That is to say, the differences in these features 

between EMCI and normal people are more pronounced, which 

indicates that brain regions involved in these features are more 

prone to lesions, and genes involved in these features are more 

prone to unusual expressions. By analyzing these features, 

there is a greater probability to identify risk genes and 

pathogenic brain regions of EMCI. 

F. Extraction of Disease-related Brain Regions and 
Genes 

The optimal fused features with the highest classification 

accuracy are extracted from 3240 high-dimensional features, 

which have the best classification ability among all features. 

Consequently, the optimal fusion features are regarded as 

abnormal ones, in which two components (brain regions and 

genes) are most likely to be abnormal and cause brain diseases. 

Based on 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑟  } , the occurrence frequency of 

each brain region is counted and sorted in descending order. 

The higher the frequency is, the more abnormal the brain region 

is. Subsequently, the occurrence frequency of each gene is also 

computed and sorted in descending order. Similarly, the higher 

the frequency is, the more abnormal the gene is. 

G. Parameters Optimization 

In the proposed GERF model, there are two parameters that 

need to be optimized. The first parameter is the times of genetic 

evolutions, which affects the efficiency of the model. The times 

should satisfy the constraint: 

𝑚𝑖𝑛
𝑝𝑟

 (𝑝𝑟)  

s.t.    ∆𝑓𝑅𝐹 < 𝜀                                       (9) 

 𝑝𝑟 ≤ 𝑈   

where 𝑝𝑟 is the times of genetic evolutions and 𝑈 is the largest 

value of genetic-evolutionary times. 𝑓𝑅𝐹  represents the 

classification accuracy of random forest. And the base 

classifiers quantity is the second parameter. Different quantities 

will influence the classification performance. In order to find 

out the optimal quantity of base classifiers, different values are 

selected to iterate the genetic-evolutionary process. When the 

random forest has the stabilized classification accuracy, the 

quantity corresponding to the least times of genetic evolutions 

is optimal. Consequently, the most befitting parameter is 

acquired. 

III. RESULTS 

A. Results of Fusion Features Construction and GERF 
Construction 

We combined brain regions with genes to construct BR-gene 

pairs. For the preprocessed rs-fMRI data, the brain image of 

each subject was matched utilizing the Anatomical Automatic 

Labeling template based on the voxel level to obtain 90 brain 

regions and corresponding 90 average time series. Based on the 

preprocessed genetic data, the quantity of SNPs in each gene 

was counted and sorted in descending order. We selected first 

36 genes to ensure the precision of the experiment. Then we 

extracted first 30 SNPs in each gene and encoded discretely. 

Thus, each subject had 36 genes and recoded gene sequences. 

In order to match the gene sequences, first 60 time points were 

selected and treated as the final average time series. We took 

Pearson correlation analysis as an example to show the 

calculation process. Consequently, 3240-dimensional ( 36 ×
90 = 3240) BR-gene pairs were obtained and regarded as 

fusion features.  

To better train the model, specifically, we divided the data  
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set by a ratio of 6:4 and obtained 44 training samples and 29 

testing samples. From the training data, 40 samples and 57 

features were randomly extracted to construct a base classifier. 

The feature number of 57 was obtained through many practical 

experiments. It could play the advantages of cluster more 

effectively. We found that when the number of input features 

was small (<< 57), we needed to build many base classifiers to 

obtain a part of base classifiers with satisfactory performance, 

which would greatly increase the time complexity of cluster 

construction. However, when the number of input features was 

too large (>>57), the diversities among base classifiers would 

decrease, which would also increase the time cost of genetic 

evolution. Then, different base classifiers quantities were taken 

to build the GERF model. Eventually, we selected the optimal 

quantity of base classifiers to acquire the GERF model. 

Here 100 base classifiers were taken as an example to 

illustrate the establishing process of the GERF model. Firstly, 

the quantity was set to 100 to construct a random forest with 

best performance. The classification accuracy of the random 

forest on the testing set was considered as the fitness function 

and the threshold of genetic-evolutionary times was set to 200. 

