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Abstract—Computer-aided diagnosis of dementia using a sup-
port vector machine (SVM) can be improved with feature
selection. The relevance of individual features can be quantified
from the SVM weights as a significance map (p-map). Although
these p-maps previously showed clusters of relevant voxels in
dementia-related brain regions, they have not yet been used
for feature selection. Therefore, we introduce two novel feature
selection methods based on p-maps using a direct approach
(filter) and an iterative approach (wrapper).

To evaluate these p-map feature selection methods, we com-
pared them with methods based on the SVM weight vector
directly, t-statistics and expert knowledge. We used MRI data
from the Alzheimer’s Disease Neuroimaging Initiative classifying
Alzheimer’s disease (AD) patients, mild cognitive impairment
(MCI) patients who converted to AD (MCIc), MCI patients who
did not convert to AD (MCInc), and cognitively normal controls
(CN). Features for each voxel were derived from gray matter
morphometry.

Feature selection based on the SVM weights gave better results
than t-statistics and expert knowledge. The p-map methods
performed slightly better than those using the weight vector.
The wrapper method scored better than the filter method.
Recursive feature elimination based on the p-map improved most
for AD-CN: the area under the receiver-operating-characteristic
curve (AUC) significantly increased from 90.3% without feature
selection to 92.0% when selecting 1.5%-3% of the features. This
feature selection method also improved the other classifications:
AD-MCI 0.1% improvement in AUC (not significant), MCI-CN
0.7%, and MCIc-MCInc 0.1% (not significant).

Although the performance improvement due to feature selec-
tion was limited, the methods based on the p-map generally had
the best performance and were therefore better in estimating the
relevance of individual features.

Index Terms—Computer-aided diagnosis, Dementia, Feature
selection, Recursive feature elimination, Significance maps, Sup-
port vector machine.

I. INTRODUCTION

DEMENTIA affects 35.6 million individuals over 60 years

of age worldwide as was estimated in 2010 [1]. Many

of these individuals are never diagnosed [2], while an early

and accurate diagnosis is important for providing optimal care.
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Accurate diagnostic methods are also important for research

into understanding the disease process and developing new

treatments [3], [4].

Computer-aided diagnosis methods can aid the diagnosis of

neurodegenerative disease as they are trained on reference data

and therefore potentially make use of subtle group differences

that are not noted during qualitative visual inspection of brain

imaging data [5]. These methods apply machine learning

approaches to classify two or more classes, e.g. to distin-

guish Alzheimer’s disease (AD) patients from normal (CN)

controls. For this classification, the machine-learning methods

are trained on features derived from imaging or related data.

For dementia diagnosis based on structural MRI, a survey

of all recent work showed that the classification accuracy

for AD-CN generally is 80-90% [6]. Many of the dementia

classification methods used voxel-wise approaches based on

brain morphometric analyses [6]–[8]. These voxel-wise ap-

proaches provide high-dimensional feature vectors of sizes up

to ∼1 million features, while typically the sample size of such

studies is much lower, in the order of hundreds, which can

result in suboptimal performances. Therefore, researchers have

explored feature selection methods for reducing dimensionality

and improving performance [8], [9].

Although there exist many data-driven methods for feature

selection, it can be difficult to choose the best method as the

effectiveness depends on the specific application and data set

[10]. Most feature selection methods rank the features based

on a specific criterion that reflects their degree of relevance

[11]. These feature selection methods can be divided into

three main types of methods [6], [12]: 1) filter methods, 2)

wrapper methods, and 3) embedded methods. Filter methods

perform feature selection as a preprocessing step prior to the

classification and compute some relevance measure on the

training set to remove the least relevant features from the

data set. A commonly used filter method is to perform a t-

test for every feature [6], [9], [13]–[15]. Wrapper methods

are iterative methods in which the classifier is trained several

times using the feedback from every iteration to select a

subset of features for the next iteration. A well-known wrapper

method is recursive feature elimination (RFE) [16], in which

the features that are ranked the lowest are iteratively removed.

For embedded methods, the feature selection is incorporated

in the classifier and selection is performed during training. In

this work, we focus on filter and wrapper methods.

The support vector machine (SVM) classifier is frequently

used for classification in medical imaging including computer-

aided diagnosis in MR brain imaging [6], [8], [17], [18]. In
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training an SVM classifier, a weight vector is computed on the

training data. This weight vector can be used as a importance

measure of the features to the classifier. Therefore, it can serve

as ranking measure for feature selection that can be used in

a filter method or in a wrapper method. Feature selection

using the SVM weight vector has been studied extensively in

machine learning research [10], [16], [19]–[21] and has also

been applied in neuroimaging [9], [22], [23].

