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Abstract

Many brain morphometry studies have been performed in order to characterize the brain atrophy
pattern of Alzheimer’s disease (AD). The earliest studies focused on the volume of particular brain
structures, such as hippocampus and entorhinal cortex. Even though volumetry is a powerful,
robust and intuitive technique that has yielded a wealth of findings, more complex shape
descriptors have been used to perform statistical shape analysis of particular brain structures.
However, in shape analysis studies of brain structures the information of the relative pose between
neighbor structures is typically disregarded. This work presents a framework to analyse pose
information including the following approaches: similarity transformations with either pseudo-
Riemannian or left-invariant Riemannian metric, and centered transformations with a bi-invariant
Riemannian metric. As an illustration, an analysis of covariance (ANCOVA) and a discrimination
analysis were performed on Alzheimer’s Disease Neuroimaging Initiative (ADNI) data.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia. The clinical sign is a
progressive cognitive decline initially shown as memory loss, and spreading later to all other
cognitive faculties. Mild cognitive impairment (MCI) is a relatively recent concept
introduced to recognize the intermediate cognitive state where patients are neither
cognitively intact nor demented (Petersen et al., 2001).

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005a,b) is a
large multi-site longitudinal structural MRI and PET study of about 800 adults, ages 55 to
90, including 200 elderly controls, 400 subjects with mild cognitive impairment, and 200
patients with AD. The ADNI was launched in 2003 by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and non-profit organizations, as a $60
million, 5-year public—private partnership. The primary goal of ADNI has been to test
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whether serial MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very early AD progression is intended to
aid researchers and clinicians to develop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials.

Nowadays several techniques for analysis of brain anatomy are available. The oldest
approach is the volumetry technique, which measures the volume of specific brain
structures. It relies on the delineation of the regions of interest (ROI). Volumetry is a
powerful, robust and intuitive technique that has yielded a wealth of findings. The volume
and volume change of particular brain structures such as entorhinal cortex, hippocampus,
parahippocampal gyrus, and amygdala (Laakso et al., 1995; Krasuski et al., 1998; Jack et al.,
1999; Du et al., 2001, 2003; Pennanen et al., 2004), have been long used as a neuroimaging
marker of dementia in both cross-sectional and longitudinal studies.

More specific and subtle shape information of particular regions or structures, such as the
hippocampus, has been analyzed by means of statistical shape analysis. In shape analysis
theory, shape is often defined as all the geometrical information of an object which is
invariant to pose, usually defined as the information about location, orientation and very
often size of the object. Therefore, pose and shape provide complementary information
about the object of interest. Different shape features have been used so far, such as landmark
coordinates (Csernansky et al., 2000, 2004), thickness or radial atrophy maps (Thompson et
al., 2007; Querbes et al., 2009), and medial representations (Styner et al., 2003). In all these
shape analysis studies of a single structure, the pose information is rejected during an
alignment stage because pose mainly depends on irrelevant external factors (e.g. patient’s
location and orientation within the scanner).

However, the information of relative pose among different structures belonging to a
complex multi-structure system may be useful for diagnosis, prognosis and monitoring. In
Rao et al. (2008) the correlation of the anatomical information of the subcortical nuclei was
analyzed using point distribution models (PDM) after a global alignment, which can be
considered as a joint pose and shape descriptor. A methodology to build statistical pose
models was introduced in Bossa and Olmos (2006) where the application was on subcortical
nuclei from the normal subjects. Statistical analysis of pose and shape was performed in
Bossa and Olmos (2007). The pose and shape of the subcortical nuclei were also analyzed in
a longitudinal pediatric study on autism (Styner et al., 2006), with a recent discrimination
analysis (Gorczowski et al., 2010).

The aim of this work is twofold. First to revisit a methodology for the statistical analysis of
the relative pose information between objects belonging to a multi-object set. A more
general presentation is given, including a comparison of the geodesics corresponding to the
following approaches: pseudo-Riemannian metrics, left-invariant Riemannian metric on the
group of similarity transformations, Sim(3), to our knowledge not done before, and a bi-

invariant metric on the group of centered transformations, (R+ XS0 (3)x R3). The second
aim is to assess the usefulness of the pose information of the subcortical nuclei in
Alzheimer’s disease. In particular, an analysis of covariance (ANCOVA) of the diagnostic
label and an individual classification study between normal subjects and patients were
performed using pose parameters as features.
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Materials and methods

Subjects

A subset of 554 elderly subjects from ADNI study (Mueller et al., 2005a) was used in this
work. All subjects underwent clinical/cognitive assessment, as well as studies of certain AD
biomarkers, including apolipoprotein E (ApoE) genotype, at the time of the scan acquisition.
There are three common human ApoE isoforms (E2, E3 and E4). Each copy of the ApoE4
allele increases the risk of developing AD, while ApoE2 may have a protective effect (Farrer
etal., 1997; Graff-Radford et al., 2002). An integer number, APOEf, was used to quantify
the risk of developing AD. The value from 1 to 5 means the following combinations: E2—-E2,
E2-E3, E2-E4 or E3-E3, E3-E4, and E4-E4, respectively.

