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 

Abstract—Alzheimer's disease (AD) has become a severe 

medical challenge. Advances in technologies produced 

high-dimensional data of different modalities including functional 

magnetic resonance imaging (fMRI) and single nucleotide 

polymorphism (SNP). Understanding the complex association 

patterns among these heterogeneous and complementary data is 

of benefit to the diagnosis and prevention of AD. In this paper, we 

apply the appropriate correlation analysis method to detect the 

relationships between brain regions and genes, and propose 

“brain region-gene pairs” as the multimodal features of the 

sample. In addition, we put forward a novel data analysis method 

from technology aspect, cluster evolutionary random forest 

(CERF), which is suitable for “brain region-gene pairs”. The idea 

of clustering evolution is introduced to improve the generalization 

performance of random forest which is constructed by randomly 

selecting samples and sample features. Through hierarchical 

clustering of decision trees in random forest, the decision trees 

with higher similarity are clustered into one class, and the decision 

trees with the best performance are retained to enhance the 

diversity between decision trees. Furthermore, based on CERF, 

we integrate feature construction, feature selection and sample 

classification to find the optimal combination of different methods, 

and design a comprehensive diagnostic framework for AD. The 

framework is validated by the samples with both fMRI and SNP 

data from ADNI. The results show that we can effectively identify 

AD patients and discover some brain regions and genes associated 

with AD significantly based on this framework. These findings are 

conducive to the clinical treatment and prevention of AD.  

 

Index Terms—Alzheimer's disease, clustering evolutionary 

random forest, fMRI, multimodal data fusion, SNP. 

 

I. INTRODUCTION 

T is well-established that Alzheimer's disease is defined as a 

typical form of neurodegenerative disorders in medicine. 

Generally, AD patients usually have mental retardation and 

memory impairment in clinical manifestations [1]. The latest 

research shows that the total prevalence of AD patients will 
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exceed 60 million in the next 50 years [2]. Therefore, a large 

quantity of studies on AD have been carried out to understand 

its pathogenesis, and prove that accurate early diagnosis is 

conducive to slow down the process of AD even though the 

process is irreversible [3]. 

Over the past two decades, advances in neuroimaging 

technologies have made great contributions to early diagnosis 

of AD [4], especially the application of fMRI technology which 

enables researchers to detect the brain activities of AD patients 

in real-time. Additionally, the genome-wide association study 

(GWAS) shows that genetic variations (e.g., SNP) are the 

intrinsic etiologies of AD through their abnormal expression in 

brain function and structure [5]. Therefore, multimodal fusion 

analysis to explore the correlation between neuroimaging data 

and gene data may be a potential breakthrough in AD research. 

Multimodal data fusion analysis is an emerging field in brain 

research. Because the cost of obtaining labeled samples in the 

medical field is expensive, there is little public and credible 

multimodal data. A limitation that researchers often face is how 

to extract important information from high-dimensional fusion 

features in small samples [6]. In previous studies, some 

researchers used classical methods [7], such as principal 

component analysis (PCA) and independent component 

analysis (ICA), to solve the high-dimensional problem of 

multimodal fusion analysis. These methods achieved attribute 

reduction, but researchers need to devote lots of efforts if they 

want to analyze some significant fusion features separately. In 

recent researches, many improved methods have been proposed. 

For instance, Wang et al. [8] reduced the dimensionality by 

proposing sparse multiple canonical correlation analysis 

(SMCCA) for feature selection. Besides the methods 

mentioned above, other methods have also been proposed, such 

as gradient boosting decision tree [9] and low-rank 

dimensionality reduction [10]. However, it is worth noting that 

the complexity of the methods may also reduce its practicability 

and generalization. 

In addition, most of the current researches mainly focus on a 

specific process in multimodal fusion, such as fusion feature 

construction [11], feature selection [12], or sample 

classification [13]. The lack of comprehensive framework is 

another challenge in the study of multimodal fusion between 

neuroimaging data and gene data. For example, Shi et al. [14] 

proposed the multimodal stacked deep polynomial networks 

(MM-SDPN) to construct fusion features. Zhu et al. [15] 
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designed a novel relational regularization feature selection 

approach to extract the most effective fusion features. In 

addition to the above two aspects, sample classification has 

attracted more attention of researchers, and the deep learning 

methods are becoming increasingly popular. Chaddad et al.  [16] 

extracted the radial features from MRI images, and used the 

convolutional neural network (CNN) model to classify 100 AD 

and 135 healthy control (HC). Choi et al. [17] input 

3-dimensional positron emission tomography (PET) volumes 

into deep CNN to recognize 139 AD and 182 HC, and the 

classification accuracy reached 84%. However, the deep 

learning model is more similar to the black box, and the 

interpretation of classification results is easier to make the 

problem more complex. Therefore, the design of a 

comprehensive framework integrating multimodal fusion 

feature construction, feature selection and sample classification 

is of great significance for the early diagnosis of AD. 

Considering the challenges mentioned above, we carry out a 

multimodal fusion study of AD based on fMRI data and gene 

data. Firstly, we design the clustering evolutionary random 

forest to solve the small samples problem. The method 

constructs the initial random forest by selecting samples and 

fusing features randomly, and introduces the idea of clustering 

evolution to delete irrelevant and redundant decision trees 

dynamically. Secondly, we test the different construction 

methods of fusion features, and integrate the fusion features 

construction, feature selection and sample classification into a 

framework. The multimodal data comprehensive analysis 

framework for AD is showed in Fig. 1. The overall description 

of the model is as follows: 1) The preprocessing of multimodal 

data. 2) The construction of multimodal fusion features. 3) The 

establishment of CERF and the classification of samples. 4) 

The extraction of features with strong classification ability. 5) 

The detection of abnormal brain regions and pathogenic genes. 