The ranking of features based on the SVM weight vector

may be suboptimal since the weights are not the result of

a statistical test and therefore do not necessarily reflect the

significance of a specific feature [24]. Using permutation

testing, the SVM weight vector can be calibrated by taking into

account the null distribution of the weights [17], [18]. The per-

mutation test computes a p-value for every feature indicating

the significance of its contribution to the classifier. As every

feature represents a voxel, these p-values can be combined

into a significance map (p-map) which reflects the regions

consistently influencing the classifier. In previous work, we

showed that these p-maps find clusters of significantly different

voxels in regions known to be involved in neurodegenerative

diseases underlying dementia [25]. Based on these results, it

seems attractive to use the p-map for feature selection.

The SVM p-map has not been used for feature selec-

tion before, probably because SVM p-map computation with

permutation testing is time-consuming. However, a recently

published method for analytic estimation of significance maps

[24] makes it computationally feasible to use p-maps for

feature selection in both a filter and a wrapper approach.

Like feature selection on the SVM weight vector, the p-map

methods are purely data-driven and are from a methodological

point of view closely linked to the SVM classifier, rendering

interpretation clear.

In this paper, we validated several feature selection methods

that are based on the weight vector of the SVM classifier. We

evaluated feature selection using two relevance measures: 1)

the SVM weight vector and 2) the SVM p-maps estimated

with the analytic implementation as described in [24]. For

both relevance measures, we evaluated filter and wrapper

feature selection. We compared these methods to methods

based on t-statistics and a method based on prior knowledge.

For evaluation, we performed a classification experiment of

AD, mild cognitive impairment (MCI) and CN based on T1-

weighted MR scans using data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI).

This work is an extension of our conference paper [26],

in which we presented an initial evaluation of the filter p-

map feature selection method. That work was limited to

comparison with the t-test and prior knowledge. We used a

fixed threshold (α = 0.05) on the p-map and t-test to select the

significant features and compared the methods using different

numbers of selected features. For the more thorough validation

in this paper, we added other SVM-based methods and an

additional method based on t-statistics to the comparison. We

also analyzed the features that the methods selected. Finally,

we now keep the number of features constant across methods.

II. METHODS

A. Support vector machine

The SVM classifier is based on maximization of the margin

around the hyperplane (wTx + b) separating samples of the

different classes [27]. Each sample i = 1, ...,m consists of

an N -dimensional feature vector xi and a class label yi ∈
{+1,−1}. The maximization of the margin corresponds to

the following minimization:

w∗, b∗, ξ∗ = arg min
w,b,ξ

1

2
||w||2 + C

m
∑

i=1

ξi (1)

s.t. yi(w
Txi + b) ≥ 1− ξi; ξi ≥ 0; i = 1, ...,m

In this soft-margin SVM equation, ξi is a penalty for mis-

classification or classification within the margin. Parameter C

sets the weight of this penalty. The resulting weight vector w∗

encodes the contributions of all features to the classifier.

B. Significance of the SVM weight vector

The p-value quantifies the significance of each feature’s

contribution to the SVM classifier. As every feature is a voxel,

the p-values can be combined into a p-map image. To obtain

p-values, permutation testing can be used to estimate a null

distribution on the weight vector (w) [17], [18]. Permutation

testing, however, requires the training of a large number of

SVM classifiers, which renders it very time-consuming for

high-dimensional feature vectors.

A faster solution for estimation of the SVM p-map was

presented by Gaonkar et al. [24], who derived an analytic

approximation of the null distribution of w. For this ap-

proximation, the SVM classifier is simplified by making two

assumptions. First, under the assumption that the classes are

separable, which is true if many features and a relatively small

number of samples are used, the soft-margin SVM can be

simplified to a hard-margin SVM, which does not use the

misclassification penalty ξi. Second, under the assumption that

for most permutations most samples will be support vectors,

the hard-margin SVM can be simplified further to a least-

squares SVM, which has a closed-form solution w = Ky,

with:

K = XT

[

(XXT )−1 +

(XXT )−1J(−JT (XXT )−1J)−1JT (XXT )−1

]

(2)

where J is a column matrix of ones and the matrix X contains

one feature vector in each row. Given a sufficiently high

number of subjects, the probability density function of every

feature (j) can be approximated with a Gaussian distribution:

wj
d
−→ N

(

(2q − 1)
m
∑

i=1

Kij , (4q − 4q2)
m
∑

i=1

K2

ij

)

(3)

where q is the fraction of the data with class label yi = +1. A

p-value for each feature is obtained by testing w∗ against the

analytic null distribution in (3). The experiments by Gaonkar

et al. [24] showed that this approximation results in p-maps

that are very similar to those obtained with permutation testing.
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C. Feature selection using the SVM weight vector