As part of each subject’s cognitive evaluation, the Mini-Mental State Examination (MMSE)
was performed to provide a global measure of mental status based on the evaluation of five
cognitive domains: orientation, attention, calculation, registration, language and recall
(Cockrell and Folstein, 1988). The maximum score is 30 corresponding to a normal
cognitive status, and scores of 24 or lower are usually consistent with dementia. The Clinical
Dementia Rating (CDR) was also assessed as a measure of dementia severity by evaluating
six domains: memory, orientation, judgment and problem solving, home and hobbies,
personal care and community affairs (Morris, 1993). The ‘sum-of-boxes’ CDR score
(CDRSB) is a summary of the different domains with a larger dynamic range (0-18)
compared to the global CDR. Higher scores of CDRSB correspond to more severe dementia.
The diagnosis of AD was made according to the NINCDS-ADRDA criteria for probable
AD (McKhann et al., 1984). More details about the criteria for patient selection and
exclusion can be found in the ADNI protocol (Mueller et al., 2005a,b).

The distribution of subjects regarding the patient group was: 207 normal subjects (NOR),
176 AD patients, and 171 subjects with MCI. MCI subjects were divided into two
categories: MCI stable (MCls, N = 89), formed by the subjects who remained with an MCI
diagnosis during a 3-year follow-up; MCI converter (MClc, N = 82), considering patients
who converted to AD during the 3-year follow-up. These patient groups will be used to
define several disease stages where the performance of the candidate biomarkers will be
assessed. It should be noted that clinical evidence of dementia was only available for
patients at the AD group, and for patients belonging to the MClc after the 3-year follow-up.
The percentage of MClIs patients that will convert to AD in longer follow-up intervals is
unknown. In spite of this limitation, in this work we will use the NOR-MCIs comparison in
order to characterize a ‘potential early stage of the disease’, NOR-MClIc as an intermediate
stage and NOR-AD as the latest stage of the disease. Table 1 provides a summary of
demographic and cognitive scores.

MRI acquisition and image correction

High-resolution structural brain MRI scans were acquired at multiple ADNI sites with 1.5 T
MRI scanners using the standard MRI protocol developed for ADNI (Jack et al., 2008). For
each subject, a T1- 3D MRI scan was collected using a sagittal 3D magnetization-prepared
rapid acquisition with gradient echo (MP-RAGE) sequence with voxel size 0.94 mmx0.94
mmx1.2 mm. Additional image preprocessing included geometric distortion correction, bias
field correction and geometrical scaling. The images were calibrated with phantom-based
geometric corrections to ensure consistency among scans acquired at different sites. The pre-
processed images were downloaded from the ADNI website.!

1http://adni.Ioni.ucla.edu/.
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Shape characterization and alignment

Baseline T1 MRI images were analyzed with the FIRST tool, from FSL package (Smith et
al., 2004), for automatic segmentation of the following subcortical structures: caudate
nucleus, accumbens nucleus, putamen, pallidum, hippocampus, amygdala and thalamus.
FIRST is a model-based segmentation/registration tool that uses shape/appearance models.
Subcortical structures are parameterized as surface meshes and modeled as a PDM, where
point correspondence is assumed. The point distribution was approximately uniform on the
surfaces. The number of points (above 600 points) was large considering the object size and
its spatial frequency.

Pose parameters are obtained from an alignment procedure. Point correspondence between
different subjects for each structure was required because Procrustes alignment was used in
this work. Procrustes alignment is a typical method of choice when the shape is
characterized as a labeled point set (Dryden and Mardia, 1998). If other shape descriptors
are used a different alignment strategy may be better suited. It is worthy to note that the pose
parameters will depend on the selected alignment strategy and shape description, including
the number and distribution of points in the case of a PDM.