Finally, we use multimodal data from ADNI database to 

evaluate our method, and its reliability is verified. 

The rest of the article is arranged as follows. Section II is the 

description of methods. Section III is the experimental results. 

Section IV is the related discussions, and Section V is the 

conclusion of our paper. 

II. MATERIAL AND METHODOLOGY 

A. Data Acquisition and Preprocessing  

The data is acquired from the ADNI database, which serves 

as a large public cohort for Alzheimer's disease 

(http://adni.loni.usc.edu/). Substantial PET data, MRI data and 

gene data of AD patients are available in the cohort. In this 

work, 37 AD patients and 35 HC are collected from ADNI as 

experimental samples, and each sample has resting fMRI and 

SNP data. 

In order to avoid the influences of age and sex on the 

follow-up experiments, this study conducts statistical tests for 

the AD and HC groups. As shown in Table I, there is no 

significant difference in age and sex between the two groups. 

For quality control, it is necessary to preprocess fMRI data 

and SNP data respectively. Standard preprocessing steps for 

fMRI data are applied using DPARSF such as slice timing 

correction and head-motion adjustment. The specific steps of 

fMRI data preprocessing are as follows:  

● Transforming the original data into NIFTI format file.  

● Deleting the first 10 time volumes of all samples to ensure 

magnetic gradient field stabilization of the scanner.  

● Performing slice timing correction on the remaining 

volumes.  

● Adjusting the head-motion to guarantee that the brain of 

each sample is in the same position.  

● Normalizing the image with the EPI template.  

● Smoothing the noises of image using Gaussian kernel with 

the full width at half maximum (FWHM) of 6 mm.  

● Using the linear model to remove covariate signal 

interference including subject motion, white matter and global 

signal.  

● Filtering the functional time series by a 0.01Hz to 0.08Hz 

frequency range. 
 

 Fig. 1.  The framework of multimodal data analysis. The framework of 

multimodal data analysis includes five parts: data preprocessing, correlation 
analysis, feature matrix construction, sample classification and pathogenic 

factors extraction. 
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TABLE  I   
BASIC INFORMATION OF AD AND HC 

Variables(Mean±SD) AD(n =37) HC(n = 35) P value 

Gender(M/F) 19/18 13/22 0.324∗ 

Age(years) 75.35±7.949 77.14±6.175 0.291∗∗ 

Notes: Values are mean ± SD; 
* The P value was obtained by the chi-square test. 

** The P value was obtained by the two-sample t-test. 
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The SNP information of the sample is obtained through 

Ilumina Omni 2.5M BeadChip. PLINK is used to perform 

preprocessing for SNP data, and detailed steps are as follows: 

● The threshold of sample call rate is set to 95% to evaluate 

the overall quality of gene data. 

● The thresholds of genotyping, minimum allele frequency 

and Hardy-Weinberg equilibrium test are set to 99.9%, 4% and 

1E-4 respectively to eliminate the SNPs with poor quality. 

B. Construction of Fusion Features 

The first aim of our study is to detect the correlations 

between genes and brain regions, and construct the fusion 

features. Although there are a few existing studies trying to 

carry out the fusion analyze of brain region and gene [8], but 

multimodal data fusion is still a challenging work in the field of 

brain science. This paper designs an attractive fusion scheme 

for multimodal fusion research. We use a more practical 

correlation analysis method to detect the correlations between 

specific brain regions and genes from sequence coding aspect.  

These correlations are sample fusion features named “brain 

region-gene pairs”. Compared with the classical method, it has 

better construction efficiency and interpretability. The specific 

construction method is as follows. 

After preprocessing of the multimodal data, the resting fMRI 

and gene data of samples are standardized. Firstly, fMRI data is 

separated into 90 brain regions based on the Automatic 

Anatomical Labeling (AAL) template, and time series in brain 

regions are obtained. Secondly, the SNPs are grouped 

according to their corresponding genes, and M genes with SNP 

count greater than threshold len are kept. Thirdly, four types of 

bases (e.g., A, T, C and G) in SNPs are converted into different 

digits (e.g., 1, 2, 3 and 4), and then we obtain the digital 

sequences of genes by the transformation method. Finally, we 

adjust the length of gene sequences and brain time series to 

2len  respectively, and use Pearson correlation analysis, 

canonical correlation analysis (CCA) and distance correlation 

analysis (DCA) as candidate methods to construct “brain 

region-gene pairs”. We will compare the applicability of 

different correlation analysis methods in the proposed 

comprehensive framework to select the optimal fusion feature 

construction method.  

C. Construction of Clustering Evolutionary Random Forest  

The function of CERF is to process high-dimensional fusion 

features. It is generally known that ensemble learning has 

advantageous superiority in high-dimensional data processing. 

Random forest is the representative of ensemble learning 

technology, and has desirable processing ability for 

high-dimensional data in some cases. However, in the field of 

multimodal brain science data fusion research, it is often faced 

with the challenge of high dimension and small sample. 

Therefore, the CERF is proposed in this paper. Clustering 

evolution and random forest are combined to realize an 

adaptive ensemble learner. Through hierarchical clustering of 

decision trees in random forest, the most recognizable features 

between HC and AD are gradually selected from the 

high-dimensional features. The design idea of CERF is 

displayed in Fig. 2, and the concrete realization of CERF is as 

follows. 