Secondly, sample features in the random forest were crossed 

and mutated to form the first-generation random forest. Thirdly, 

the genetic evolution was executed continuously until the 

classification accuracy of random forest remained stable. In Fig. 

2, when the times of genetic evolutions were 84, the variation of 

classification accuracy tended to be stable and the value was 

86.21%. As a consequence, when the quantity was 100, 84 was 

the optimal times of genetic evolutions. In order to find out the 

optimal quantity, we adjusted the quantity to build the GERF 

model. After repeated tests, the quantity of base classifiers was 

limited to a range of 100 to 300 with a step of 20 and the 

threshold times of genetic evolutions were set to 200. In Fig. 3, 

we summarized the changing situation of genetic-evolutionary 

times based on different quantities of base classifiers when 

classification accuracy of the GERF tended to be stable, hoping 

to find a combination with a less number of initial base 

classifiers and times of genetic-evolutionary to guarantee the 

effectiveness of model building. On the whole, a V-shaped 

curve was observed. When the quantity was 200, the 

genetic-evolutionary times were the least with the value 77, 

therefore the optimal quantity was 200. As a result, the GERF 

model with 200 base classifiers be constructed. The model did 

not have problem of overfitting, because in the process of 

model construction and assessment, samples and sample 

features were randomly extracted, which avoided overfitting to 

a certain level. Moreover, experimental results on ADNI 

dataset showed that the GERF model performed well, so it was 

impossible to overfit the model. 

B. Results of Optimal Fusion Feature Extraction 

As the genetic evolution of random forest continued, 

irrelevant or redundant features were gradually removed. 

Therefore, most of features in each base classifier had high 

classification ability. The frequencies of all features were 

calculated and ranked, and the first 400 features were extracted 

as important BR-gene pairs. We primarily extracted the first 70 

features as a subset and applied the traditional random forest to 

classifying EMCI patients and NC. Then the range of extracted 

features was set to (70, 400), and the step length was 5. The 

starting point of range is set to 70 because the performance of 

the base classifier constructed with less than 70 features is too 

low, and such small number of features may not be enough to 

build a base classifier. Therefore, in order to ensure the 

performance of the ensemble learner, we need to use at least 70 

features as feature subsets to build a base classifier, and then 

build the ensemble learner. The variational curve of the 

classification accuracies was described in Fig. 4. 

The results showed that when the first 190 features were 

selected, the classification accuracy was the highest, reaching 

86.21%. It was indicated that the subset including 190 features 

selected had the highest classification ability, eliminating 

irrelevant or redundant features. Therefore, the first 190 

features were the optimal fused features, and the top 20 features 

were shown in Fig. 5. 

C. Method Comparison and Validation 

We further compared quantities of optimal fusion features 

 
Fig. 2.  The variation of classification accuracies for 100 base 
classifiers. 

 

 
Fig. 3.  Optimal quantity of the base classifiers. Based on different 
quantities of base classifiers, the lowest times of genetic evolutions 
were optimal. 
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which were extracted by different methods on multi-modal data 

