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Abstract—Medical imaging technology and gene sequencing 

technology have long been widely used to analyze the pathogenesis 
and make precise diagnoses of mild cognitive impairment (MCI). 
However, few studies involve the fusion of radiomics data with 
genomics data to make full use of the complementarity between 
different omics to detect pathogenic factors of MCI. This paper 
performs multimodal fusion analysis based on functional 
magnetic resonance imaging (fMRI) data and single nucleotide 
polymorphism (SNP) data of MCI patients. In specific, first, using 
correlation analysis methods on sequence information of regions 
of interests (ROIs) and digitalized gene sequences, the fusion 
features of samples are constructed. Then, introducing weighted 
evolution strategy into ensemble learning, a novel weighted 
evolutionary random forest (WERF) model is built to eliminate 
the inefficient features. Consequently, with the help of WERF, an 
overall multimodal data analysis framework is established to 
effectively identify MCI patients and extract pathogenic factors. 
Based on the data of MCI patients from the ADNI database and 
compared with some existing popular methods, the superiority in 
performance of the framework is verified. Our study has great 
potential to be an effective tool for pathogenic factors detection of 
MCI. 
 

Index Terms—Imaging genetics, Mild cognitive impairment, 
Weighted evolutionary random forest. 

I. INTRODUCTION 
ILD cognitive impairment (MCI) is a kind of cognitive 
impairment syndrome that has a great risk of turning to 

dementia [1]. The major symptom of MCI includes the decline 
of cognitive function, and various functions may also be 
affected depending on the different brain lesions [2]. With the 
rapid increment of the worldwide aging population, MCI is 
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increasingly prevalent year by year [3]. Scholars have found 
that about 10% - 20% of MCI patients convert into Alzheimer's 
disease (AD) every year, and the rate is ten times higher than 
that of the normal elderly [4]. Based on the degree of course 
development, it can be divided into early MCI (EMCI) and late 
MCI (LMCI), where the latter are at more risk of deterioration. 
As a progressive disease, a clear understanding of the MCI 
pathogenesis is of great significance to timely diagnosis and 
intervention to prevent dementia. 

As artificial intelligence technology flourishes, researchers 
tried to make full use of multi-omics data to deeply mine the 
hidden pattern that implies the cause of the brain diseases like 
MCI. On the one hand, radiomics data like functional magnetic 
resonance imaging (fMRI) can qualitatively and quantitatively 
detect the regions of interest (ROI) for specific therapy of brain 
diseases [5-7]. On the other hand, plenty of single nucleotide 
polymorphisms (SNP) in human genes have been found related 
to MCI in numerous genome-wide association studies (GWAS) 
[8, 9], indicating the complex pathogenetic background of 
MCI. 

Based on imaging data and gene data, a new field named 
imaging genetics emerged to comprehensively study pathogeny 
with fusion data [10]. However, in the context of big data, the 
biomedical data are becoming larger in quantity and more 
complicated in structure, leading to the high dimension of the 
fusion feature and poor generalization ability of the models [11]. 
Generally, linear dimensionality reduction methods were 
commonly applied, including independent component analysis 
(ICA) [12] and principal component analysis (PCA) [13]. 
Though these methods could effectively mitigate the impact of 
high dimensions, useful information may be lost to a certain 
degree in the procedures. 

Furthermore, data fusion [14], feature selection [15], and 
sample categorization [16] are three core problems in the study 
of brain diseases. Extensive studies have acquired promising 
achievements [17]. However, most studies only solve a single 
problem, failing to construct an integrated framework for 
comprehensive disease research. Therefore, though certain 
progress has been made, the results are still insufficient to meet 
the clinical needs. Hence, an overall framework combining the 
fusion features construction, features selection, and sample 
classification is significant to the MCI diagnosis and treatment. 

The main objective of this study is to find the discriminative 
features between EMCI and LMCI patients. We utilize fMRI 
data and SNP data to conduct an imaging genetics study and 
propose a novel weighted evolutionary random forest (WERF) 
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model to reduce the dimension of fusion features. Our main 
contributions are summarized as follows. 

1) Through Pearson correlation analysis, fusion features 
are constructed by combining the time series of brain 
regions with gene sequences. 

2) A novel WERF model is proposed to reduce the data 
dimension through the random selection of sample 
features and the evolution of base learners. 

3) Some discriminant genes and ROIs are discovered based 
on the discriminative sample features.  

The above three parts integrated framework to assist the 
diagnosis practice, which is shown in Fig. 1. 

The rest part of this article is organized as follows. Related 
works are listed in Section II. In Section III, we introduce the 
methodology and proposed a novel weighted evolutionary 
random forest framework. In Section IV, we present the 
experiment results in detail. The discussion and conclusions are 
described separately in Section V and Section VI. 

II. RELATED WORKS 

A. Pathogeny Mining Methods with Multi-omics Data 
Machine learning (ML) methods have received great 

attention in multi-omics study of brain diseases, some of which 
have been well-performed in recognizing brain diseases 
pathogenesis [18]. Based on the connectivity analysis of 
resting-state fMRI, Khazaee et al. [19] utilized graph measures 
of functional brain networks to train support vector machine 
(SVM), achieving high accuracy in the identification of MCI 
and AD patients from healthy controls (HCs). Lei et al. [20] 
applied a subspace learning method on fMRI and diffusion 
tensor imaging (DTI) data and then established a multi-task 
learning model to effectively extract characteristic features of 
MCI patients. 

Base on gene data, on the one hand, multiple genes are found 
relevant to the development mechanism of MCI. Bottero et al. 
[21] analyzed the gene expression data in the blood to identify 
potential biomarkers that may help distinguish MCI. Zou et al. 

[22] found that dihydrolipoamide S-succinyltransferase (DLST) 
promoter methylation interacted with APOEε4 for the first time, 
thus affecting the pathogenesis of MCI. Varatharajah et al. [23] 
used an optimized machine learning approach and found that 
the expression of CR1 has a great effect on the development of 
MCI by affecting the immune pathways. On the other hand, 
extensive research on brain and gene networks shows intensive 
interactions between each mode [24]. Accordingly, fusion 
analysis among neuroimaging and genomics data is promising 
to offer new insight for further exploration of the MCI 
pathology and promote the diagnosis performance. 