We suppose that the sample set is S = {x, y}n=1
N . Then, the 

train set A = {xa
A, ya

A}a=1
nA , validation set B = {xb

B, yb
B}b=1

nB  and 

test set C = {xc
C, yc

C}c=1
nC  are randomly selected from the sample 

set according to the ratio of 5:3:2. Specifically, xa
A =

{BGa
1, BGa

2, … BGa
m} and ya

A = {−1, +1}, where xa
A represents a 

sample in the train set A, BGa
m indicates the m-th feature of the 

sample, ya
A  indicates the corresponding class label of the 

sample, “+1” is HC  and “-1” is AD. 

According to the splitting strategy for data set, the train set A 

and the corresponding validation set  B  are obtained. The G 

features and H samples are randomly extracted from the train 

set A, the value of G is defined as follows. 

G = fix(√𝑚)                           (1) 

where m represents the total quantity of sample feature, fix(𝑥) 

is rounding function. Then, we use the Gini index to find the 

optimal classification points of different features and construct 

a decision tree (please see Eq.2). 

GINI(A) = 1 − ∑ Pk
2                           (2) 

where Pk represents the probability of which the classification 

result is k. Specifically, we use the BGm to represent the m-th 

feature of all samples. When the value of feature BGm is j, the 

Gini index is calculated by Eq.3 

Gain_GINIBGm,j(A) =
n1

N
GINI(A1) +

n2

N
GINI(A2)          (3) 

where N is the total quantity of samples in the train set A, n1 

and n2 are the number of samples in the sample subset A1 and 

A2 respectively. Next, we calculate the Gini coefficients of all 

values of feature BGm, and select the value corresponding to 

the minimum Gini coefficient as the optimal classification 

point. Furthermore, the optimal binary classification points of 

all features are calculated according to the Eq.2-3, a decision 

 
Fig. 2.  The design of CERF. The idea of clustering evolution is introduced to 

improve the diversity and accuracy of base classifiers through repeated 

clustering evolutions. 
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tree is constructed. 

The construction of a decision tree mentioned above is 

repeated for P  times. P  decision trees are obtained, and 

assembled into the initial random forest. 

The similarities between decision trees in the initial random 

forest are taken as clustering criteria to construct the CERF. We 

try to use disagreement measure, relevance measure, and kappa 

similarity measure to detect the similarities. By comparing the 

classification performance of CERF based on different 

similarity measures on the test set, the study will select the best 

one as the similarity measure of decision trees. Here are the 

formulas for the three indicators. 

The formula for calculating disagreement measure is Eq.4. 

The smaller value of 𝐷𝑀𝑖,𝑗 is, the greater the similarity is. 

              DMi,j =
Ri−j+Rj−i

Tij+Ri−j+Rj−i+Fij
                          (4) 

The expression for calculating the kappa similarity measure 

is Eq.5. 

kappai,j =
2（TijFij−Ri−jRj−i）

(Tij+Ri−j)(Tij+Rj−i)(Fij+Ri−j)(Fij+Rj−i)
        (5) 

Finally, the relevance measure is defined as  

 RMi,j =
TijFij−Ri−jRj−i

√(Tij+Ri−j)(Tij+Rj−i)(Fij+Ri−j)(Fij+Rj−i)
          (6) 

The parameters of the above formulas are explained as 

follows. We hypothesize that dti  and dtj  represent two 

decision trees. Tij indicates the quantity of samples that can be 

correctly classified by dti and dtj in the train set. Ri−j indicates 

the quantity of samples that is only correctly classified by dti in 

the train set. Rj−i indicates the quantity of samples that is only 

correctly classified by dtj  in the train set. Fij  indicates the 

quantity of samples that is classified incorrectly by dti and dtj 

in the train set.  

In order to carry out the clustering evolution of the initial 

random forest, we calculate the similarities between decision 

trees according to the above methods, and form the similarity 

matrix  Mdt which is defined as  

 Mdt = [

SM1,1 ⋯ SM1,q

⋮ ⋱ ⋮
SMq,1 ⋯ SMq,q

]                          (7) 

where SMq,1  indicates the similarities between decision tree 

dt1 and decision tree dtq, and is calculated by disagreement 

measure, relevance measure or kappa similarity measure. If the 

similarity value SMq,1 between dt1 and dtq is the highest, the 

two decision trees will be considered as a cluster. According to 

the strategy, we carry out the agglomerative hierarchical 

clustering from bottom to top, the linkage algorithm is used to 

cluster most similar decision trees into one cluster. Then, the 

decision trees in the initial random forest are clustered into 

several clusters. We test the classification accuracies of 

decision trees in each cluster by the Eq.8 

Accz =
Wz

W
                                         (8) 

where Accz indicates the accuracy of the decision tree z , Wz 

indicates the quantity of samples that are classified correctly by 

the decision tree z  in the validation set, and W indicates the 

sample size of the validation set. The decision tree with the 

highest accuracy in a cluster is selected as the representative of 

the cluster to construct an improved random forest. The above 

process is called as clustering evolution. The process of 

clustering evolution is repeated until the generalization 

performance of random forest reaches its peak. Then we stop 

clustering evolution and get the final random forest. In 

clustering evolution process, the decision trees with the highest 

similarity will be clustered into one cluster, and the number of 

decision trees in random forest will be reduced. By setting the 

step size of clustering evolution E, the number of decision trees 

reduced is E in each clustering evolution. Its main function is to 

control the clustering evolution process of random forest, avoid 

the clustering process too fast, to ensure that the decision trees 

with large similarity will be the one cluster, and then retain the 

decision trees with the best classification performance. After 

several clustering evolutions, the amount of decision trees in 

the CERF can be defined as 

K = D − iE     (i = 1,2,3 … n)               (9) 

where D is the amount of decision trees in the initial random 

forest, i is the clustering evolution times, E is the step size of 

clustering evolution. 