in Fig. 6. We utilized the different correlation analysis methods 

including Pearson correlation analysis, correlation distance 

(CD), and canonical correlation analysis (CCA) to construct 

feature matrixes, and extracted optimal features based on 

different machine learning methods involving the proposed 

GERF, two-sample t-test, random SVM cluster (RSVMC), and 

random forest (RF). Moreover, for the optimal features 

extracted by different methods, SVM classifier was used to test 

their classification performance. SVM is a two-class classifier, 

which has the advantages of excellent generalization 

performance, suitable for small sample learning, and can 

simplify common classification and regression problems, so it 

is widely used. As shown in Fig. 6, the quantity of optimal 

features selected by GERF was the minimum among all 

methods, while the classification accuracy was the highest, 

which indicated the features extracted by GERF were highly 

discriminative. In addition, to better compare the classification 

performances of GERF and two-sample t-test, we applied t-test 

to extracting features and then classified using an SVM 

classifier. Fig. 7 summarized the classification results of GERF 

and t-test based on different modal data for 5 times. The 

changing situation illuminated that the classification accuracy 

of GERF gradually tended to be stable and achieved optimal 

result with the increase of genetic-evolutionary times. It was 

observed that the performance of GERF appeared to be 

preferable than t-test in terms of the fusion features, and the 

stable value of classification accuracy of GERF was also 

superior to t-test based on the single modal data of rs-fMRI or 

SNP. 

D. Results of Abnormal Brain Regions and Genes 
Extraction 

In the optimal BR-gene pairs, we further analyzed the 

 
Fig. 4.  The variational curve of the classification accuracies for different 
feature subsets. 

 
Fig. 5.  The top 20 of optimal BR-gene pairs. The top represented 
genes and the bottom represented brain regions. 

 

 
Fig. 6.  The quantitative comparison of optimal fusion feature on 
multi-modal data. 

 
Fig. 7.  Performance comparison. The comparison included the 
classification performance analysis of GERF and the comparison 
between GERF and two-sample t-test. 
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occurrence frequencies of disease-related genes or brain 

regions. Brain regions with greater frequencies and the weights 

of those were provided in Fig. 8. The highest frequency was 6. 

The brain regions with greater frequencies were ROL.L, 

ORBsup.R, AMYG.L, ORBmid.L, ANG.R, INS.R, and other 

brain regions. Our discoveries are similar to many other studies. 

The ANG.R is involved in the processing of music performance, 

combinatorial semantics, and episodic memory [36]. The 

ANG.R accounts for a large proportion in all abnormal brain 

regions, indicating that the ANG.R may be connected with 

EMCI. The ORBmid.R plays a crucial role in the pathogenesis 

of EMCI. Xiang et al. identified the differences of ORBmid.R 

in the research on EMCI and NC [37]. Zhang et al. found that 

the decreased functional connectivity in MCI was between left 

dorsolateral superior frontal gyrus (SFGdor.L) and ORBmid.R 

[38]. The INS.R is a brain region connected with functions of 

cognition and affection [39]. Niu et al. employed one-way 

analysis of variance approach in the study of the conversion 

process from NC to EMCI to LMCI to AD and revealed 

significant differences of the INS.R on multiple time scales 

[40]. Zhao et al. suggested that some abnormal behaviors in 

patients with EMCI may reflect insular pathology [41]. 

Moreover, we also counted the frequencies of disease-related 

genes based on optimal BR-gene pairs. The frequencies of 36 

genes with the number of SNPs greater than the set threshold 

were displayed in Fig. 9. Genes with greater frequencies were 

CNTN5, GERM7, CTNNA3, TTC3, FHIT, and other genes. 

Genes with greater frequencies suggested that these genes are 

likely to lead to EMCI. Our discoveries are also consistent with 

those of many scholars. The FHIT gene is involved in 

pathological characteristics of EMCI. Li et al. investigated the 

genetic interaction among cingulate amyloid-beta load in 

EMCI and found out the interaction between CLSTN2 and 

FHIT that associated with cingulate amyloid burden [42]. 

Similarly, Yan et al. employed the linear regression model to 

analyze the genetic interaction in EMCI and found out the 

interaction between FHIT and PRB1 [43]. 

Moreover, there are some newfound brain regions (e.g., 

ROL.L and ORBsup.R) and genes (e.g., CNTN5 and GRM7), 

which are also likely associated with EMCI. Consequently, the 

GERF model not only provides a new method for the detection 

and diagnosis of EMCI, but also affords a novel mode for the 

pathological research of LMCI or AD. 