B. Dimensionality Reduction Methods 
In the existing multimodal data-based studies, fusion 

features are usually constructed by calculating the correlation 
coefficients among data, which may cause excessively high 
dimensionality that is hard to analyze. Recently, a series of 
novel dimension reduction methods are presented. For example, 
Cao et al. [25] proposed a multi-core dimension reduction and 
oversampling method to enhance the sparsity of brain regions, 
through which a subset of related brain regions was selected out. 
Wang et al. [26] proposed a filter-based method to obtain 
feature subsets with positive information. However, these 
methods are still prone to fall into the problems of the local 
optimal solution and slow convergence speed. 

III. METHODOLOGY 

A. Independence Test Methods 
The independence test can help to describe data relationships. 

Two independence test methods this study involved with are 
introduced in this part. The chi-square test is one common 
method for independence testing, whose statistic is defined as 

𝜒𝜒2 = ∑ 𝑟𝑟𝑖𝑖−𝑒𝑒𝑖𝑖
𝑒𝑒𝑖𝑖

𝑁𝑁
𝑖𝑖=1 ,                                (1) 

where 𝑟𝑟𝑖𝑖 represents the real value in the sample, 𝑒𝑒𝑖𝑖 represents 
the mathematical expectations of each value under the 

 
Fig. 1.  The overall framework for MCI data analysis. The framework includes three parts: data fusion, model construction and classification and feature selection. 
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hypothesis that the two factors of the data are independent, and 
𝑁𝑁 represents the number of statistical values. In this paper, we 
use the chi-square test to assess that the gender factor in our 
data makes no statistical difference. 

The two-sample t-test is another commonly-used method to 
test the independence between two variables. Let 𝐴𝐴 and 𝐵𝐵 be 
two samples to be tested, the corresponding statistic can be 
described as 

𝑡𝑡 = �̅�𝐴−𝐵𝐵�

��𝑛𝑛𝐴𝐴−1�𝑆𝑆𝐴𝐴
2+�𝑛𝑛𝐵𝐵−1�𝑆𝑆𝐵𝐵

2

𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵−2
� 1
𝑛𝑛𝐴𝐴

+ 1
𝑛𝑛𝐵𝐵

�

,                       (2) 

where 𝑛𝑛𝐴𝐴  and 𝑛𝑛𝐵𝐵  represent the sample sizes, 𝑆𝑆𝐴𝐴2  and 𝑆𝑆𝐵𝐵2 
represent the sample variances, and �̅�𝐴 and 𝐵𝐵�  represent mean 
values. In this study, the two-sample t-test is firstly utilized to 
verify the independence of the source data. Additionally, in the 
comparison experiment, we apply a two-sample t-test as a 
baseline method for feature selection. 

B. Correlation Analysis Methods 
In this study, fMRI and SNP data are converted into time 

series and digital sequences, respectively, and fusion features 
are therefore constructed. Subsequently, based on correlation 
analysis, the matrix recording the correlation coefficient 
between each pair of time series and digital sequences is 
calculated. By this means, the fusion among different omics of 
data is realized. In this section, several correlation analysis 
methods are reviewed. Let 𝑏𝑏  and 𝑔𝑔  be column vectors 
representing the time series and SNP sequences, respectively, 
and 𝑏𝑏𝑖𝑖 and 𝑔𝑔𝑖𝑖 represent each component of these vectors. Thus, 
the Pearson correlation coefficient can be defined as 

𝑃𝑃𝑒𝑒𝑃𝑃𝑟𝑟𝑏𝑏,𝑔𝑔 = ℓ∑𝑏𝑏𝑖𝑖𝑔𝑔𝑖𝑖−∑𝑏𝑏𝑖𝑖 ∑𝑔𝑔𝑖𝑖

�ℓ∑�𝑏𝑏𝑖𝑖
2�−(∑𝑏𝑏𝑖𝑖)2�ℓ∑�𝑔𝑔𝑖𝑖

2�−(∑𝑔𝑔𝑖𝑖)2
,              (3) 

where ℓ  denotes the length of each time series or gene 
sequence. 

Canonical correlation analysis (CCA) is another common 
correlation analysis method, which can be expressed as 

𝐶𝐶𝑃𝑃𝑛𝑛𝐶𝐶𝑛𝑛𝑏𝑏,𝑔𝑔 = 𝑢𝑢𝑇𝑇Σ12𝑣𝑣
�𝑢𝑢𝑇𝑇Σ11𝑢𝑢�𝑣𝑣𝑇𝑇Σ22𝑣𝑣

,                      (4) 

where 𝑢𝑢 and 𝑣𝑣 denote two weighting parameters maximizing 
the correlation value of paired genes and brain regions, Σ11 and 
Σ22  denote the autocorrelation matrices of 𝑏𝑏  and 𝑔𝑔 , and Σ12 
denotes the cross-correlation matrix derived from 𝑏𝑏 and 𝑔𝑔. 

The distance correlation coefficient is described as 

𝐷𝐷𝐷𝐷𝑠𝑠𝑏𝑏,𝑔𝑔 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣(𝑏𝑏,𝑔𝑔)
�𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣(𝑏𝑏,𝑏𝑏)�𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣(𝑔𝑔,𝑔𝑔)

,                    (5) 

where 𝑑𝑑𝑑𝑑𝐶𝐶𝑣𝑣(∗,∗) represents the distance covariance, which is a 
function of two vectors. The distance covariance is defined as 
follows. 