The construction process is summarized in Algorithm 1. The 

input of the algorithm is the sample set, and the output is a 

clustering evolutionary random forest.  

Input: experimental data set {X,Y}

Output: The clustering evolutionary random forest 

1:   Initialize {X,Y}, D, E, i.

2:   {X,Y} is experimental data set, 

3:    D is the number of initial decision trees 

4:    E is the  step size of clustering evolution 

5:    i is the clustering evolution times.

6: Partitioned the {X,Y} into {X,Y}tra_1,{X,Y}val_1, ,

7:    {X,Y}tra_n, {X,Y}val_n and {X, Y}test 

8：  i=1

9: for k = 1 to D ：           

10:    select  {X,Y}tra_k

11:    Randomly select a subset of features  as {Features} tra_k

12:    {X,Y}tra_k and {Features}tra_k    decision tree {Tbk}

13:    {X, Y}val_K    test the classification accuracy of decision treek

14:  end for 

15：Random Forest = Ensemble of decision trees{Tb1  TbD}   

16:   Choose a similarity measure from Eq. (4-6)

17:   Computing the similarities between decision trees  

18: Do

19:    Clustering the decision trees in the Random Forest into several clusters

20:     Retain the decision trees with the highest accuracy in each cluster  remove

          the inefficient trees

21:      D = n -iE, i=i+1   

22:    {Random Forest}new = Ensemble of the retained decision trees 

23: until the accuracy of {Random Forest}new reaches the peak

Algorithm 1 CERF learning process
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D. Classification Method of Clustering Evolutionary Random 

Forest  

Let us assume that “+1” denotes HC and “-1” denotes AD. 

We classify the unlabeled sample  T  with the final random 

forest after clustering evolutions, and the plurality voting 

method is used to determine the final classification result. The 

specific voting method is shown in Eq.10-11. Firstly, we count 

the voting results of the decision trees in the final random forest 

using Eq.10. 

Rl = ∑ dt l,T(T)n
i=1                                    (10) 

where Rl  denotes the total votes of the class label  l , and 

dtl,T(T) denotes the voting result of a decision tree in the final 

random forest. If the voting result is l, the value of dtl,T(T) is 

“1”, otherwise the value is “0”. Subsequently, according to 

Eq.11, we choose the label with the largest number of votes as 

the class label of the sample. 

Result = Arg max(R)                         (11) 

More concretely, for an unlabeled sample T, if more than 

half of the decision trees in the final random forest consider the 

sample is positive, the final classification result is normal. 

Otherwise, the result of the sample classification is patient. 

E. Abnormal “Brain Region-Gene Pairs” Analysis  

 Besides the classification, the CERF also can find out the 

discriminative “brain region-gene pairs” between HC and AD, 

and extract abnormal brain regions and pathogenic genes, 

which is the other aim of our study. The detailed analysis 

process is as follows. 

Initially, the frequencies of “brain region-gene pairs” 

selected by the decision trees in the final random forest are 

counted, and the 𝑟 features with higher frequencies are 

regarded as “important brain region-gene pairs”. The formula 

for calculating frequency is defined as 

FBGj = ∑ FBGi,j
m
i=1                                 (12) 

where FBGj is the total frequency of the j-th “brain region-gene 

pair” and FBGi,j is the frequency of the j-th dimension feature 

in the i-th decision tree. Although important features have a 

great contribution to classification, there may still be some 

redundant or irrelevant features. Subsequently, different 

subsets are extracted from “important brain region-gene pairs” 

and taken as the input features of traditional random forest. The 

classification abilities of these subsets are reflected by the 

classification accuracy of random forest. We get the subset with 

the strongest classification ability which is the “optimal brain 

region-gene pairs”. The difference in optimal features between 

AD and HC is more obvious, which means that the brain 

regions contained in optimal features are more likely to have 

functional or structural lesions, and the genes contained in 

optimal features are more likely to have abnormal expression. 

Through the analysis of these optimal fusion features, it is more 

likely to determine the abnormal brain regions and risk genes. 

Finally, we further count the frequencies of brain regions and 

genes in the “optimal brain region-gene pairs”, and select brain 

regions and genes with higher frequencies as abnormal brain 

regions and pathogenic genes. 

F. Parameters Optimization 

There are two free parameters in the proposed CERF method, 

which are the number of initial decision trees and the clustering 

evolution times. The two parameters should be optimized for 

achieving the best performance of CERF. The specific 

optimization methods are as follows. 

Firstly, we hypothesize that the number of initial decision 

trees and the clustering evolution times are in large interval [a, 

b] and [c, d] respectively. Then, we carry out multiple 

clustering evolutions to make the classification performance of 

random forest with different number of initial decision trees 

reach the peak value, and calculate the optimal clustering 

evolution times corresponding to the different amounts of 

initial decision trees. Finally, the optimal combination of the 

two parameters is determined by the following criterion. When 

the number of initial decision trees is D, the clustering 

evolution times required for the random forest performance to 

reach the peak value are the least, which helps ensure the 

efficiency of CERF construction. 