In this work, we evaluated feature selection methods that are

based on the SVM weight vector w∗. Since these feature se-

lection methods use information on which features contribute

most to the classifier, they are expected to reduce features

in a meaningful way. Intuitively, using such an SVM-based

feature selection method prior to SVM classification is an

attractive approach, as in this way the feature selection and

the classification use the same decision model.
We defined four methods for feature selection on the SVM

weights: 1) a filter method on the weight vector (W-map), 2) a

wrapper method on the weight vector (RFE W-map), 3) a filter

method on the significance of the weight vector (P-map), and

4) a wrapper method on the significance of the weight vector

(RFE P-map). These methods are detailed below.
1) SVM weight map (W-map): The SVM weight vector w∗

encodes the contributions of all features to the classifier. The

highest absolute weights |w∗

j | are assigned to the features j

that have the largest contribution in the classification. The W-

map image is used in a filter-based feature selection method by

simply selecting the features with the highest absolute weights.
2) Recursive feature elimination using the SVM weight map

(RFE W-map): Recursive feature elimination (RFE) [16] is a

feature selection method originally developed in genetics, but

it has been used in many applications including computer-

aided diagnosis based on MRI [9]. RFE is not specifically

developed for the SVM classifier, but it can use the SVM

weight vector as its elimination criterion. Instead of ‘naively’

ranking the weights like in the W-map method, RFE uses a

wrapper approach that removes a subset of features with the

lowest classifier weights in every iteration. The approach is

a form of backward feature elimination [28], but it removes

multiple features at the same time to make the approach

computationally feasible for high-dimensional feature spaces.
Similar to W-map, RFE W-map uses the SVM weight vector

as its relevance measure. For genetic data, Guyon et al. [16]

showed that RFE W-map outperformed the W-map approach.

Unlike W-map, which orders the features on their individual

relevance, RFE takes usefulness of the features into account

by looking at feature sets instead of individual features. This is

most important when the features are highly correlated. In that

case, the feature selection methods should not select highly

correlated features that have no additional information, which

a filter method such as W-map might do. However, because of

the iterative approach, RFE W-map is more likely to select

features that are complementary to other features, but that

might not individually have the highest relevance [16].
In our application, we use features based on voxel-wise mor-

phometry of the gray matter (GM). These features are expected

to be highly correlated, especially between neighboring voxels.

Therefore, RFE W-map is expected to have some advantage

over W-map in our application.
3) SVM significance map (P-map): The W-map and RFE

methods are both based on w∗, but do not perform any statis-

tical testing. The analytic method to estimate the SVM p-map,

which we explained in Section II-B, performs a significance

test for each feature in the SVM classifier. In a previous

conference paper, we introduced this p-map as a novel method

for feature selection [26]. This method uses the p-map to select

features that are most significant for the final classification.

The advantage of this method over W-map is that it takes into

account the null distribution of w∗. This calibrates the weights

and can make the ordering of the features more robust.

4) Recursive feature elimination using the SVM significance

map (RFE P-map): This method combines the advantages of

the previously described methods, performing both a wrapper

approach and statistical testing. RFE P-map applies recursive

feature elimination to the SVM p-map. To the best of our

knowledge, this method has not been proposed before.

D. Feature selection using t-statistics

We compared the SVM weight vector feature selection

methods with methods that use a more commonly applied

relevance measure: t-statistics. These methods perform a t-test

on the training set for every voxel. The resulting t-statistic can

then be used in a filter-based approach (T-test). In addition,

we can compute the t-statistic in a permutation test, similar

to P-map. While the standard t-test makes the assumption

that the data has a Gaussian distribution and is independently

drawn, the permutation t-test does not make these assumptions.

Therefore, we apply this randomized t-statistic in addition as

a filter (T-map). For the permutation testing on the t-statistic,

no analytic derivation is available, hence this method is more

time-consuming than the other described methods. A wrapper-

based approach, such as RFE, would have no added value for

the t-statistics criteria, since these measures are univariate: the

t-statistic is computed for each feature individually and does

not give different results over several iterations.

E. Feature selection using prior knowledge (ROI)

The last feature selection method is region-of-interest (ROI)

selection based on prior knowledge. In this method, we use

the voxel-wise features only from certain ROIs that have

been associated with dementia. We use the following ROIs

(see Fig. 1): 1) Cingulate gyrus (CG), 2) Hippocampus in-

cluding amygdala (HC), 3) Parahippocampal gyrus (PHG),

4) Fusiform gyrus (FG), 5) Superior parietal gyrus (SPG),

6) Middle/inferior temporal gyrus (MITG), 7) Temporal lobe

(TL) including FG and MITG, 8) HC + PHG, and 9) TL +

HC + PHG. The choice of these ROIs was based on those

previously used for a similar study [9].