𝑑𝑑𝑑𝑑𝐶𝐶𝑣𝑣(𝑢𝑢, 𝑣𝑣) = 𝑆𝑆1 + 𝑆𝑆2 − 2𝑆𝑆3,                     (6) 

𝑆𝑆1 = 1
𝑛𝑛2
∑ ∑ (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡�𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗� ∙ 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗))ℓ

𝑗𝑗=1
ℓ
𝑖𝑖=1 ,      (7) 

𝑆𝑆2 = 1
𝑛𝑛4
∑ ∑ 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡�𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗�ℓ

𝑗𝑗=1
ℓ
𝑖𝑖=1 ∑ ∑ 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�ℓ

𝑗𝑗=1
ℓ
𝑖𝑖=1 ,    (8) 

𝑆𝑆3 = 1
𝑛𝑛3
∑ ∑ ∑ ((𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡(𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑘𝑘) ∙ 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡(𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘)))ℓ

𝑘𝑘=1
ℓ
𝑗𝑗=1

ℓ
𝑖𝑖=1 ,   (9) 

where 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡(∗,∗)  represents the function computing the 
distance. 

At last, the Kendall correlation measures the association 
strength of the cross tabulations, which is defined as 

𝜏𝜏 = 4𝑃𝑃
ℓ(ℓ−1)

− 1,                               (10) 

where 𝑃𝑃 represents the number of concordant pairs between 
two series. 

In this study, the Pearson correlation analysis is utilized to 
construct fusion features, and the others are applied in the 
comparative experiments. 

C. Traditional Decision Tree and Random Forest 
The direct fusion of the data causes the overwhelmingly high 

dimension and the inefficiency of ML methods. Therefore, it is 
of great importance to recognize and retain the discriminative 
features. The decision tree, as a common machine learning 
method, has shown superiority in dimensionality reduction [27]. 
It uses a tree structure for sample classification, where the 
branch nodes include discriminant conditions, which are 
composed of a series of value comparisons among certain 
features. It is worth mentioning that the features are not selected 
randomly but through a factor named information gain. 
Suppose that the classification task has 𝐾𝐾  target classes, 𝐻𝐻 
represents the original dataset, and {𝐻𝐻1, … ,𝐻𝐻𝑇𝑇} are subsets of 
𝐻𝐻 divided through all possible values of a certain feature 𝑓𝑓, The 
information gain brought by this data division is described as 

𝐺𝐺𝑃𝑃𝐷𝐷𝑛𝑛𝐻𝐻,𝑓𝑓 = ∑ 𝐸𝐸𝑛𝑛𝑡𝑡𝑘𝑘,𝐻𝐻
𝐾𝐾
𝑘𝑘=1 − ∑ ∑ |𝐻𝐻𝑇𝑇|

|𝐻𝐻|
𝐸𝐸𝑛𝑛𝑡𝑡𝑘𝑘,𝑇𝑇

𝐾𝐾
𝑘𝑘=1

𝑇𝑇
𝑡𝑡=1 ,  (11) 

𝐸𝐸𝑛𝑛𝑡𝑡𝑘𝑘,𝐻𝐻 = −𝑃𝑃𝑘𝑘,𝐻𝐻 log2 𝑃𝑃𝑘𝑘,𝐻𝐻,                      (12) 

where 𝑃𝑃𝑘𝑘,𝐻𝐻 represents the proportion of samples that are labeled 
as the 𝑘𝑘-th class in the dataset 𝐻𝐻, and |∗| measures the size of a 
set. When constructing a decision tree, the features with low 
classification ability are excluded, by which the dimensionality 
is reduced. 

Random forest (RF) is an ensemble learning method using 
decision trees as the base learners, which is increasingly 
popular in disease classification [28]. When building each 
decision tree in RF, some features will be deleted randomly. 
Then, features with better classification ability will be selected 
out through ensemble learning to improve the overall 
performance. In this study, we improve the RF method with the 
weighted evolution process and realize the self-optimization of 
RF according to the overall performance. 

D. Weighted Evolutionary Random Forest Design Idea and 
Algorithm 

Albeit the robust classification ability in bioinformatics, RF 
still has some defects [29, 30]. One significant flaw is that the 
image noise and high-dimension may make traditional RF 
difficult to obtain stable and robust generalization ability, 
which may result in the low classification accuracy of the 
method [31]. Based on the deficiencies mentioned above, this 
paper combines the idea of ensemble learning with weighted 
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evolutionary strategy and proposes a novel WERF model 
constructed in the following 3 steps. 

1) Constructing base classifiers. Using the conventional 
method in the construction of RF, multiple decision 
trees are built as base classifiers by randomly selecting 
samples and features; 

2) Weighting. Each base classifier is given a weight. In this 
paper, we use respective classification accuracies as 
weights of base classifiers; 

3) Evolving. Weighted evolutions are carried out to get the 
final WERF model, during which redundant features are 
constantly eliminated, and the dimension is therefore 
reduced. 

Fig. 2 demonstrates the design idea of the WERF model. The 
detailed implementation process is as follows. 

Let 𝐵𝐵 = �{𝑥𝑥1,𝑦𝑦1}, … , {𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛}� be the initial sample set, 𝐹𝐹 be 
the set of all fusion features, 𝑥𝑥𝑛𝑛  be the 𝑛𝑛 -th sample, 𝑦𝑦𝑛𝑛 ∈
{−1, +1} be the corresponding labels, and the label "+1" and 
"-1" denote LMCI and EMCI patients, respectively. At first, 𝐵𝐵 
is divided into the training set 𝐵𝐵train, validation set 𝐵𝐵validate, 
and test set 𝐵𝐵test. In specific, 𝐵𝐵train is used to train the primitive 
decision trees to obtain a traditional RF model, 𝐵𝐵validate 
evaluates the performances of the base classifiers to obtain the 
weights of each base classifier, and 𝐵𝐵test  tests the overall 
classification performance of WERF. Then, random sampling 
without replacement is adopted to obtain a certain number of 
samples and features from 𝐵𝐵train  for constructing the base 
classifiers. Therefore, some samples and features are arbitrarily 
extracted from 𝐵𝐵train and 𝐹𝐹  to construct and train each base 
classifier. For a certain base classifier, the corresponding 
features of each sample are the same. According to the common 

practice, we set the feature number to a value close to the square 
root of the total feature number [32]. Formally, assuming that 
the initial dimensionality is 𝑑𝑑, the dimensionality corresponds 
to each base classifier is determined as 

𝑠𝑠 = 𝑓𝑓𝐷𝐷𝑥𝑥(√𝑑𝑑),                                (13) 

where 𝑓𝑓𝐷𝐷𝑥𝑥(∗) denotes an integral function, which returns the 
largest integer less than the input value. 