Pose characterization

Similarity

Two geometric objects A and B have the same shape if there is a geometric transformation
7, such that 7{A)=A. In this work, T includes translation, rotation and uniform scaling, and
is denoted as similarity transformation. More precisely, a point x € R? is transformed as

T (x)=sRx+b (1)

where s € R* is a scaling factor, R € SO(3) is a rotation matrix, i.e. Ris a 3x3 real matrix

such that RR’=R7R=1; and det(R)=1, and b=(bx, by, bz)T € R’ is a 3D vector. Note that the
similarity transformations have 7 degrees of freedom. The pose of an object is described by
the transformation which relates the local coordinate system of the object (or body-fixed
frame) with the global coordinate system (reference frame).

The set of similarity transformations defined in Eq. (1) forms a group, denoted here as
Sim(3). Let (s,R,b) be the parameters that define 7'in Eq. (1), then the group operation
75° T1, which is the composition of transformations, can be written in terms of the
parameters as

(52, R2,b2) 0 (51, R1,b1) = (5251, RoR1, ba+s52Rob1), (2
which is obtained by the consecutive application of the transformations 7; followed by 75.

In homogeneous coordinates a similarity transformation is written as
sR b
T= ( OT 1 ) (3)

where 0=(0, 0,0) 7is the null vector in R>. It can be checked that matrix multiplication
coincides with the composition of transformations.

Neuroimage. Author manuscript; available in PMC 2013 January 24.
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Centered transformations

There is an alternative characterization of the pose in which the object is rotated and scaled
with respect to a center of rotation, ¢ € R>, fixed to the object, and finally the center is
translated. A similar description is used for rigid body dynamics in physics, where the center
of rotation is the center of mass. Each point x of the object can be described by the pair (%, ¢)
where g_x _ .. The transformation rule of the pair (x, ¢) is given by

T ((X,¢))=(sRX,c+b). (1)

The group operation 7 ° 77 is given now by

(s2,R2,b2) o (s1,R1,b1) = (5251, RoR1, batb1), (5)

+ 3
therefore the corresponding group is (R X SOB) xR ) 1.e. the direct product of the
following 3 groups: R* means positive changes in the scale, SO(3) means rotations and R*
means translations of the centroid.

The drawback of this parameterization is given by the fact that the pose parameters depend
on the choice of c. On the other hand, the corresponding group is the direct product of
smaller groups than Sim(3), making the subsequent analysis easier.

Lie group structure of pose transformations

A Lie group is a group which is also a differentiable manifold. Differentiable manifolds are
curved spaces that are locally similar to Euclidean spaces. The tangent space at the identity e
of a Lie group G, is a vector space denoted Lie algebra ¢=7,G. Let be v € g, then there is a
diffeomorphism (/.e. a smooth and invertible mapping) denoted exponential map,

exp:g — G from a neighborhood of the origin of g to a neighborhood of the identity e of G.
The exponential map provides all the one-parameter subgroups,2 given by curves of the
form exp(Vd), t € R. The exponential map and its inverse, the logarithm, 108:G — g are
useful because they provide a representation of the group elements in terms of a vector
space, where addition and scalar multiplication (/.e. linear combinations) are well defined. In
the case of matrix groups, the exponential and logarithm mappings coincide with the
standard matrix exponential and logarithm, respectively, allowing the use of fast
computation schemes. Direct computation with elements from a Lie group by means of their
logarithm representation was named Log—Euclidean framework (Arsigny et al., 2006b). A
limitation of the Log—Euclidean framework is the lack of left- and right-invariance, therefore
the results are coordinate dependent.

R* x SO (3) x R3)

Both, similarity group (S/m(3)) and centered transformations( , are Lie

groups.
. + 3
The Lie algebra of the group (R x50(3) x BY) g given by the direct product of
the corresponding Lie algebras, R* x s0(3) x R? (Baker, 2002), where so(3) is the
Lie algebra of SO(3) and includes the set of skew—symmetric matrices. Let

— + 3
v=(.A.b) € (R* x 50(3) x R ) then the exponential map is given by

2A curve v(d € Gis denoted one-parameter subgroup if it is a 1-dimensional group such that y(9°y(s)= y(¢+ s), where S, 7 € R,
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exp(l,A,b) = (el, e, b) , (6)

where 4 is the matrix exponential of A. Because A is a skew—symmetric 3x3
matrix, it can be written as

0 -6. 6
A= 0, 0 —0: |, @]

6, 6. 0

then R = e performs a rotation of angle 6= \/9%+9§+9? around an axis given by
(6x 6y, 9,)/6. A more detailed analysis of computing statistics on SO(3) is given in
(Moakher, 2003).

e The Lie algebra of Sim(3), denoted sim(3), consists of matrices of the form

I+A) d
V=((§,T) O), ©

where £ is the 3x3 identity matrix. The exponential mapping is given by the matrix
exponential €Y. When /0 (/.e. there is no scaling change) a subgroup of Sim(3) is
obtained, denoted special Euclidean group, S&(3), and a point x transformed by &'V,
describes a ringlet shaped curve denoted screw motion.