III. EXPERIMENT RESULTS 

A. The Result of Fusion Feature Construction 

After preprocessing of multimodal data, the fMRI voxels 

were clustered to 90 brain regions by AAL template, and the 

82400 SNPs were retained. According to the fusion feature 

construction method mentioned in Section II, we extracted the 

average time series of each brain region, and extracted 36 genes 

with more than 30 SNPs from 82400 SNPs. Then, the first 60 

points of gene sequence were intercepted, and the similar 

process exist for the brain regions. Finally, three types of 

correlation coefficients between the gene sequences and brain 

regions were calculated, including Pearson correlation 

coefficients, canonical correlation coefficients and distance 

correlation coefficients. Based on each correlation analysis 

method mentioned above, 3240 “brain region-gene pairs” were 

obtained from a sample. 

The following contents of Section III are organized as 

follows: In part B and part C, we take the fusion features based 

on Pearson correlation analysis as an example to illustrate the 

construction of CERF and the extraction of optimal features. 

Part D is the comparison of different correlation analysis 

methods and the construction of AD comprehensive diagnosis 

framework. Part E is the extraction of brain regions and genes 

based on the comprehensive framework. 

B. Optimal Clustering Evolutionary Random Forest  

By comparing the performances of different similarity 

measures mentioned in Section II, our study selected the 

disagreement measure to construct the optimal CERF. The 

specific process of CERF construction was as follows. 

Initially, 36 samples were abstracted randomly from the train 

set, and √3240 ≈ 57 features were selected randomly from the 

“brain region-gene pairs” to construct a single decision tree. By 
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repeating the step for several times, 300 decision trees were 

constructed and formed the initial random forest. Then, the step 

size of clustering evolution was set to 10, and the random forest 

was clustering-evolved for 25 times. We calculated the 

classification accuracy of random forest on test set after each 

evolution. The relationship between evolution times and 

classification accuracy was shown in Fig. 3. When the initial 

random forest was clustering-evolved for 10 times, the 

accuracy of the CERF reached the highest. Therefore, when the 

amount of initial decision trees and the optimal clustering 

evolution times were 300 and 10 respectively, we obtained a 

CERF. 

In order to obtain the optimal CERF, we further used the 

optimization strategy mentioned in Section II to optimize the 

two free parameters of CERF. Firstly, we assumed that the 

optimal number of initial decision trees and the clustering 

evolution times for random forest were in the interval of 

[300,500] and [1,25] respectively. Then, the grid search 

strategy was used to search for the optimal combination of 

parameters. Specifically, we gradually increased the number of 

initial decision trees from 300 to 320, 340, 360, …, 500. 

According to the method of clustering evolution mentioned 

above, random forests with different initial base classifiers 

numbers were clustering-evolved to peak of classification 

accuracy and we obtained the optimal clustering evolution 

times corresponding to the different quantities of initial 

decision trees. In Fig. 4, we showed the highest classification 

accuracies of random forests with different initial base 

classifiers numbers and their corresponding optimal clustering 

evolution times. We found the peak values of random forests 

with different initial decision trees are close, but the optimal 

clustering evolution times of random forest with 340 initial 

decision trees are the least. Therefore, the optimal combination 

of parameters was (340, 7), because the evolutionary times 

required to construct the optimal CERF based on this parameter 

combination are the least under the same classification 

accuracy peak level.                                                                                                                                                                

C. The Extraction of Optimal Fusion Features  

The classification accuracy of the final random forest (the 

initial number of decision trees =340, the clustering evolution 

times =7) was close to 90%. It is shown that the decision trees 

with more effective classification features in random forest 

were preserved through hierarchical clustering evolutions. 

Therefore, by analyzing the selected features of each decision 

tree in the final random forest, we could find out the “important 

brain region-gene pairs” which contributed to classification 

greatly. The process was as follows.  

We extracted all the “brain region-gene pairs” selected by 

each decision tree in the final random forest, and then counted 

the frequency of each “brain region-gene pair”. The higher the 

frequency was, the greater difference between HC and AD 

patients was. As a result, the top 400 “brain region-gene pairs” 

with higher frequencies were considered to be the “important 

brain region-gene pairs”, and the features with frequencies 

greater than 12 were listed in Table II. The frequency was used 

as a criterion to select “important brain region-gene pairs”, 

which may contain some inefficient or redundant features. With 

the intention of finding the “optimal brain region-gene pairs” 

with the strongest distinguishing ability, it is necessary to 

 
Fig. 3.  The changes of the accuracy during the clustering evolutions. 
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TABLE II  
THE “IMPORTANT BRAIN REGION-GENE PAIRS” WITH FREQUENCY GREATER 

THAN 12 

Frequency  Brain region-gene pairs 

17 HIP.R-KAZN  

16 PCUN.L-NRXN1, THA.L-PTPRD, 

MTG.L-CTNNA3   

15 INS.L-DAB1, LING.R-DLGAP2   

14 ORBinf.R-ASTN2, ORBsupmed.R-GRM7, 

INS.R-CTNNA3, ACG.R-ROBO2, 

 PHG.R-FRMD4A, PCUN.L-MAGI2, 

PCUN.L-RBFOX1, TPOmid.L-CTNNA2 

13 SFGdor.R-ROBO2, MFG.L-OPCML, 

 MFG.L-RYR2, IFGoperc.R-CTNNA2, 

IFGtriang.L-PCDH15, OLF.R-DAB1, 

TPOmid.L-DAB1, OLF.R-DAB1,  

OLF.L-MACROD2, DCG.R-CTNNA2, 

AMYG.L-RF00019, CAL.L-CTNNA3 

 