Using the extracted samples and features and repeating the 
procedure for 𝑁𝑁  times, 𝑁𝑁  base classifiers are accordingly 
obtained to construct a conventional RF model. We introduce 
𝐷𝐷𝑖𝑖  to denote the 𝐷𝐷 -th decision tree and 𝐷𝐷 = {𝐷𝐷1, … ,𝐷𝐷𝑁𝑁}  to 
denote the set of all classifiers. Subsequently, we employ 
validation set 𝐵𝐵validate to obtain the classification accuracy of 
each base classifier, and the accuracy is taken as the weight of 
the corresponding base classifier. The equation calculating the 
weight is shown as 

𝑊𝑊𝑖𝑖 = 𝑇𝑇𝑖𝑖
′

𝑇𝑇
,                                  (14) 

where 𝑇𝑇𝑖𝑖′ denotes the quantity of samples in 𝐵𝐵validate which are 
properly categorized by the 𝐷𝐷-th base classifier, and 𝑇𝑇 denotes 
the size of 𝐵𝐵validate.  

In order to optimize the classification effect, we need to 
selectively delete the features that will adversely affect the 
overall classification performance. Firstly, we select the base 
classifiers whose classification accuracy is less than 50%. Such 
classification performance is inferior to that of random 
prediction. Then, the features frequently appearing in these 
base classifiers are redundant features to be reduced. Supposing 
that 𝐷𝐷weak ⊆ 𝐷𝐷 denote the set includes all base classifiers with 
weak classifying ability, the evolved feature set is described as 

𝐹𝐹evolve = 𝐹𝐹 − {ℎ ∈ 𝐹𝐹 |  ∑ 𝑊𝑊𝑖𝑖𝑡𝑡ℎ,𝑖𝑖 < 𝑟𝑟|𝐷𝐷weak|
𝑖𝑖=1 },       (15) 

where 𝑊𝑊𝑖𝑖  denotes the corresponding weight of the 𝐷𝐷-th base 
classifier in 𝐷𝐷weak, 𝑟𝑟 is a threshold, and 𝑡𝑡ℎ,𝑖𝑖 indicates whether 
the feature ℎ is selected by the 𝐷𝐷-th classifier (If so, then 𝑡𝑡ℎ,𝑖𝑖=1, 
otherwise 𝑡𝑡ℎ,𝑖𝑖=0). In each time of weighted evolution, the base 
classifiers will be reconstructed, and the features are randomly 
extracted from the evolved feature set. For each base classifier, 
the features corresponding to each sample are also the same. 

Through the above steps, some redundant or invalid features 
are removed, therefore obtaining an updated feature set 𝐹𝐹evolve. 
We repeat such evolution for several times to obtain the optimal 
feature set. In each iteration, the 𝐹𝐹evolve obtained from the last 
iteration is used as 𝐹𝐹, and 𝑁𝑁 decision trees as base classifiers 
are thus rebuilt to construct a new RF model. As the number of 
evolutions increases, when the overall classification accuracy 
of the model tends to be stable, the evolution is stopped, and the 
optimal number of evolutions is therefore determined. The 
number of the remaining features after the 𝐷𝐷-th evolution is 
defined as 

𝑆𝑆𝑖𝑖 = |𝐹𝐹| −∑ 𝑁𝑁𝑘𝑘𝑖𝑖
𝑘𝑘=1 ,                          (16) 

where 𝑁𝑁𝑘𝑘  indicates how many features are deleted in 𝐷𝐷 -th 
iteration. This equation is applied to evaluating the effect of 

 
Fig. 2.  The design idea of WERF. 
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every iteration of evolution. 
Algorithm 1 illustrates the process of construction and 

evolution of the WERF model, of which the input is the original 
sample set 𝐵𝐵 and feature set 𝐹𝐹, and the output is the eventual 
WERF model. 

E. Classification with WERF 
The WERF model is applied to classifying the samples in the 

test set, and the results of WERF are obtained via the weighted 
voting mechanism. Specifically, each base classifiers predicts 
the category of samples, and the weighted sum of the results is 
obtained. The weights of results are exactly that of base 
classifiers. Let 𝑃𝑃 ∈ {−1, +1}  be one of the two possible 
resulting labels, "+1" represents LMCI, and "-1" represents 
EMCI, the voting value of each label is defined as 

𝑆𝑆𝑎𝑎 = ∑ 𝐼𝐼𝑎𝑎�𝑓𝑓𝑘𝑘(𝑥𝑥)�𝑊𝑊𝑘𝑘
𝑚𝑚
𝑘𝑘=1 ,                     (17) 

𝐼𝐼𝑎𝑎�𝑓𝑓𝑘𝑘(𝑥𝑥)� = �1, 𝑓𝑓𝑘𝑘(𝑥𝑥) = 𝑃𝑃
0, 𝑓𝑓𝑘𝑘(𝑥𝑥) ≠ 𝑃𝑃,                  (18) 

where 𝑥𝑥  denotes each sample from the test set and 𝑓𝑓𝑘𝑘(𝑥𝑥) ∈
{−1, +1} represents the classification result generated by the 
𝑘𝑘-th base classifier for the 𝑥𝑥. For the samples in 𝐵𝐵test, the label 
having the most votes will be selected as the final classification 
label, which can be written as  

𝑅𝑅𝑠𝑠𝑡𝑡 = 𝑃𝑃𝑟𝑟𝑔𝑔𝑚𝑚𝑃𝑃𝑥𝑥
𝑎𝑎

(𝑆𝑆𝑎𝑎).                         (19) 

In other words, 𝑅𝑅𝑠𝑠𝑡𝑡 is the label maximizing the voting value 
statistic 𝑆𝑆𝑎𝑎. 