Statistics of pose information

In order to perform statistical analysis on the elements of a Lie group G, a distance (g, /)
between elements g,/€ G must be defined. Lie groups are also Riemannian manifolds, and
distances are defined by selecting a Riemannian metric. Distances in Riemannian manifolds
are given by the length of the geodesic curve (the shortest path on the manifold) connecting
two elements. The Riemannian exponential, Exp,: 7,G— G, is a local diffeomorphism that
maps vectors from the tangent space at g of G, 74G, to elements on the manifold, such that
Expy(2V), 0<&1, is a geodesic starting at g, with initial velocity vand whose length is

M= /<. )¢, where ( -, - )4 is a Riemannian metric at g. Its inverse function is the
Riemannian logarithm, Log,:G — T4G,

v=L0gg (h), ©)
that is related to the Riemannian distance by (g, /)= llLog4(/)l.

Metrics on Lie groups, and their induced distances, can be divided into left-invariant (a(g,
P)=Ad o, IFp)), right-invariant (adlgy,g0)= d(g1°h, g1°h)) and bi-invariant. Left-invariance
means that the distance between two pose elements do not depend on the choice of the
reference frame. On the other hand, right-invariant metrics provide distances that are
invariant to the choice of the object body-fixed frame.

When a bi-invariant metric can be selected, geodesics coincide with translated one-
parameter subgroups (Sternberg, 1964) and any geodesic can be written as g° exp(#v) for
some g€ G and vEg. In particular, the geodesic from gy to g is given by

gioexp(tv), (10

Neuroimage. Author manuscript; available in PMC 2013 January 24.
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where v=log (gfl o gz) and 0 <& 1. The length of this geodesic is ||v||= v/(v, v),, where { -, - ),
is the bi-invariant Riemannian metric at the origin. In the case of centered transformations,
(R* xS0 (3) xR?)

+ 3
(R XSOB)xR ) admits bi-invariant metrics and the geodesics can be computed as one-
parameter subgroups by means of Eq. (10). The distance between two centered
transformations 7; and 75 is given by

, each of its building subgroups admit bi-invariant metrics. Therefore

2
d (T1, T2) = | nlllog (R Ra) I +nslilog (s2/ 1) [P+, lIby = by, (1)

where ng,ns n7>0 are the weights corresponding to the rotation, scaling and translation
components, respectively.

Unluckily, a bi-invariant metric cannot always be defined. In these cases the left-invariance
is often preferred because it is a key requirement in a larger set of applications. This is the
case of the similarity group Sim(3), where there is no bi-invariant metric due to the lack of a
bi-invariant metric on the simpler group SA(3) as it was shown in Park (1995). A way of
constructing left-invariant geodesics on Sim(3) is given in Appendix A.

When there is no bi-invariant Riemannian metric, and bi-invariant geodesics are still
required, a bi-invariant pseudo-Riemannian metric can be defined. The drawback of pseudo-
Riemannian metrics, is that there are zero-length geodesics connecting different elements in
the manifold (/e there are pairs of unequal elements whose distance is zero). Geodesics for
the bi-invariant pseudo-Riemannian metrics are given by the one-parameter subgroups. The
pseudo-Riemannian metrics on the SE(3) group were described in Park (1995); Zefran et al.
(1996, 1999) in the context of rigid body kinematics, and in the case of general lineal
transformations (pose+shearing) in (Woods, 2003).

Fig. 1 illustrates the trajectory of an object following a geodesic generated by each one of
the following metrics:

e One-parameter subgroups on Sim(3): they are the most invariant trajectories.
However, a Riemannian metric cannot be defined, and either a pseudo-Riemannian
metric is used and zero-length geodesics may appear, or a Log—Euclidean
framework is used where distances are non-invariant.

e Left-invariant geodesics on Sim(3): they depend on weighting factors and on the
choice of the object local (body-fixed) frame. It is important to note that the
evolution of the scaling factor s is non-monotonic along this trajectory, even in the
case of a geodesic connecting two pose elements where the object size is preserved.
In this case, the scale component of the initial velocity would be non-zero, and
statistics are computed on the initial velocity. This is an undesirable effect when
analyzing the pose subcortical brain structures, because it can be erroneously
concluded that there is a scale difference between two object poses while they
actually have the same size.

« Bi-invariant geodesics on centered transformations: they do not depend on either
reference, or body-fixed frames. Additionally, they do not depend on the weighting
factors (ngz,nsand n7). But they depend on a center of rotation c that is defined on
the body-fixed frame.