  
Fig. 4.  The relationship curve between the optimal evolution times and the 

quantity of initial decision trees.  
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screen the “important brain region-gene pairs”. We divided the 

“important brain region-gene pairs” into several subsets 

according to the frequency. For example, the first 70 “important 

brain region-gene pairs” with higher frequencies were the 

subset 1 and the first 75 “important brain region-gene pairs” 

were the subset 2. Then the classification performances of these 

subsets were tested by the traditional random forest composed 

of 340 decision trees, and the result was shown in Fig. 5. When 

we used the first 290 “important brain regions-gene pairs” to 

construct a subset, the classification accuracy of the random 

forest reached the highest value of 91.3%. Therefore, the first 

290 “brain region-gene pairs” were the “optimal brain 

region-gene pairs”. The top 40 “optimal brain region-gene pairs” 

were displayed in Fig. 6. 

D. Comparison with Other Methods in Feature Fusion 

Extraction and Classification 

In part B and part C, we constructed fusion features based on 

Pearson correlation analysis and extracted the optimal fusion 

features using CERF. Besides the methods mentioned above, 

we also applied the CCA and DCA to construct fusion features, 

and used other feature extraction methods to extract the optimal 

fusion features. These feature extraction methods include 

random forest (RF), random SVM cluster (RSVMC) and 

two-sample t-test. Finally, we used SVM to evaluate the 

classification ability of the optimal features extracted by 

different methods, and the result was shown in Table III. 

We found some interesting conclusions from Table III. 

Firstly, it is observed that the number of the optimal fusion 

features extracted by CERF was the least, but the classification 

performance of these features was the highest. Secondly, the 

optimal features extracted by other methods overlapped with 

those extracted by CERF. At the same time, through 

hypergeometric test, we found that these overlaps were not 

random. Finally, we also noted that the more overlaps these 

methods had with CERF, the higher the classification accuracy 

they had. Furthermore, by analyzing the overlaps of features, 

we found that some significant associations between genes and 

brain regions including ACG.R-LRP1B, ANG.L-ASIC2, 

STG.L-CDH13, IPL.R-CNTN5, IOG.R-CTNNA2 and 

PCUN.L-MAGI2. These associations could be detected by 

different correlation analysis methods and feature extraction 

methods, which suggests that the associations between brain 

regions and genes may be strong, the difference between AD 

and HC may be more obvious. It may need to be focused in 

future research. Based on the above analysis, we could find that 

the method of Pearson + CERF extracted the least number of 

optimal features and was the most reliable among all the above 

methods, because it could avoid the false positive situation 

effectively. Therefore, the optimal fusion features extracted by 

Pearson + CERF were the most reasonable. 

With the purpose of further testing the performance of the 

Pearson + CERF method, we used 340 as the optimal amount of 

initial decision trees, and set the clustering evolution times to 2, 

4, 6, 7, 8 respectively. Under different circumstances, we 

conducted 50 independent experiments to test the classification 

performance of this method. In addition, the method was also 

compared with unimodal and multimodal t-test to 

comprehensively evaluate its performance. In unimodal 

experiments, t-test was used as feature selection tool and SVM 

was used as sample classifier. In fMRI-based t-test, functional 

connectivity is the sample feature, and in SNP-based t-test, 

single SNP is the sample feature. The results were show in Fig. 

 
Fig. 6.  The top 40 “optimal brain region-genes pairs”. Nodes denote 

lesion brain regions or pathogenic genes, while edges denote the 

associations between brain regions and genes. 

TABLE  III 

PERFORMANCE COMPARISON OF DIFFERENT METHODS 

Method Discoveries Classification 

accuracy of 

SVM 

Overlap with our 

method 

Pearson + CERF 
290 

0.862 — 

Pearson + RF 580 0.827 205 (p = 1.32605e-46) 

Pearson + RSVMC 630 0.724 168 (p = 7.29436e-90) 

Pearson + t-test 351 0.793 188 (p = 0.000386718) 

CCA + t-test 313 0.689 141 (p =1.00512e-10) 

DCA + t-test 329 0.758 182 (p =0.005151893) 

 

 
Fig. 5.  The accuracies of the traditional random forests based on different 

subsets. 
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At the initial stage of clustering evolution, there was a 

positive correlation between the classification accuracy of this 

method and the clustering evolution times. When the peak 

performance was reached, the classification performance of this 

method might decline if the clustering evolution was continued. 

This is because the quantity of decision trees is insufficient and 

the performance of ensemble learner is fluctuant. Therefore, we 

set the number of initial base classifiers to 340 and the number 

of clustering evolution times to 7, which is the best balance 

between performance and resource consumption. Then, we 

compared the performance of t-test in multimodal fusion 

features with that in the unimodal features. We found that the 

multimodal fusion features effectively improve the 

performance of the t-test, indicating that the gene and fMRI 

data fusion have complementary advantages. Furthermore, 

compared with t-test in multimodal fusion features, we found 

that the CERF has obvious advantages.  

Finally, in order to verify the robustness and generalization 

of the model under the small sample size, the Pearson + CERF 

model was extended to the multimodal data fusion study of 

Parkinson's disease (PD) and early mild cognitive impairment 

(EMCI). We constructed fusion features and optimal CERF 

based on the two different diseases data. The experimental 

dataset information and the key parameters of CERF were 

listed in Table IV. We also conducted 20 independent 

performance tests on CERF based on these two other different 

datasets, and the results were shown in Fig. 8. 