F. Extraction of MCI-associated Genes and ROIs  
The proposed WERF is mainly used for feature selection. 

After continuous weighted evolutions, the remaining features 
are regarded as the significant features to distinguish EMCI 
from LMCI. Then, the discriminative genes and ROIs are 
obtained by calculating the occurrence frequency of each ROI 
and gene in the optimal multimodal features. The frequency 
indicates the importance of the corresponding pathogenetic 
factor in classification. 

G. Parameter Optimization 
Evolution time is a parameter to be optimized in the WERF 

model. At each time of evolution, some redundant or useless 
features (i.e., features with poor classification ability) will be 
eliminated, enhancing the model performance. However, 
interminable evolution is useless in a long term. In this study, 
we set different evolution times to construct the WERF model 
until the overall classification performance becomes stable, the 
time of evolution when the performance starts to be stable is 
defined as the optimal evolution time. 

IV. EXPERIMENT AND RESULTS 

A. Data Acquiring and Preprocessing 
The data applied in this paper are from the data of EMCI and 

LMCI patients in the ADNI database (http://adni.loni.usc.edu/), 
an open platform for sharing data including clinical, genetic, 
and MRI images. The subjects are screened to ensure the data 
homogeneity and obtain the clinical characteristics of EMCI 
and LMCI. As the result, data of 63 participants are selected in 
this study, including 37 EMCI patients (11 males, 26 females, 
mean age: 72.97±7.38) and 26 LMCI patients (14 males, 12 
females, mean age: 72.45±7.47). All data collection is approved 
and supported by relevant agencies. All participants have 
signed the informed consent. In addition, the multimodal data 
used in this paper has been approved and authorized by ADNI, 
and the data use conforms to the standards.  

We utilize the chi-square test to assess the gender difference 
between EMCI and LMCI patients, and the age difference 
between the two groups is tested by the two-sample t-test. The 
information of participants and p-values are shown in Table I. It 
can be concluded that there exist no statistical differences in the 
sex and age of the subjects. 

We conduct our experiment using MATLAB platform. 
Concretely, we use the DPARSF toolbox within MATLAB to 
preprocess fMRI data. The processing steps are as follows: 

TABLE I 
BASIC INFORMATION OF THE DATA 

Variables EMCI (n = 37) LMCI (n = 26) p-value 
Gender (M/F) 11/26 14/12 0.054 
Age (years)a 
(Mean ± SD) 

72.97±7.38 72.45±7.47 0.783 

a The p-value of Kolmogorov-Smirnov test is 0.8928 (>0.05), indicating 
that the ages are conform to a normal distribution. Moreover, the F value in 
variance equivalence test is 0.022 (<0.05), indicating that the variances of 
the two classes are equivalent. 

Algorithm 1 The constructing process of weighted 
evolutionary random forest 
Input: Experimental sample set B and feature set F. 
Output: The evolved model WERF. 

1: Initialize B, F, N, tmax 
2: B, F are the set of samples and features, respectively; 
3: N represents the number of decision trees in WERF; 
4: tmax is the maximum number of iterations. 
5: Partition the B into Btrain, Bvalidation, and Btest 
6: do 
7: for i = 1:N do 
8: Extract some samples from Btrain without 

replacement; 
9: Randomly select a subset of F; 

10: Selected samples and features→Decision tree Di; 
11: Bvalidation→the classification accuracy of Di as its 

weight Wi; 
12: end 
13: W = {W1,…,WN}; 
14: WERF = Ensemble of decision trees D1, D2, ..., DN; 
15: Apply WERF to classifying the samples in Btest, get 

assembled classification results and Calculate the 
overall classification accuracy Acc; 

16: According to W, features with low weights in F are 
deleted, and the remains compose Fevolved; 

17: F = Fevolved; 
18: until Acc reaches the peak or iteration times come to 

tmax. 
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1) Transform the format of image data to NIFTI; 
2) Delete the first 10 time points to decrease the adverse 

impact produced by the magnetic field; 
3) Correct the time difference between layers; 
4) Correct head motion, and eliminate data exceeding the 

range of 2.5mm; 
5) Normalize images with echo-planar imaging template to 

compensate the differences among the anatomical 
structures of subjects during data acquisition; 

6) Gaussian smooth the normalized image [33]; 
7) Retain signals with pathological significance using the 

delinearized drift; 
8) Filter signal in the range of 0.1 Hz-0.8 Hz to reduce the 

effect of physiological noise; 
9) Remove the interference from whole-brain signals and 

white matter signals with linear regression. 
Similarly, it is necessary to perform preprocessing on gene 

data to ensure its quality. We acquired the SNP data on the 
Illumina Omni 2.5M BeadChip, and preprocessed them by 
PLINK software [34]. The details are as follows: 

1) Set sample’s call rate threshold at 95% in order to assess 
the total quality of the genetic data; 

2) Set the minimum allele frequency threshold, genotyping 
threshold, and the Hardy-Weinberg equilibrium test to 
0.03, 0.99, and 1e-5 respectively for eliminating the 
SNP with inferior quality. 

B. Construction of Fusion Features and WERF 
The first contribution of this study is the construction of 

fusion features using imaging genetic data. At first, fMRI and 
gene data are serialized and encoded into the numeric format. 
For fMRI data, 90 ROIs are separated using the automatic 
anatomical labeling (AAL) atlas [35] and the first 60 time 
points of each ROI are selected as the representative time series. 
The length of 60 is finalized through multiple attempts. For 
SNP data, according to the reference quantity of the 
preprocessed SNPs, we group the SNPs to represent the genes 
they belong to, and 36 gene groups with more than 30 SNPs are 
extracted. Afterward, the 4 bases (i.e., A, T, C, and G) of the 
gene are encoded into 4 discrete numbers (1, 2, 3, and 4) to 
shape a digital sequence based on the PLINK (1.07) 
documentation. The numbers 1, 2, 3, and 4 are just marks. It has 
been verified through experiments that the replacements and 
reordering of these marks do not affect the eventual results. 
Noting 30 SNPs are directly matched with 60 bases, the gene 
sequences can further match with the time series of ROIs at the 
equivalent length of 60. Subsequently, the correlations between 
each pair of sequences are calculated by Pearson correlation 
analysis (Eq. (3)), bringing about 3240 (90×36) fusion features, 
which, in this paper, are named as ROI-gene pairs. 