In our opinion, the most natural pose characterization for the application of subcortical
nuclei is given by the bi-invariant geodesics on centered transformations when the center ¢

Neuroimage. Author manuscript; available in PMC 2013 January 24.
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is appropriately chosen. For the rest of the paper, only the characterization with centered
transformations was used, with center ¢ defined as the center of mass of the object.

Bi-invariant mean

Given a set of objects, it is very common to define a center or representative object of the
population under study, e.g. the mean is a typical choice. Let g;be a set of elements
belonging to a Riemannian manifold M, and o, -) a distance function, the Karcher mean m
is defined as (Karcher, 1977)

_ ~ 2 ,
m—arg}rggﬁzd (p. &) (12)
I3

When M s a Lie group that admits bi-invariant metrics, the Karcher mean is denoted as bi-
invariant mean (Arsigny et al., 2006a), and it can be computed iteratively as follows (Pennec
et al., 2006):

M1 =My © exp (Zlog (m,_1 o gi)). (13)

Further statistical analysis is performed on vectors v=log(m1°g,).

Relative pose in multi-object complexes

When dealing with a joint analysis of a set of structures, such as subcortical nuclei within
the brain, the global pose is non-informative because it mainly depends on external factors,
such as patient’s pose within the scanner. However, the relative pose between objects may
be a relevant information, but it was disregarded in many previous morphometry studies
focused on a single brain structure (Styner et al., 2004; Ho and Magnotta, 2010; Gerardin et
al., 2009; Sabattoli et al., 2008; Thompson et al., 2004).

Global pose accounts for the position and orientation of patients within the scanner, and
head size, which are confounding factors. Original MR images were aligned to a reference
image by means of a linear transformation (12 degrees of freedom). For each subcortical
structure, residual pose is obtained by means of Procrustes alignment of the set of surface
points. Regarding the scale parameter, a very common approach is to normalize the point
coordinates by the squaredsum of their values, yielding a representation on the unit 37+
sphere, where nis the number of points. Note that this scale factor depends on the number
and distribution of the points on the surface. An alternative scale normalization is used in
this work which is more directly related to the volume of the object: landmark coordinates
are divided by the cube root of the volume yielding a shape description with unit-volume.

The reference object for each subcortical structure k was defined as the Procrustes mean
shape M across subjects (Dryden and Mardia, 1998). The pose 7; 4 of each structure and
each subject 7was obtained by Procrustes alignment with the corresponding mean shape My
The mean pose 7, was computed using Eq. (13). Fig. 2 illustrates the mean shape at the
corresponding mean pose of the selected structures. Subsequent statistical analysis was

—1
performed on vig=log (Tk © Tl?k), 1.e. after mean pose subtraction, because they belong to an
Euclidean space and their norms are equal to the distances from the group elements to the
overall mean pose.

Neuroimage. Author manuscript; available in PMC 2013 January 24.
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Statistical analysis

For the statistical analysis, the pose parameters were divided in three natural categories:
rotation, translation and scale. Univariate (for scale) or multivariate (for rotation and
translation) analyses of covariance (M)ANCOVA were performed in order to identify those
pose parameters showing statistically significant differences between patient groups. The
parameters of each pose category were considered as dependent variables and the group
label was the only independent variable. Gender, age and handedness were considered as
confounding variables. (M)ANCOVA model assumptions about homoscedasticity and
Gaussianity were checked with Box’s M and Lilliefors tests, respectively.

Correction for multiple comparisons was performed using a Bonferroni criterion approach.
The total number of models was the product of 3 pose categories and 14 subcortical
structures. Accordingly, the p-value threshold was set to 0.05/(3x14) = 1.2x1073.

Note that the MANCOVA was performed on a single tangent space at the overall mean
pose, which is valid when pose variations are small. A more rigorous approach would be to
compute distances on the tangent space at the mean of each group, as it was recently done in
Kendall’s shape space (Huckemann et al., 2010).

Classification analysis

The assessment of the discrimination ability of the pose features was performed using two
techniques: standard Linear Discriminant Analysis (LDA), and Distance-Weighted
Discrimination (DWD) (Marron et al., 2007).

DWD is a method similar to Support Vector Machines (SVMs), but all sample points are
used in the calculation of the discriminating axis. Each point’s contribution to the
calculation is weighted inverse proportionally to the distance from that point to the opposite
population. The DWD achieves a high robustness for high-dimensional feature spaces with
low sample sizes (HDLSS). The software for DWD classification algorithm was
downloaded from the author’s web page with suggested parameters. Although pose
parameter analysis does not suffer from HDLSS problem, the total number of pose
parameters in this study was 98 (14 subcortical structures with 7 pose parameters for each
structure), which is pretty high compared to the number of subjects (188 in the smallest
group). It is expected that the DWD approach will provide a higher generalization and
robustness than LDA.