IV. DISCUSSIONS 

A. Performance Analysis of Method 

With the intensification of global aging process, the 

diagnosis study on senile diseases such as EMCI is becoming 

more and more essential. Some researchers focused on the 

classification study of EMCI by machine learning methods. Jie 

et al. adopted the multi-kernel SVM method to explore the 

dynamic connectivity networks of EMCI patients and NC, and 

the classification accuracy was up to 78.3% [44]. Wee et al. 

employed a sparse temporal network-based framework to 

classify EMCI patients and NC, and the accuracy reached 79.7% 

[45]. Peng et al. proposed a kernel-learning-based approach for 

multi-modal feature selection and used multiple kernel SVM to 

differentiate MCI from NC, resulting in an accuracy of 80.3% 

[46]. In this paper, we propose the GERF method to classify 

EMCI patients and NC, and the classification accuracy of the 

GERF method is up to 86.21%. 

Compared with existing approaches, the outstanding 

performance of GERF is embodied in three aspects. Firstly, the 

 
(a)                                                                                                                 (b) 

Fig. 8.  The frequencies and locations of abnormal brain regions. (a) Frequencies of a part of the brain regions. (b) Locations of the corresponding 
brain regions. 
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GERF model has good global optimization capabilities. The 

termination condition of genetic-evolutionary process is that 

the classification accuracy is stable or the times of genetic 

evolutions reach a certain threshold. Due to the stable accuracy, 

it shows that the most distinguishing features are preserved 

during the process of genetic evolutions, which improves the 

performance of the GERF model. The threshold of 

genetic-evolutionary times is set to simplify the model and 

ensure the learning efficiency. At the same time, the GERF 

model is optimized by changing the quantity of base classifiers. 

When the classification accuracy remains stable based on 

different quantities of base classifiers, the times of genetic 

evolutions corresponding to the optimal base classifier are the 

least, which means that the performance of GERF is optimal. 

Secondly, the model makes up for the deficiencies of random 

forest. Irrelevant or redundant features are gradually removed 

through continuous genetic evolutions, and most features in the 

ultima random forest have high classification ability. Thirdly, 

the overall framework consisting of the multi-modal data 

fusion method and the GERF model realizes the information 

complementation between fMRI data and gene data efficiently 

and effectively. The neuroimaging information and the genetic 

information are independent, both of which might affect the 

development of EMCI. We build a bridge between images and 

genes through correlation analysis, and the experimental results 

prove the good effect of information fusion. 

B. Limitations and Future Efforts 

Though achieving good feature extraction ability and 

classification performance, the proposed GERF method has 

some potential limitations. The first is that the selection of brain 

atlas may affect the generalization performance of the model. 

The constructed BR-gene pairs may be quite different because 

of the distinction of different atlases. In the future, we will 

consider different brain structures and use different brain atlas, 

like Broadman. The second is the selection of experimental 

data and fusion method. In this paper, Pearson correlation 

analysis method is used to fuse gene and fMRI data. In the 

future, we can also use other correlation analysis methods to 

fuse other modal data such as protein data [47, 48]. Lastly, for 

some less typical disease-related factors, due to the short of 

related research at present, we will find more data in subsequent 

research work, design novel algorithms for in-depth analysis, 

work with clinicians and better explain the role and rationality 

of these factors in the mechanism of EMCI. 

V. CONCLUSIONS 

In conclusion, we conduct a multi-modal data fusion study 

on rs-fMRI and gene data to detect brain diseases. The main 

achievements of this paper are listed. Primarily, we design a 

fused approach to carry out the feature fusion via combining 

rs-fMRI data with gene data. Secondly, we propose the GERF 

method to find out the optimal BR-gene pairs and classify 

EMCI patients and NC efficiently. Compared with other 

approaches, the classification accuracy of GERF is the highest. 

Finally, we provide an overall framework of feature fusion, 

feature extraction, and classification in small samples. The 

experimental results show that the overall framework had 

brilliant feature extraction ability and classification 

performance, which is supportive to explore the pathogenesis 

of EMCI. We discover many disease-related genes and brain 

regions, which sheds light on the pathogenic mechanism of 

EMCI. 
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