We built WERF model and conducted weighted evolution to 
reduce the discriminative fusion features. Firstly, according to 
the certain ratio of 10:5:6, 63 samples are arbitrarily divided 
into three groups. Concretely, 30 samples formed the training 
set, 15 samples composed the validating set, and the test set 
included the rest 18 samples. Subsequently, according to Eq. 
(13), 57 features were randomly extracted from the whole 3240 

features as input features to construct a base classifier. The 
rationality of number 57 is further verified by multiple 
experiments. When the number of input features is too small, a 
multitude of basic classifiers need to be constructed to obtain 
the satisfactory performance, which will increase the modeling 
complexity. However, if there are too many input features, the 
diversity of base classifiers will decrease, which will increase 
the time cost of the weighted evolution. 

To determine the number of base classifiers, we repetitively 
construct WERF with different number of base classifiers. As 
shown in Fig. 3, when the number of base classifiers reaches 
300, the performance growth of ensemble learning tends to be 
flat, indicating that the random forest containing more than 300 
decision trees will optimize less to performance but bring extra 
burden to the overall calculation. Therefore, the base classifier 
number is initialized as 300. Then, continuous evolutions were 
conducted to sift out the optimal fusion features. 

C. Parameter Optimization and Fusion Features Extraction 
To optimize the overall performance of the whole model, a 

proper time of evolution was needed. As shown in Fig. 4, the 
performance of the WERF model was estimated through 
classification accuracy, and when the evolution time was 19, 
the overall classification accuracy of the model reached the 
highest value of 88.9% and had tended to be stable, indicating 
that evolving more than 19 times makes the little effect. Thus, 
the optimal evolution time was determined as 19. It is worth 
noting that the accuracy may sometimes decrease when the 
evolution time is over 19. This can attribute to the instability 
caused by the continuous selection of base classifiers. When the 
base classifiers are too few, the performance of the model will 
be unstable. 

During the above experiment, we simultaneously recorded 
the number of features that are deleted in each evolution and the 
number of remaining features after each feature selection. Fig. 
5 delineates the results in the first 20 evolutions. After the 19-th 
evolution, the overall classification accuracy of the WERF 

 
Fig. 3. The classification accuracies of WERF in different number of base 
classifiers. We adjust the base classifier number in a certain interval of 
[50,500] within a step of 10 and find that when WERF contains 300 base 
classifiers, the overall performance tends to be stable. Thus, the number 300 
is finalized as the optimal number of base classifiers. 
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model reached the highest point and began to be stable. At the 
same time, the number of retained features was 342, which 
meant that most of the inefficient features were filtered out, and 
the corresponding 342 features in the ensemble learner were 
therefore taken as the optimal fusion features. 

D. Performance of the Proposed Framework 
As mentioned before, the Pearson correlation analysis was 

utilized to construct fusion features, and the WERF model was 
proposed for sample classification and feature extraction. To 
verify the superiority of the "Pearson + WERF" framework, we 
combined different methods for feature construction and 
extraction to build different analysis frameworks and compared 
their performance. Specifically, we utilized Pearson correlation 
analysis, distance correlation (DC) [36], CCA [37], and 
Kendall [38] to build fusion features using the same data 
samples, and used decision tree, random forest, two-sample 
t-test, and WERF model to extract the optimal fusion features. 
We recorded and counted each batch of optimal features 
generated by these frameworks and respectively measured the 
classification accuracy of these features leveraging SVM [39]. 
SVM is a common machine learning method that defines a 
hyperplane to classify two classes of samples. In this paper, the 
hyperplanes are determined by the values of the extracted 
features. Therefore, it can be a fair method to evaluate the 
classification ability of the feature set. Furthermore, we 
compared the overlaps of the feature sets extracted by other 
frameworks over that by WERF to verify the reliability of 
WERF. All comparative results were shown in Table II. 

From Table II, it could be observed that the proposed 
"Pearson + WERF" framework extracted a relatively small 
quantity of optimal fusion features in all frameworks (third to 
the last), whereas it achieves the highest classification accuracy 
of 88.9%. Meanwhile, we found that there are significant 
overlaps among the optimal fusion features extracted by the 
"Pearson + WERF" framework and other frameworks. Through 
hypergeometric tests, it had been proved that these overlaps 
were not occurred accidentally. It is also worth noting that the 

more the quantity of overlapping optimal fusion features was, 
the higher the categorization accuracies of these corresponding 
frameworks showed, indicating that the features extracted by 
the proposed method were those that can improve the 
performance. According to the comparative results, we further 
drew receiver operating characteristic (ROC) curves, and the 
results were delineated in Fig. 6. Comparing to others, the area 
under curve (AUC) of the "Pearson + WERF" framework had 
reached the highest value of 0.889, which shows its superiority 
from another aspect. 

After the preprocessing of fMRI data and genetic data, we 
acquired the time series of 90 ROIs and the digital series of 36 
genes. Considering the difference in lengths among these 
sequences and series, and in order to facilitate the correlation 
analysis between two different omics of data, we need to 
intercept them to a unique length, which, in this study, was 
eventually set to 60. In other words, the value of ℓ in Eq. (3) is 
set to 60. This value was determined through repeated 
experiments. In concrete, we firstly utilized different values of 
ℓ to construct fusion features. Then, different models were built 

 
Fig. 4. The classification accuracies of WERF under different evolution times. 
When the classification accuracy reaches its peak and remains stable, the 
number of evolutions is the optimal. The figure shows that the optimal 
number of evolutions is 19. Noting that the optimal number of the evolution 
time is determined in a wider search range. In order to show the parameter 
changes in this interval more carefully, we only depict the search results in the 
interval [0,30]. 