Four sets of input parameters for the classifiers were defined:

1. The 14 scale factors, because many previous neuroimaging studies use only volume
information for classification: 14 dimensions.

2. The whole set of pose parameters: 7x14 = 98 dimensions.

3. The scale parameters together with gender, age and APOE genotype information:
14 + 3 =17 dimensions.

4. The whole set of pose parameters together with gender, age and APOE genotype
information: 98 + 3 = 101 dimensions.

Classification performance was assessed by means of cross-validation on independent
training and testing datasets. The training set (65% of the subjects, 135 NOR, 114 AD, 58
MCls and 53 MClic) and testing set (35% of the subjects, 72 NOR, 62 AD, 31 MCSs and 29
MClIc) were randomly selected. This random subsampling was repeated 100 times and the
average classification accuracy was measured.

Neuroimage. Author manuscript; available in PMC 2013 January 24.
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The first experiment was to assess statistically significant differences in the pose parameters
of the subcortical nuclei from the different patient groups. Table 2 collects the p-values
corresponding to the (M)ANCOVA analysis when comparing groups at different stages of
the neurodegenerative process: NOR vs MCls, NOR vs MICc and NOR vs AD. The
differences in the MCIs—MClc comparison were not statistically significant after correction
for multiple comparisons. For brevity reasons, only the results for the explanatory variables
are given, although the confounding variables gender and age were also statistically
significant in many subcortical structures while handedness was not significant for any
structure. To facilitate a comparison with volumetry studies, the average of the normalized

volume difference, (volyor = volyat ) /volyo, % 100, is given in Table 3.

In order to provide a rough illustration of the pose differences between the patient groups,
the mean pose of each patient group was applied to the mean shape of each structure after
global alignment. Fig. 3 shows the contours of the subcortical structures at their mean pose.

Classification

Regarding the classification analysis, the average accuracy score of the 100 runs of the
cross-validation is shown in Table 4. As expected, the DWD method provided a better
generalization than LDA, as can be seen from the difference of the performance between
training and testing sets. There is a slight improvement of accuracy when considering the
group comparisons in the order of the disease stages MCls, MClc and AD. In general, the
introduction of a larger amount of information (from only the scale parameters to the whole
set of pose parameters together with the demographic information) yields a slightly
improved accuracy performance in both, training and testing sets. The inclusion of gender,
age and genetic information also increases the accuracy.

Discussion

Volume can be considered as a simple, coarse and intuitive anatomical descriptor, which is
independent of the patient position within the scanner. Many previous ROI-based volumetry
studies focused on structures such as entorhinal cortex, hippocampus, and amygdala, which
are known to present the largest atrophy at the earliest stages of the neurodegenerative
process (Laakso et al., 1996; Apostolova and Thompson, 2008). However, it is known that
neurodegeneration spreads over many other regions, in particular over the structures of the
limbic system, such as thalami, which are reported less frequently. The statistical techniques
to assess significant volume differences are simple univariate hypothesis tests, and
correction for multiple comparisons is not an issue. However, volume is an unspecific
anatomical descriptor. Recent works show that the shape of a brain structure can be more
useful than the volume for population studies (Styner et al., 2004; Csernansky et al., 2000).

More complex shape descriptors typically involve vectors of large dimensionality. For
example, shape analysis of a single structure, such as the hippocampus using coordinates of
point sets on the surface as shape descriptor, requires thousands of parameters. Statistical
analysis on such high dimensional feature space with relatively small sample size (a few
hundreds in the best cases) is problematic.

Relative pose information can be regarded as an interesting trade-off for the following
reasons. First, the dimensionality required in pose characterization is not very high, just 7
parameters for each structure. Accordingly, the multiple comparison corrections will not be
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very severe. Second, the pose information3 can be considered as a generalization of volume
measurements, because in addition to volume, it provides information about the location and
orientation of each object. Third, the pose information is complementary to shape, because
the relative pose between structures is typically disregarded in the alignment stage
performed in single-structure shape studies.