The results in Table IV show that Pearson + CERF model 

had good generalization, which can achieve satisfactory 

classification performance in different types of brain disease 

multimodal data analysis tasks through simple parameter 

adjustment. At the same time, the performance curve in Figure 

8 shows that the Pearson + CERF method is relatively stable in 

different data classification tasks, which also proves the 

stability of the method. The above analysis proved that the 

Pearson + CERF method has satisfactory ability in feature 

extraction and sample classification. 

E. The Extraction of Abnormal Brain Regions and Genes 

From the above experimental results, we could learn that the 

“optimal brain region-gene pairs” extracted by the method of 

Pearson + CERF had the best recognition ability for samples, 

and could be used to extract abnormal brain regions and 

pathogenic genes of AD. These features differed greatly 

between AD patients and HC, and were associated with brain 

regions and genes. Thus, we counted the frequencies of the 

brain regions and genes in “optimal brain region-gene pairs” as 

weights respectively. The brain regions and genes with the 

largest weights were abnormal brain regions and pathogenic 

genes of AD, which included precuneus, lingual gyrus, angular 

gyrus, insula, thalamic, DAB1 gene and LRP1B gene. The 

locations of the abnormal brain regions were displayed in Fig.9, 

and the main information of pathogenic genes was shown in Fig. 

10. 

IV. DISCUSSION 

A. Comparison with Existing Studies  

  Finding clear disease mechanism of AD across multiple 

data sets is a common challenge in brain science. In recent 

years, the related studies of AD have been carried out by some 

researchers. Our study is similar but different from the existing 

researches.  

 
Fig. 7.  Classification accuracies of CERFs in different clustering evolution 

times, and comparison with unimodal and multimodal t-test. CE is the 

cluster evolution times, and the classification accuracy of all CERFs is 
obtained by multimodal test. T-test means extracting features by t-test and 

using SVM as classifier. 

TABLE  IV 

MODEL VALIDATION EXPERIMENTS ON DIFFERENT DATASETS 

Dataset Base 

classifier 
number 

CE 

times 

Optimal 

features 
number 

Average 

accuracy 

37AD +35HC 340 7 290 81.0% 

37EMCI+36HC 400 8 305 80.0% 

55PD + 49HC 400 5 260 83.0% 

Notes: CE is the cluster evolution times. 

37EMCI+36HC: The dataset was obtained from ADNI. 
55PD + 49HC: The dataset was obtained from Parkinson's progression 

markers initiative (PPMI). 

 
Fig. 8.  Classification accuracy curve of Pearson +CERF models based on 

different datasets. 

Authorized licensed use limited to: University of Southern California. Downloaded on June 01,2020 at 17:25:39 UTC from IEEE Xplore.  Restrictions apply. 



2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2973324, IEEE Journal of
Biomedical and Health Informatics

Firstly, in the selection of multimodal data, the existing 

researches mainly focus on the fusion of different modal 

neuroimaging data, or the fusion of neuroimaging data and 

cognitive performance scale data. For example, de Vos et al. 

[18] combined cortical thickness, cortical curvature and 

subcortical volume to predict AD using elastic network logistic 

regression. Tong et al. [19] also fused the regional MRI 

volumes and FDG-PET signal intensities to explore the 

multiple biomarkers of AD and mild cognitive impairment 

(MCI). Altaf et al. [20] combined image information with 

clinical features to classify AD and normal people by gray level 

co-occurrence matrix. These studies were less likely to reveal 

etiologies of AD at other levels besides neuroimaging. To 

fulfill this gap, fMRI and gene data were fused in our study, 

which expanded the search scope for AD etiologies. We could 

not only detect abnormal brain regions of AD, but also further 

identify pathogenic genes. 

Secondly, in the classification of samples, the CERF is 

proposed as a novel ensemble learning method. Compared with 

the existing classification methods, the classification accuracy 

of CERF model is close to 90%. In comparison with the 

classification methods of single base learner [21], [22], the 

decision trees in CERF are screened by clustering evolutions. 

In our method, only the decision trees with higher accuracies 

are retained, which overcomes the performance fluctuation of 

single base learner. By comparing with traditional ensemble 

learning classification methods [23], [24], the proposed model 

introduces the idea of hierarchical clustering to carry out 

clustering evolutions of random forest, which enhances the 

diversities among base learners in ensemble learning model. 

Furthermore, compared with the current popular deep learning 

methods, such as CNN [25], [26], the advantages of our method 

in the case of small samples mainly come from the following 

aspects. Firstly, at the feature learning aspect, CERF learns 

partly specific feature subsets each time by randomly selecting 

samples and features, and has good applicability to different 

types of data features, which can play the multimodal data 

complementary advantages of gene and fMRI, while CNN 

emphasizes the learn of fMRI image features. On the other hand, 

our method optimizes the ensemble learner by clustering 

evolutions, which reduces the sensitivity of the method to the 

data scale. However, most of CNN's parameter optimization is 

based on back propagation, so it is less likely to get a 

satisfactory result in small sample size. 

Ultimately, in the extraction of features, there is less 

possibility to explain the extracted features intuitively in these 

existing methods [27], [28], especially the improved methods 

based on PCA or ICA. Compared with these previous studies, 

we used CERF to select the discriminative features between 

AD and HC. These features indicate specific brain regions and 

genes, and thereby the abnormal brain regions and genes could 

be directly detected.  