 
Fig. 6. The performance comparison of different frameworks. (a) denotes the 
ROC curves of two-sample t-test with 4 different fusion feature construction 
methods. (b), (c), and (d) denote the ROC curves of decision tree, RF and the 
proposed method (WERF), respectively. 

 
Fig. 5. The changes of the feature numbers during the evolution. The abscissa 
in the figure indicates the evolution times. The ordinate on the left side 
indicated the number of deleted features, while the right side indicated the 
number of remained features. 
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in the same way for fair comparison. Finally, we utilized these 
models to do classification, and the ROC curves were shown in 
Fig. 7 (a), which showed that when ℓ was 60, the performance 
of the model was the best. One plausible explanation is that if ℓ 
is too small, the fusion features are not able to differentiate the 
samples. Furthermore, we extended the framework to the study 
of AD & HC and Parkinson's disease (PD) & HC datasets to 
demonstrate the generalization ability and robustness of 
"Pearson + WERF". The data of AD and PD patients are 
obtained from ADNI and Parkinson's Progression Markers 
Initiative (PPMI) database, respectively. As shown in Fig. 7 (b) 
and Fig. 7 (c), the "Pearson + WERF" framework performed 
well, achieving the AUC values of 0.862 and 0.850. Also, we 
noted that in these two datasets, the optimal intercept lengths 
were 60 and 80, respectively. The origin of such difference was 
that we did not randomly choose but determined the optimal 
threshold through repeating trial experiments. Therefore, the 
optimal intercept length might be affected by the datasets we 
use. 

E. Extraction of Discriminant Genes and Brain Regions 
Based on the comparison experiments, we observed that the 

342-dimensional fusion features extracted by the proposed 
method had considerable resolution performance. In other 
words, the differences in these features are more obvious 
between EMCI and LMCI patients. Therefore, the brain regions 
contained in the optimized features are more likely to have 
functional lesions and the genes contained in these features are 
more likely to have abnormal expressions. Some fusion 
features, i.e., ROI-gene pairs, are shown in Fig. 8. It is worth 
noting that each ROI-gene pair, though not explicitly shown in 
the figure, had an appearance frequency as its corresponding 
weight. The greater the weight of an ROI-gene pair was, the 
more significant the ROI-gene pair was in distinguishing EMCI 
and LMCI. 

TABLE II 
THE COMPARATIVE RESULTS OF THE FRAMEWORKS 

Method 
Number of extracted  

fusion features 
Classification accuracy of extracted 

features with SVM 
Overlap size of the extracted features 

with the proposed method 
Pearson + WERF 342 88.9% / 

Pearson + Two sample t-test 360 66.7% 132 (p = 1.720884e-08) 
CCA + Two sample t-test 294 61.1% 101 (p = 3.954116e-09) 
DC + Two sample t-test 308 55.6% 114 (p = 4.095232e-07) 

Kendall + Two sample t-test 352 61.1% 105 (p = 1.151482e-16) 
Pearson + Decision Tree 800 72.2% 160 (p = 1.004105e-87) 

CCA + Decision Tree 560 66.7% 110 (p = 2.072108e-59) 
DC + Decision Tree 660 61.1% 125 (p = 5.002476e-75) 

Kendall + Decision Tree 600 66.7% 138 (p = 9.139333e-51) 
Pearson + Random Forest 560 77.8% 175 (p = 1.606163e-23) 

CCA + Random Forest 675 66.7% 130 (p = 2.156843e-75) 
DC + Random Forest 365 66.7% 135 (p = 2.817358e-08) 

Kendall + Random Forest 405 66.7% 128 (p = 2.933994e-16) 
CCA + WERF 590 72.2% 165 (p = 1.280715e-33) 
DC + WERF 445 78.8% 185 (p = 3.153446e-05) 

Kendall + WERF 394 72.2% 158 (p = 6.760018e-06) 
 

 
Fig. 7. Comparative results of different intercept lengths of time series and 
gene sequences. (a) ROC curves under dataset1 (36 EMCI and 27 LMCI, from 
ADNI database). (b) ROC curves under dataset2 (37 AD and 36 HC, from 
ADNI database). (c) ROC curves under dataset3 (55 PD and 50 HC, from 
PPMI database). 
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Moreover, we computed the frequencies of each gene and 
ROI through these ROI-genes pairs. The genes and ROIs with 
the highest occurrence frequencies were expected to be more 
capable of identifying EMCI and LMCI. On the one hand, Fig. 
9 (a) shows the ROIs with the highest frequencies. We 
employed frequencies as the corresponding weights of brain 
regions, as shown in Fig. 9 (b), where the magnitude of the 
weights was graphically represented as the size of the locating 
points in the figure. On the other hand, according to the 
calculated frequency values, we found the genes with the 
highest frequencies (Fig. 10). The most discriminative ROIs 
with the highest frequencies included Heschl's gyrus (HES.L 
and HES.R), Temporal pole: middle temporal gyrus 
(TPOmid.R), and Median cingulate and paracingulate gyri 
(DCG.L), while the risk genes included CSMD1, DAB1, 
CNTN5, and CTNNA2. In some respects, the results can 
provide important evidences to the pathological studies of MCI 
development because the results embodied that the EMCI and 
LMCI are most likely discrepant in these genes and brain 
regions. 