III. EXPERIMENTS

A. Data

For the classification experiments, we used data from the

ADNI1. The inclusion criteria for participants were defined in

the ADNI GO protocol2. The ADNI was launched in 2003

by the National Institute on Aging, the National Institute

of Biomedical Imaging and Bioengineering, the Food and

Drug Administration, private pharmaceutical companies and

non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to

1http://adni.loni.usc.edu
2http://www.adni-info.org/Scientists/Pdfs/ADNI Go Protocol.pdf
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test whether serial MRI, positron emission tomography, other

biological markers, and clinical and neuropsychological as-

sessment can be combined to measure the progression of MCI

and early AD. Determination of sensitive and specific markers

of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their

effectiveness, as well as lessen clinical trial time and cost.

The used cohort is selected based on the paper by Cuingnet

et al [8], who published a list of subjects included in their

study. This cohort consists of AD patients, MCI patients that

converted to AD within 18 months (MCIc), MCI patients that

did not convert to AD within 18 months (MCInc), and CN. The

participants were 137 AD patients (67 male, age: 76.0± 7.3

yrs, mini mental-state examination (MMSE) score: 23.2±2.0),

76 MCIc (43 male, 74.8± 7.4 yrs, MMSE: 26.5± 1.9), 134

MCInc (84 male, 74.5±7.2 yrs, MMSE: 27.2±1.7), and 162

CN (76 male, 76.3±5.4 yrs, MMSE: 29.2±1.0). Acquisition

of the data was performed according to the ADNI protocol

[29]. T1w imaging was acquired at 1.5T with a voxel size of
∼1mm3.

B. Image processing

Probabilistic tissue segmentations were obtained for white

matter, GM and cerebrospinal fluid using SPM8 (Statistical

Parametric Mapping, UK) [30].

We constructed a template space specifically for the used

data set based on a subset of 150 T1w images (81 CN, 69

AD [8]). To construct this template space, we derived the

coordinate transformations from the template space to the

subject’s space from pairwise registration of the images in

the subset [31]. We performed pairwise registrations with

consecutively a rigid (including isotropic scaling), affine, and

non-rigid B-spline transformation model. The non-rigid B-

spline registration used a three-level multi-resolution frame-

work with isotropic control-point spacing of 24, 12, and 6

mm at the three resolution levels respectively. Registrations

were performed with Elastix registration software [32] by

maximizing mutual information [33] within a brain mask [34].

A template image was created by averaging the deformed

individual images. To transform the other subjects’ images to

template space, coordinate transformations were derived from

pairwise registrations to the subset. The registrations to the

template space were visually inspected to check if they were

correct. This template space construction is detailed in [25].

We used multi-atlas segmentation to segment brain masks

and the ROIs for the feature selection method based on

prior knowledge. The segmentations were performed for every

subject individually and subsequently transformed to template

space. For the individual multi-atlas segmentations, we used 30

labeled T1w images, each containing 83 manually-segmented

regions [35], [36]. The brain masks of the 30 atlas images

were obtained with the Brain Extraction Tool (BET) [34].

These brain masks which were visually inspected and BET

parameters were adjusted if necessary. The atlas images were

registered to the subjects’ image using a rigid, affine, and non-

rigid B-spline transformation model consecutively. The labels

of the regions and brain masks were fused using majority

voting [37]. Using the definition of [35], [36], the listed regions

were combined to obtain the nine ROIs defined in Section

II-E. The numbers in brackets indicate the number of GM-

containing voxels, i.e. the number of features, within an ROI:

1) CG: Cingulate gyrus anterior (supragenual) part

right/left (r/l), Cingulate gyrus posterior part r/l, Subgen-

ual anterior cingulate gyrus r/l, Pre-subgenual anterior

cingulate gyrus r/l (45870 voxels)

2) HC: Hippocampus r/l, Amygdala r/l (9325)

3) PHG: Gyri parahippocampalis et ambiens r/l (11736)

4) FG: Lateral occipitotemporal gyrus (gyrus fusiformis)

r/l (11115)

5) SPG: Superior parietal gyrus r/l (110875)

6) MITG: Medial and inferior temporal gyri r/l (43156)

7) TL: Anterior temporal lobe medial/lateral part r/l, Supe-

rior temporal gyrus central part r/l, Medial and inferior

temporal gyri r/l, Lateral occipitotemporal gyrus (gyrus

fusiformis) r/l, Posterior temporal lobe r/l, Posterior

temporal lobe r/l (226908)

8) HC + PHG (21061)

9) TL + HC + PHG (245847)

C. Classification

For classification, we used features based on voxel-based

morphometry. The features were the GM probabilistic seg-

mentations in the template space that were modulated by the

Jacobian determinant of the deformation field. This modulation

is performed to take account of compression and expansion

[38]. To correct for head size, features were divided by

intracranial volume. The features were normalized to zero

mean and unit variance.

Classification was performed with a linear SVM classifier

using the LibSVM implementation [39]. A high value was

assigned to the SVM slack parameter (C=105) resulting in a

hard-margin SVM classifier.