B. Abnormal Brain Regions and Pathogenic Genes  

   In this paper, we demonstrated that there were associations 

between brain regions and genes, and the abnormality of this 

association mechanism may be a potential factor of 

neurological diseases. For example, the DAB1-SFGdor.R pair 

was included in the “optimal brain region-gene pairs” implies 

that the interaction between DAB1 and SFGdor.R is abnormal. 

In fact, DAB1 gene is abnormally expressed in SFGdor.R in 

most patients with neurodegenerative diseases [29]. 

Additionally, the abnormal brain regions and pathogenic genes 

of AD were observed based on the “optimal brain region-gene 

pairs”. We detected some typical brain regions and genes that 

had been proved to be associated with AD in previous studies 

such as thalamus, lingual gyrus, angular gyrus and DAB1 gene.  

The thalamus is a typical brain region of AD detected by 

CERF. There is a dependence between thalamus and posterior 

cerebral cortex, which works on spatial learning together [30]. 

The thalamus is viewed as the major regulator of numerous 

fields in AD, and leads to several alterations of AD in cognitive 

and behavioral [31]. Additionally, the radioactivity 

abnormalities in thalamus may lead to indifference and 

irritability in AD patients [32]. The disabled-1 (DAB1) belongs 

 
Fig. 9.  The main abnormal brain regions. The weights of different brain 
regions are displayed in Fig. 9 (a). The locations of different brain regions in 

the brain are showed in Fig. 9 (b). The larger the node size of the brain region 

is, the more obvious correlation between AD and the brain region is. 

（a） （b）

 
Fig.10.  The frequency of main pathogenic genes. The higher the frequency 

of the gene is, the more significant correlation between the gene and AD is. 
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to protein-coding gene. DAB1 gene plays a role in brain 

development, guiding the migration of cortical neurons through 

the formed neurons to reach their appropriate layer [33]. The 

result of GWAS found that DAB1 gene was one of the 

susceptible genes for AD [34]. The abnormal expression of 

DAB1 gene in AD patients results in the deregulation of the 

cellular proteome [35].  These conclusions are consistent with 

our experimental results.  

Interestingly, besides these typical brain regions and genes, 

we also found some brain regions and genes subtly associated 

with AD containing the precuneus, insula, and LRP1B gene, 

which play crucial roles in the process of AD and are easy to be 

overlooked.  

The precuneus with a higher frequency plays an essential 

role in classification, which has a significant impact on human 

memory [36]. Quantitative cerebral blood flow (CBF) values 

and the utilization rate of glucose in the precuneus were 

decreased, which can reduce oxygenation of the precuneus in 

early AD patients [37]. These metabolic abnormalities in the 

precuneus are significant causes of cognitive impairment in AD 

patients and can be used as biomarkers. The insula also 

contributes greatly to the sample classification, and is 

considered to be associated with working memory [38]. 

According to the existing studies, amyloid protein tau is the key 

biomarker of AD, and the insula cortex of AD patients is 

affected by tau immunoreactive neurofibrillary tangle 

pathology [39]. The changes of insula also are a main cause of 

cognitive abnormalities in AD patients [40]. The Haplotypes in 

lipoprotein receptor-related protein 1B (LRP1B) can protect the 

aged from cognitive decline [41]. The abnormal expression of 

LRP1B as a ligand is a key factor in the pathogenesis of AD, 

which can inhibit C1q-mediated neuroprotection [42]. The 

genetic association between LRP1B and AD is further 

demonstrated by subsequent studies. For instance, increasing 

evidences suggest that the interaction between β-amyloid 

precursor protein and LRP1B is also the cause of AD [43]. The 

discovery of above-mentioned abnormal brain regions and 

genes is helpful to understand the changes of emotion and 

memory in AD patients. 

C. Limitation and Future Directions 

Multimodal data fusion remains an open challenge in brain 

researches. Although our research has made progresses in the 

classification and feature extraction of AD, there are still some 

limitations in our work. On the one hand, we use classical 

correlation analysis methods to detect associations between 

brain regions and genes, which may overlook some significant 

associations. We will design more appropriate indicators to 

capture the correlation between fMRI and gene data in the 

follow-up work. On the other hand, our research mainly 

considers the fusion of fMRI and gene data, and the data scale 

is still small. However, AD has many biomarkers including 

proteins and metabolites. Therefore, in the future work, we will 

expand the scale of data, and use transfer learning and other 

methods to integrate MRI data from OASIS and other data sets 

into our research. At the same time, we will also consider fusing 

more multimodal data in the future work. 

V. CONCLUSIONS 

In this paper, we carry out the multimodal data fusion 

research of AD. The contributions of the work are highlighted 

as follows. Firstly, we apply the correlation analysis to 

detecting the associations between brain regions and genes. Our 

method can efficiently fuse the data from different modalities, 

and facilitate the follow-up analysis. Secondly, the CERF is 

proposed to analyze “brain region-gene pairs”, and extract the 

discriminative fusion features between AD and HC. Finally, the 

CERF is integrated into the comprehensive diagnostic 

framework of AD, which included fusion feature construction, 

feature selection and sample classification. Based on this 

framework, we find out the abnormal brain regions and 

pathogenic genes of AD such as thalamic, lingual gyrus, 

angular gyrus, precuneus, insula DAB1 gene and LRP1B gene. 

But it needs to be stated that validation of results with larger 

data sets as the need to validate these conclusions and “brain 

region-gene pairs” in future work. Our study is of great 

significance for the diagnosis of AD and the development of 

computational medicine.  
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