In this paper a methodology for analysis of the relative pose information from a set of brain
structures has been presented. A general framework allowed us to compare several
approaches to perform statistical analysis: pseudo-Riemannian metrics, that were proposed
in Woods (2003) in the context of linear transformations and in Park (1995); Zefran et al.
(1996, 1999) for SE(3) group; Log— Euclidean framework (Arsigny et al., 2006b); left-
invariant Rieman-nian metrics on the similarity group, which is, to our knowledge, a novel
contribution; and bi-invariant metrics on the group of centered transformations. The first
approach can be related to our previous work (Bossa and Olmos, 2006), while the latter
approach to Styner et al. (2006); Gorczowski et al. (2010). The comparison of the geodesics
induced us to select the bi-invariant centered transformation approach for the following
reasons: it avoids the undesirable effect of the non-monotonic trajectories of the scale
parameter (see Fig. 1 and discussion below). Moreover, this approach allows a more clear
interpretation of the results because the contribution of each natural category, either rotation
or translation or scale, are independent. It should be also noted that, to our knowledge, this is
the first work where the pose information provides positive results with clinical data,
because the pose was useless in a longitudinal study of autism (Styner et al., 2006;
Gorczowski et al., 2010) and only normal subjects were considered in our previous work
(Bossa and Olmos, 2006).

The application of the methodology was performed in order to illustrate the usefulness of the
pose information compared to the volume information in a particular case. To our
knowledge, this is the first study considering the whole set of pose parameters of the
subcortical nuclei as a potential MRI marker of AD. Although the focus of the paper was
devoted to the methodological aspects rather than extracting of clinical useful knowledge
from the analyzed data, some interesting results were obtained which deserve discussion.

Regarding the group analysis, it can be seen from Table 2 that the pattern of significant pose
differences was different at each group comparison. At the earliest stage of the disease,
represented here by the NOR-MCIs comparison, statistical differences were found only for
the scale parameter of bilateral hippocampi and thalami. When comparing NOR-MClc
groups, in addition to the previous differences, an important asymmetry was found in the left
hemisphere because all subcortical nuclei showed statistically significant translations. It is
interesting to note that this left-hemisphere asymmetry was also recently reported in
Cherbuin et al. (2010). At the latest stage, when comparing NOR-AD patients, a larger
number of subcortical structures showed significant differences in the scale parameter, but
also interestingly, translations and rotations were significant in both hemispheres. These
pose differences were nicely illustrated in Fig. 3, showing that while some subcortical
structures show pose differences along the complete time-course of the disease, such as the
hippocampus with an atrophic behavior or caudate nuclei with translations, other structures
only experience pose differences at specific stages. Even though pose differences in the
MCIs-MClc comparison were not statistically significant after the correction for multiple
comparisons in this dataset, noticeable pose differences can be observed in several
subcortical structures in Fig. 3, in some cases almost as large as the ones in the NOR-AD
comparison.

3\When the scale normalization is selected accordingly.
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On the other hand, Table 3 confirms that the volume of all subcortical structures were
smaller in the pathological than in the NOR group, confirming that neurodegeneration is
linked to atrophy of subcortical structures. The magnitude of the atrophy increases along the
neurodegenerative process, especially of the hippocampi, with cross-sectional atrophy
values ranging from 8 to 16%, which are in agreement with the atrophy values reported in
the literature (Apostolova and Thompson, 2008). In contrast, caudate nuclei did not show
significant volume differences at any disease stage, while presenting significant translation
in the left hemisphere for the NOR— MClc comparison and translations and rotations in both
hemispheres for the NOR-AD comparison.

Brain morphometry techniques with better spatial resolution, such as tensor-based
morphometry (Bossa et al., 2010; Hua et al., 2008) have shown significant patterns of local
atrophy affecting several cortical and subcortical structures. These anatomical changes may
be the origin of the observed significant translation and rotation differences of structures
such as the hippocampi, in addition to the volume differences. Similarly, significant
differences in the translation of structures such as the caudate nuclei, do not experience
significant atrophy.

Regarding the classification analysis, a very recent study (Cuingnet et al., in press)
compared 10 different methods using the ADNI database (150 subjects for training and 150
for testing). The methods included the assessment of cortical thickness, voxel-based
methods, and hippocampus-based approaches. The highest accuracy score for the NOR-AD
classification was achieved by whole-brain methods, up to 0.81 sensitivity and 0.95
specificity. The hippocampus-based strategies obtained a similar sensitivity but a lower
specificity (between 0.63 for volume based methods and 0.84 for shape based methods). In
the case of NOR-MClc, the sensitivity was substantially lower. In this work, the average
accuracy for the NOR-AD classification was equal to 0.78 for the pose parameters, and 0.80
when gender, age and genotype information are considered. The assessment of accuracy was
performed in Cuingnet et al. (in press) and in this work with independent training and testing
datasets. While Cuingnet et al. (in press) used only a single random allocation of subjects
with 50% for training and testing, 100 random allocations with 65% training were used here.