D. Experimental set-up

We compared seven feature selection methods: 1) Feature

selection on the SVM feature weights (W-map), 2) Recursive

feature elimination on the SVM feature weights (RFE W-

map), 3) P-map feature selection (P-map), 4) Recursive feature

elimination on the P-map (RFE P-map), 5) Univariate t-test

for each voxel (T-test), 6) Randomized t-test for each voxel (T-

map), and 7) ROI selection based on expert knowledge (ROI).

In each cross-validation run, features were selected based on

the training set. Using the selected features, an SVM was

trained on the training set and applied to the test set.

The feature selection methods were evaluated at a set of

fixed numbers of features to be selected. This set started from

the total number of features within the GM mask, which was

then iteratively divided by two, resulting in the following

set: N ∈ {1406418, 803209, 351605, 87902, 43951, 21976,

10988, 5494, 2747, 1374, 687, 344}. To allow the hard-margin

classifier to find a solution, the number of selected features was

not decreased below N = 344 keeping the number features

higher than or roughly equal to the number of samples. For

RFE W-map and RFE P-map, which are iterative approaches,
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Fig. 1: ROIs for feature selection based on previous knowl-

edge, adapted from [9].

the number of features to be eliminated in every iteration also

decreased logarithmically in 16 steps between the points of N .

Classification experiments were performed in four settings:

1) AD-CN, 2) AD-MCI, 3) MCI-CN, and 4) MCIc-MCInc. For

each setting, classification performance was quantified by the

area under the receiver-operating-characteristic (ROC) curve

(AUC) and accuracy with two-fold cross-validation. The cross-

validation was iterated 100 times with random splits of the

participants into a training and test set of the same size while

preserving class priors.

We tested differences in AUC between classifiers with a

paired t-test using the 100 iterations as samples. The con-

sistency of the selected features was analyzed using heat

maps showing the frequency of the selected features over

the cross-validations. We visually inspected the heat maps for

N=43951 on the axial slices for all methods simultaneously,

paying specific attention to clusters of voxels that were se-

lected more than 100 times. Computation times for the feature

selection methods were measured in ten iterations of the AD-

CN classification with N=43951.

IV. RESULTS

A. Classification performance

Fig. 2 shows the AUC for each feature selection method

for different numbers of selected features (N ). Classification

performance was improved by feature selection in all clas-

sification settings. For AD-CN classification, the AUC using

all features was 90.3% on average over the 100 iterations.

This AUC was significantly improved by W-map (up to 91.0%

selecting 87902 features, p<0.01), RFE W-map (up to 91.6%

selecting 43951 features, p < 0.01), P-map (up to 91.1%

selecting 87902 features, p<0.01), RFE P-map (up to 92.0%

selecting 21976 or 43951 features, p < 0.01), and T-test (up

to 90.4% selecting 351605 features, p < 0.01). For AD-

MCI classification, the AUC using all features was 68.5% on

average. This was only slightly but not significantly improved

by RFE P-map (up to 68.6% selecting 175803 (p = 0.84)

or 351605 (p = 0.88) features). For MCI-CN classification,

the AUC using all features was 72.8%. This was improved

only significantly by RFE P-map (up to 73.5% selecting 87902

features, p=0.02), and slightly but not significantly improved

by RFE W-map (up to 72.9% selecting 175803 (p=0.58) or

351605 (p=0.69) features) and P-map (up to 73.1% selecting

175803 features, p = 0.41). For MCIc-MCInc classification,

the AUC using all features was 61.3%. This was slightly

improved by W-map (up to 61.5% selecting 43951 features,

p=0.37), RFE W-map (up to 61.4% selecting 43951 features,

p=0.49), and P-map (up to 61.4% selecting 175803 features,

p=0.85). Overall, the largest significant improvement, 1.7%

increase in AUC, was achieved for AD-CN selecting 21976 or

43951 features (∼1.5% or 3% of the total) with RFE P-map.

Feature selection based on the significance map (P-map,

RFE P-map) methods performed slightly better than using

methods directly based on the SVM weight vector (W-map,

RFE W-map). This was significant in some cases (p≤ 0.05):

AD-CN N={21976, 43951}, AD-MCI N≤21976, MCI-CN

N ≤ 87902. In few cases the p-map methods performed sig-

nificantly worse than the w-map methods: AD-CN N ≤5494

(p≤0.05) and MCIc-MCI N=2747 (p=0.03).

The wrapper methods (RFE W-map, RFE P-map) yielded

generally a higher AUC than the filter methods (W-map, P-

map). Especially when a smaller number of features was

selected, the differences between the two approaches became

larger. The differences were significant (p ≤ 0.05) for: AD-

CN N ≤ 175803, AD-MCI N = {687, 344}, MCI-CN

N ≤ 1374. For MCIc-MCInc N = {1374, 2747, 5494}, the

wrapper methods performed significantly worse than the filter

methods (p≤0.05).