We investigated existing medical researches to verify the 
reliability and clinical significance of the extracted ROIs and 
genes. For example, as shown in the results, the Temporal pole 
had a relatively high occurrence frequency, and it had been 
reported to be related to visual memory, emotional association, 
language understanding, and performing function according to 
other studies. For example, Binder et al. [40] reported that the 
removal of the anterior temporal lobe might present a risk of 
decreased language ability and speech memory deficits, 
indicating that the abnormal temporal lobe may be related to the 
developmental process of MCI. Cui et al. [41] utilized 
fractional amplitude of low-frequency fluctuations to identify 
the characteristic local functional activities specific to amnestic 
MCI patients, detecting the significant activity enhancements 
nearby DCG.L. Some highly-ranked ROIs, such as HES.L and 
TPOmid.R, had not yet been reported to be associated with 
MCI, but have great prospects for further studies. For instance, 

TPOmid.R was thought to be associated with sleep 
deprivation-related behavior [42], and such dysfunctions might 
also be the cause of MCI. In conclusion, these ROIs can be 
employed as new biological markers to detect EMCI and LMCI 
and provide convenience for the clinical diagnosis of EMCI and 
LMCI. 

We also investigated the risk genes we found. For example, 
It had been confirmed that abnormal CSMD1 would lead to 
expression loss and cognitive decline problems among patients 
with MCI [43]. CNTN5 was expressed in hypothalamus 
glutamatergic neurons, whose reduction may lead to long-term 
synaptic enhancement, and the mutation of CNTN5 might be 
one of the potential mechanisms of post-traumatic stress 
disorder [44]. The mutation of the CTNNA2 gene could cause 
abnormal neuronal migration and lead to giant gyrus 
malformation, which will lead to a series of cognitive problems 
[45]. Compared with EMCI patients, the mutation of the 
CTNNA2 gene was more obvious in LMCI patients. Therefore, 
the genes extracted by the WERF method can be further applied 
as biomarkers for distinguishing EMCI and LMCI, offering 
reference to the clinical diagnosis and treatment. 

V. DISCUSSION 
It has long been a challenge for researchers to distinguish 

 
Fig. 8. Some optimal ROI-gene pairs with the highest weight value. 

 
Fig. 9. Locations, sizes, and frequencies of extracted ROIs. (a) The ROIs with 
high frequencies. (b) The locations and sizes of abnormal brain regions.  

 
Fig. 10. The frequencies of main MCI-associated gene. The frequency reflects 
the degree of correlation between gene and MCI. Other genes are with 
relatively low frequency and are not illustrated in this figure. 
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MCI patients accurately and find the exact pathogenic factors. 
In biology, gene expressions can affect the function and 
structure of the brain. In the traditional research paradigm, this 
association can be verified by clinical experiments. At the 
aspect of computer and data science, some researchers have 
tried to detect such correlation by appropriate algorithms. 
However, present studies are usually based on single modalities, 
causing the inadequate detection of factors associated with 
disease and the detecting method may be weaker in terms of 
universality. In this paper, we carry out an in-depth exploration 
of multimodal features specific to the EMCI and LMCI patients. 
We put forward a novel multimodal data fusion method and 
further presented a machine learning-based framework of data 
fusion, sample classification, and pathogenetic factor extraction. 
We found out the brain regions and genes according to the 
optimal fusion features, namely, the ROI-gene pairs, which 
revealed the multifactorial pathogenesis in different stages of 
MCI to a certain extent. Compared with the existing dimension 
reduction approaches such as PCA and ICA, our method can 
effectively detect the important features without reconstruction, 
maintaining the biological significance of each fusion feature. 

To further illustrate the progressiveness of our works, we 
also made extensive comparisons between our method and 
other existing methods. In the typical single classifier method, 
Nanni et al. [46] trained SVM with different data clusters 
extracted from the whole training set, and the accuracy was 
more than 75%. On the other hand, the idea of integration is 
also used in the categorization of MCI. Son et al. [47] adopted 
the regional volume shrinkage and functional connectivity of 
the recognition area as the characteristics of random forest, and 
the classification accuracy reached 53.33%. Lebedeva et al. [48] 
established a random forest model based on MRI and predicted 
that the accuracy of MCI and dementia in patients with late-life 
depression (LLD) was 76%. Using the deep learning method, 
Basaia et al. [49] utilized a single MRI and convolutional neural 
network to automatically distinguish the MCI patients that were 
likely to have AD from those whose conditions were stable. 
The accuracy was 75%. In contrast, the proposed WERF had 
better performance and unique advantages of lower cost and 
greater capability to abstract the discriminant factors between 
EMCI and LMCI. The advantage of our model intrinsically lies 
in the following points. 

1) The combination of the weighted evolution and random 
forest. The weighting can differentiate features with 
different categorizing ability, and the evolution removes 
the redundant or invalid features. 

2) The optimal number of evolutions was lowered, making 
the model occupy fewer calculation resources but retain 
the model efficiency at the same time. 

3) The effective integration of the multi-omics data fusion 
method and WERF model. Three core works in disease 
studies (i.e., data fusion, feature reduction, and sample 
classification) were assembled by a unified framework 
in this paper, applying the complementarity information 
among imaging genetics data to boost the performance. 

Although the WERF model achieves satisfying results, there 
also exist some limitations. Firstly, considering the complexity 

of the pathogenic factors, more omics of data are expected to be 
involved in further researches. Secondly, we only applied the 
AAL template for brain segmentation. In the future, we can use 
other templates such as Broadman to match as well. 
Furthermore, some atypical pathogenic factors are unverified 
yet. These factors provide a reference for further study of MCI. 
We will collect more data and design new algorithms for 
in-depth analysis. In addition, we plan to cooperate with 
clinicians to explain the role and rationality of this factors. 

VI. CONCLUSION 
This paper proposes a novel WERF model combining 

genetic data and neuroimaging data and constructs an 
integrated framework integrating data fusion, feature reduction, 
and sample classification. The proposed method makes full use 
of complementary information in multi-omics data, effectively 
explores the pathological mechanism of MCI development, and 
provides the relevant diagnosis basis. Compared to some 
existing methods, WERF shows better performance. According 
to the superior performance in classifying other brain-related 
diseases, such as PD and AD, the proposed framework shows 
the great potential of being a general framework for brain 
disease diagnosis. 
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