Several limitations of this study can be mentioned. Firstly, as the segmentation of the
subcortical nuclei is the starting point, the segmentation errors will have an important
influence in the results. Secondly, the current work only looked across individuals at a single
snapshot of the evolving process. A longitudinal analysis of the pose changes would be
much more convenient in order to get more accurate information about the time-course of
the disease. Future studies will be devoted to assess statistical differences between temporal
pose changes between different patient groups. Finally, as the pose information is only a
coarse descriptor of the anatomy and complementary to shape, better classification results
may be obtained with a method with a joint pose + shape statistical analysis, following our
preliminary work (Bossa and Olmos, 2007).

Conclusions

A methodology for the analysis of pose information was proposed in this paper. Its
application on the ADNI data obtained interesting results both in a population statistical
study as well as in classification between control and patient groups. A different pattern of
subcortical nuclei pose changes was found at each patient group comparison, which is in
agreement with the evolution of the disease. In particular significant differences of
translation and rotation parameters were found for NOR vs MCI-converters comparison.
These studies confirm the hypothesis that the pose information provides a more detailed
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description of the anatomical changes induced during the neurodegeneration process than
standard volumetry.
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Appendix A: Left-invariant geodesics on Sim(3)

In Park (1995), geodesics on S&(3) were obtained from the geodesics on SO(3) and R? using
the following theorem: let My and M, be two Riemannian manifolds, and let rt: My — M,
be a smooth covering map and a local isometry (/.. a Riemannian covering map), then r
maps geodesics into geodesics (Gallot et al., 1987). The mapping r; () for left- (right)
invariant metrics, for the SE(3) case, is given by

’”((é; ll)))z(R’b)’ ”((cﬁ lf))z(R’RTb)y A

where My = SE(3) with the left-(right-)invariant metric having a block-scalar metric tensor
at the identity and a7, = SO (3) x R> with the usual bi-invariant metric.

In the case of Sim(3), geodesics can be obtained using an equivalent approach. Let S7{n) be
the group of translation and scaling in R”, which elements are matrices of the form

sl, b
T:,bz( o 1 ) (A.2)
where b € R”, s € R*. Then, the mapping r;: Sim(3) — SO(3)xST(3) given by

R b
ﬂ/(( (S)T 1 ))=(R,Ts,b) (A.3)

is a Riemannian covering map when Sim(3) and S7{3) are equipped with block-scalar left-
invariant metrics, and SO(3) with a bi-invariant metric. Therefore, geodesics on Sim(3) are
the liftings of the geodesics on SO(3)xST(3).

The geodesics on S7{3) can be obtained from geodesics on S7{(1) as follows: S7(1)
equipped with a left-invariant metric is equivalent to the Poincaré half-plane model (Stahl,
1993), that consists in the upper half of the complex plane (x+iy, y>0, x,y € R) with a metric
given by ((ax)? +(dy)®/)2. Geodesics in this space are given by vertical lines ending in the
real axis x + jyef and half-circles whose origins are on the x-axis. All geodesics can be
written as (aeli + b)/(ce'i + d), where a,b,c,d € R and ad- bc>0. Let b+ is— T pbe the
isomorphism between a complex number in the Poincaré half-plane model and a matrix on
ST(1). The distance between 71 = T, pyand 7, = T s is given by
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by — b 2 _ 2
d (T, T») =arccosh 1+( 2 D+ = 1) . (A4
251S2

It can be easily seen that a left-invariant geodesic on S7{7) connecting 7; = 75, ppand 7, =

Tsp, b2 1S given by T b, 1o, Where T= (b, — by) /r, r=|lby — by|, and y(H= n(H+ is(?) is the
geodesic in the Poincaré half-plane model connecting y(0) = /sy and y(1) = r+ is.
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One-parameter subgroup Left-invariant geodesic

Bi-invariant geodesic
(c in the center of the object) (c in one corner of the object)

Fig. 1.

Example of a square object following a trajectory given by: Sim(3) one-parame ter subgroup
(top-left); Sim(3) left-invariant geodesic (top-right); centered transformations with center ¢
in the center of the object (bottom-left); and centered transformations with center c at the
top-right corner (bottom-right). In bottom panels, the center c is indicated with a dot. A
straight dashed-line connecting the top-right corner of the object from initial to end pose is
shown for comparison purposes.
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Fig. 2.
Illustration of the mean pose (and mean shape) of the subcortical nuclei analyzed.
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Ilustration of the mean pose of subcortical nuclei for each patient group.
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