In all settings, the methods based on the SVM weights had a

higher performance than those based on t-statistics. The AUC

for the SVM weight-based methods was significantly higher

in most experiments (p < 0.01): AD-CN for N ≤ 351605,

AD-MCI for all N , MCI-CN N ≤ 87902, and MCIc-MCInc

N ≥ 10988. For MCIc-MCI N = {687, 1374}, the SVM

weight-based methods were significantly worse than the t-

statistics methods. The best performing ROI, consisting of

the hippocampus, parahippocampal gyrus and the temporal

lobe (ROI 9, 266908 features), did not improve AUC in any

of the settings. Its AUC was: 90.0% for AD-CN, 64.8% for

AD-MCI, 71.6% for MCI-CN, and 60.9% for MCIc-MCInc

classification. For all classifications except for MCIc-MCInc,

this ROI yielded a significantly lower performance (p<0.01)

than all SVM-based methods selecting 351605 features.

In addition to the AUC, we analyzed classification accuracy

which yielded slightly lower percentages than AUC (Appendix

A, Fig. 4). The observed relations within and between the

accuracies of the methods were the same as those for AUC.

B. Evaluation of selected features

We evaluated which features were selected by analyzing the

heat maps showing the selection frequency of every feature. In

cross-validation, a total of 200 feature sets were selected for

a given N by every method. Fig. 3 shows the heat maps for

the AD-CN classification when 43951 features were selected.

Although all methods selected large clusters of voxels in

the temporal lobe, the medial temporal lobe in particular,

visual inspection of the heat maps for AD-CN showed some

differences between the features selected by different methods.

The t-statistics methods (T-test, T-map) selected voxels that
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Fig. 2: Classification area-under-the-ROC-curve (AUC) as function of number of selected features for 7 feature selection

methods. The mean and standard deviation of AUC are shown over 100 cross-validations for (a) AD-CN, (b) AD-MCI, (c)

MCI-CN, and (d) MCIc-MCInc classification.

were mainly concentrated in the temporal lobe, while the

SVM-weight based methods (W-map, P-map, RFE W-map,

RFE P-map) selected voxels more dispersed over the brain. As

mentioned, all methods frequently selected clusters of voxels

in the temporal lobe (i.e. hippocampus including amygdala,

PHG, FG, MITG, posterior temporal lobe), the insula and the

thalamus, but the t-statistics methods did this more frequently

and selected larger clusters in these brain regions than the

SVM-weight based methods. The heat maps for SVM weight-

based methods showed more clusters of frequently selected

voxels in the frontal lobe (superior frontal gyrus, precentral

gyrus, middle frontal gyrus), postcentral gyrus, and cingu-

late gyrus than those for the t-statistics methods. We also

observed several small differences between the SVM-weight-

based methods, of which the most important was that the p-

map heat maps showed a more dispersed pattern over the brain

than the w-map heat maps. Other differences were that the

wrapper methods (RFE W-map, RFE P-map) selected more

clusters of voxels in the superior frontal gyrus than the filter

methods (W-map, P-map), and that the p-map selected more

clusters of voxels in the insula than the w-map methods.

Appendix B shows the heat maps for the other classification

settings. The patterns in these heat maps were similar to the

AD-CN classification, but more dispersed over the brain and

less pronounced in certain areas such as the temporal lobe.

For most settings, like AD-CN, the voxels selected by the

t-statistic methods were mostly concentrated in the temporal

lobe, and the voxels selected by the p-map method were more

dispersed over the brain. The AD-MCI (Fig. 5) classification

was an exception to this, since in this setting the selected

voxels were not only for the SVM-weight methods but also

for the t-statistics methods more dispersed over the brain. For

MCIc-MCInc (Fig. 7), the heat maps for all methods were

quite flat with only few voxels that were consistently selected.

As observed in Fig. 3, both the hippocampus and the

amygdala were frequently selected for AD-CN classification
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by all methods and the t-statistics methods in particular. For

AD-MCI and MCI-CN classification (Fig. 6), more amygdala

voxels than hippocampus voxels were selected by all methods,

while for MCIc-MCInc this was opposite. For MCI-CN, we

further noted that the t-statistics methods selected fewer voxels

in the insula than in the other settings, but more voxels in the

cingulate gyrus and in the rim around the ventricles.

C. Computation times

We measured computation times for the AD-CN clas-

sification selecting 43951 features. On a training set of

n={149,150}, the average time required for feature selection

was; W-map: 11.4 (range 10.5-13.9) seconds, RFE W-map:

5.5 (5.5-5.6) minutes, P-map: 6.7 (6.2-7.6) minutes, RFE P-

map: 2.0 (1.8-2.4) hours, T-test: 18.9 (17.9-20.1) seconds, and

T-map: 5.6 (5.5-5.6) hours

V. DISCUSSION

In classification experiments of AD, CN and MCI subjects

based on structural MRI, we evaluated four feature selection

methods that used the SVM weight vector. Two of these

methods were novel because they used SVM significance maps

as relevance measure for feature selection in a filter and in

a wrapper approach. We compared these methods with more

commonly used feature selection methods using t-statistics and

expert knowledge ROIs.

A. Performance and selected features

In all classification settings (AD-CN, AD-MCI, CN-MCI,

and MCIc-MCInc), the evaluated data-driven feature selec-

tion methods improved classification performance while the

methods based on expert knowledge did not. The performance

improvement was the largest using RFE based on the SVM

p-map selecting 21976 or 43951 features for AD-CN, which

significantly improved the AUC from 90.3% to 92.0%. This

selection method also improved the other classifications: AD-

MCI 0.1% improvement in AUC (not significant), MCI-CN

0.7%, and MCIc-MCInc 0.1% (not significant). In general,

the SVM-weights-based methods performed better than those

using t-statistics. Of the SVM-weight-based methods, the ones

using the p-map instead of the w-map performed slightly

better, while RFE also slightly improved performance.

In this study, we used the same ADNI cohort as used

in the comparison study of Cuingnet et al. [8]. Their study

found an AUC of 95% for AD-CN and 70% for MCIc-

MCInc using a voxel-based approach without feature selection

(method: Voxel-Direct-D-gm), which is somewhat higher than

our results using all features. These differences might be

attributed to differences in the methodology for template space

construction [25]. Cuingnet et al. [8] also evaluated two

methods that included feature selection and concluded that

feature selection only improved performance for the MCIc-

MCInc classification.

The evaluated feature selection methods frequently selected

clusters of voxels in the hippocampus, amygdala and parahip-

pocampal gyrus. This is in correspondence with the literature,

as atrophy of these brain regions is well known to play an

important role in AD [40]–[42]. Additionally, atrophy in the

cingulate gyri [41]–[43], caudate nucleus [40], [41], insula

[40], [41], thalamus [40], [43], superior parietal gyrus (pre-

cuneus) [41], [43], temporal gyri [41], [43] and frontal cortex

[41] were reported in AD and MCI. The regions in which the

data-driven methods frequently selected clusters of features

roughly corresponded to these regions, which confirms the

validity of these methods. The SVM-weight-based methods

found most of these regions, except for the caudate nucleus

and the superior parietal gyrus. In addition, the SVM-weight-

based methods found a more global effect than the t-statistics

methods by selecting regions dispersed over the entire brain.

The finding that classification performances were higher for

the SVM-weight-based feature selection methods than for the

t-statistics methods could be an indication that the classifier

benefits from selecting some voxels that seem to be randomly

distributed over the brain. If enough voxels in for example the

hippocampus have been selected already, voxels from other

brain regions may have complementary information for the

classifier and may therefore be more beneficial than other

hippocampal voxels that are possibly highly correlated with the

hippocampal voxels that were already selected. RFE should be

better at selecting complementary features [16], which might

explain why the SVM-based RFE methods yielded somewhat

higher performances than the filter methods.

Guyon et al. [16] showed that a small change in the feature

set could result in a completely different feature ranking by

RFE. This possibly causes the selected features for RFE to

be even dispersed more over the brain than those for the filter

methods. Since the heat map for RFE P-map showed that there

was a lot of variation in the specific set of selected features,

the performance may be improved even more by making the

method more robust and less sensitive to small changes in the

training set.

A paper by Chu et al. [9] found that feature selection only

improved classification performance when expert knowledge

was used. They compared an ROI method with three data-

driven methods: T-test, RFE W-map which removed 3000

voxels in every iteration, and a method using the average

absolute t-value in ROIs. In contrast to our work, Chu et al.

found for AD-CN and MCI-CN classification improvement

using some ROIs based on prior knowledge, but no improve-

ment using any of the data-driven methods. The frequency

maps shown in [9] for T-test and RFE W-map show the same

pattern as we found in our work. For the T-test method the

selected voxels were concentrated in the hippocampus and

medial temporal lobe, while the RFE W-map method showed a

more dispersed pattern of selected voxels. Our results suggest

that data-driven feature selection methods do have potential

to improve classification performance and are worth to be

investigated further.

The performance improvements due to feature selection

shown in this work could possibly be improved, e.g. by further

optimizing the proposed methods to make them more robust or

by exploring new methods. Such new methods could include

feature reduction or regularization methods, for example one

could incorporate principal component analysis [44], [45],
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Fig. 3: Heat maps of the selected features for the AD-CN classification by the following methods: A) W-map, B) RFE W-map,

C) P-map, D) RFE P-map, E) T-test, and F) T-map. In the 100 iterations of 2-fold cross-validation, a total of 200 sets of

features are selected which are shown in the heat maps. The sample point of 43951 selected features is shown.

sparse regression [46], [47] or spatial regularization [48], [49].

B. Computation time

Feature selection increases the time needed for training of

the classifier, but saves time in the application of the classifier

since it uses fewer features. The W-map and the T-test methods

were the fastest and only took 10-20 seconds. Significance map

feature selection is more time-consuming than w-map feature

selection and took a couple of minutes instead of seconds.

The wrapper approaches are more time-consuming than the

filter approaches as they iteratively train a classifier. Of the

evaluated methods, the T-map method required the most time,

up to 6 hours, as it uses permutations.

C. Challenges and limitations

Although four classes (AD, MCIc, MCInc, and CN) are

considered in the analysis, we performed all classifications

between pairs of classes because of better interpretability of

the results.

For the experiments, we used a hard-margin classifier and

kept the number of selected features higher than the number

of samples. When the number of features is much higher

than the number of samples, both soft-margin and hard-margin

SVM yield the exact same solution. In that case, the largest

Lagrange multiplier of the dual SVM equation is smaller than

or equal to the slack parameter C and the misclassification

penalty ξi does not have an effect. However, when the number

of features is smaller, the solutions of hard-margin and soft-

margin SVM differ depending on the used value for the C-

parameter. For N = 344, a C ≈ 1 or smaller would result

in a soft-margin classification. Since Chu et al. [9] concluded

that the effect of feature selection did not depend on value for

the C-parameter, we only evaluated feature selection using

hard-margin classification. Since the optimization of the C-

parameter is generally performed in a grid-search loop and is

therefore computationally expensive, using hard-margin SVM

was also a pragmatic approach.

Like most current studies into computer-aided diagnosis of

dementia, the reference standard for this study was based on

clinical diagnosis. For the ADNI data used in this study, this

clinical diagnosis is confirmed by a follow-up period of 18+

months. This may be a limitation, since the clinical diagnosis
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[50] might not be always correct. The accuracy of the clinical

diagnosis has been reported to be 70-90% compared to the

ground truth which was assessed postmortem based on neu-

ropathology [51]–[54]. However, due to the limited availability

of data with ground truth diagnosis, we believe that the clinical

diagnosis is the best reference standard for current research.

In this work we compared the performance of several feature

selection methods for a range of numbers of selected features.

For extension of this work, the number of features could be

optimized using grid search in cross-validation on the training

data.

D. Implications

Although performance improvements were small, some of

the evaluated data-driven feature selected methods clearly were

better at ranking the features than others. The RFE methods

resulted in a better ranking than the filter methods, and the

SVM-weight based methods gave a better ranking than the t-

statistics methods. From these differences in results between

feature selection methods, we learned that data-driven feature

selection methods have potential, although we might not have

found the ideal method yet. For the choice of the best feature

selection methods, one should take into account the trade-

off between AUC and complexity. For some applications, a

method that requires a much smaller number of features to

achieve similar performance might be preferred. Finally, we

note that it is important to carefully choose the right method

for feature selection as this can significantly reduce or improve

the classification performance.

VI. CONCLUSION

In this work, we showed that data-driven feature selection

methods can significantly improve computer-aided diagnosis

of dementia. Especially recursive feature elimination on the

SVM significance map works well but the performance im-

provement is still limited. More research and more data with

a ground truth diagnosis is needed to further improve these

methods for application in clinical diagnosis systems.
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APPENDIX A

CLASSIFICATION ACCURACY
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(b): AD-MCI
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Fig. 4: Classification accuracy as function of number of selected features for 7 feature selection methods. The mean and standard

deviation of accuracy are shown over 100 cross-validations for (a) AD-CN, (b) AD-MCI, (c) MCI-CN, and (d) MCIc-MCInc

classification.

APPENDIX B

HEAT MAPS FOR AD-MCI, MCI-CN, AND MCIC-MCINC

Fig. 5: Heat maps of the selected features for the AD-MCI classification by the following methods: A) W-map, B) RFE W-map,

C) P-map, D) RFE P-map, E) T-test, and F) T-map. The sample point of 43951 selected features is shown.
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Fig. 6: Heat maps of the selected features for the MCI-CN classification by the following methods: A) W-map, B) RFE W-map,

C) P-map, D) RFE P-map, E) T-test, and F) T-map. The sample point of 43951 selected features is shown.

Fig. 7: Heat maps of the selected features for the MCIc-MCInc classification by the following methods: A) W-map, B) RFE

W-map, C) P-map, D) RFE P-map, E) T-test, and F) T-map. The sample point of 43951 selected features is shown.


