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Abstract
In this article, we focus on the estimation of varying-coefficient mixed effects models
for longitudinal and sparse functional response data, by using the generalized least
squares method coupling a modified local kernel smoothing technique. This approach
provides a useful framework that simultaneously takes into account the within-subject
covariance and all observation information in the estimation to improve efficiency.
We establish both uniform consistency and pointwise asymptotic normality for the
proposed estimators of varying-coefficient functions. Numerical studies are carried out
to illustrate the finite sample performance of the proposed procedure. An application
to the white matter tract dataset obtained from Alzheimer’s Disease Neuroimaging
Initiative study is also provided.

Keywords Functional varying coefficient models · Within-subject correlation · Local
kernel smoothing · Efficient estimation · Functional responses

1 Introduction

Longitudinal and functional data are frequently encountered in biomedicine, epidemi-
ology, and other fields of natural and social sciences. See, Hand and Crowder (1996),
Ramsay and Silverman (2005) and Ferraty (2011) for abundant interesting examples.
In recent years, various functional regression models are proposed to conduct a better
description and analysis for this complicated data, since it allows the responses or the
regressors, or both, are curves. According to the difference in the concrete forms of
the responses and regressors, functional regression models are usually subdivided into
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three categories, including scalar-on-function regression (see, e.g., Cai and Hall 2006;
Chen, Hall and Müller 2011; Sang et al. 2018), function-on-function regression (Yao
et al. 2005a; He et al. 2010; Wang et al. 2018) and function-on-scalar regression (Wu
et al. 2013; Zhang and Wang 2015). For more details about the functional regression
models and its applications, one can see Morris (2015), Wang et al. (2016) and Reiss
et al. (2017) for an overview.

Motivated by the regression analysis of imaging (or functional) data, such as diffu-
sion tensor imaging (DTI) and positron emission tomography (PET) (Zhu et al. 2007;
Friston 2009), many nonparametric and semi-parametric regressions for functional
responses have been proposed, see, for example, Luo et al. (2016) and Li et al. (2017).
A functional varying-coefficient mixed effects model, which can be used for modeling
the dynamic impacts of the covariates of interest on the response, is one of the most
powerful tools in addressing these scientific problems for imaging data. LetYi (t) be the
functional response variable for subject i , i = 1, . . . , n, and xi = (xi1, . . . , xip)T be
the associated p-dimensional covariate vector, then the functional varying-coefficient
mixed effects model takes the form

Yi (t) = xTi α(t) + ηi (t) + εi (t), (1)

where α(t) = (α1(t), . . . , αp(t))T is the p-dimensional unknown but smooth coef-
ficient function vector, εi (t) are measurement errors, and ηi (t) is the random effect
function that characterizes individual curve variation (subject-effect) from xTi α(t).
Without loss of generality, throughout this paper we assume that t ∈ T = [0, 1].
Moreover, {ηi (t) : t ∈ T } is a stochastic process indexed by t ∈ T that cap-
tures the within-curve dependence. We assume that ηi (t) are independent copies of
η(t) ∼ SP(0, �), where SP(μ,�) denotes a stochastic process with mean function
μ(t) and covariance function �(s, t).

Model (1), as a classical function-on-scalar regression has been widely applied
for functional data analysis and extensively studied in the existing literature. For
instance, for model (1) without involving the random effect item, Wu and Chiang
(2000) proposed two kernel estimators based on componentwise local least-squares
criteria to estimate the varying-coefficient functions; Chiang et al. (2001) employed
a componentwise smoothing spline method to estimate the time-varying coefficients
and studied the corresponding asymptotic properties. Zhang and Chen (2007) adopted
the idea of “smoothing first, then estimation” to construct the local polynomial kernel
reconstruction-based estimator for mean, covariance and error variance functions for
model (1) and derived their asymptotics. Zhu et al. (2012) extended model (1) to a
multivariate case and systematically studied the theoretical properties of the result-
ing estimators obtained by local linear smoother. Zhu et al. (2014) further proposed
a spatially varying coefficient model (SVCM) for neuroimaging study and investi-
gated the asymptotic properties of the parameter estimators. Other more studies on
varying-coefficient models and mixed effects models for longitudinal and functional
data, readers may refer to Fan and Zhang (2008) and Chen and Wang (2011) for
comprehensive discussions.

However, these aforementioned estimation approaches for model (1) are mainly
based on kernel smoothing and smoothing spline, both of which ignore the within-
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subject correlation information in the estimation procedures. For longitudinal and
functional data, it is well known that there exists a high correlation between the obser-
vations on the grid of each datum. As a result, these existing methods might lead to
a loss of efficiency. Additionally, the kernel smoothing method utilizes only obser-
vations in the neighborhood of the target point for estimation. It is noticeable that
these neighborhoods usually contain only a few observations in longitudinal studies,
and the within-subject correlation may causes observations out of the neighborhoods
carrying significant information. In view of this, the local kernel method might result
in inefficient estimators. Therefore, some new techniques improving the efficiency of
the conventional local kernel method are highly desirable in longitudinal and func-
tional data analysis. Chen et al. (2010) proposed a global partial likelihood method
to study the nonparametric proportional hazards model. The main idea of their global
approach is to use all observations instead of only local observations near the target
point for estimation to improve the efficiency. Zhou et al. (2018) employed that global
smoothing idea combining with the full quasi-likelihood method to conduct the esti-
mation of mean and covariance functions for sparse functional data. Motivated by the
idea of global smoothing, we present an efficient estimation procedure for estimating
the varying-coefficient functions in model (1) for longitudinal and sparse functional
response data. This procedure combines the generalized least squares method and a
modified local kernel smoothing criterion which uses the observations on the whole
grid of each subject in estimation. An iterative but simple algorithm is proposed to
compute the estimator.

The proposed method overcomes the potential drawbacks of existing local kernel
methods and improves the efficiency of the resulting estimators. Specifically, there
are several advantages for the new method: (i) the proposed estimation procedure
involves the global smoothing idea that not only absorbs the advantages of the local
linear smoother by using the observations near the target point for estimation, but also
utilizes the information available at data outside the neighborhood, which is not used
in the local kernel smoothing principle; (ii) the within-subject covariance structure is
also incorporated into the estimation procedure to improve the estimators; and (iii)
the iterative procedure is easy to implement so that it can be applied to solve various
application problems. We derive both uniform consistency and asymptotic normality
for the estimated varying coefficient functions. Simulation studies are conducted to
compare the performances of our method and the local linear method in terms of root
mean squared error, and the results reveal that the proposed method has a smaller
root mean squared error than its competitor. This discovery further indicates that the
results obtained by our method can more accurately characterize the dynamic rela-
tionship between a set of covariates and the functional response variable in application
problems. Finally, a real data example is presented to illustrate the newly proposed
approach.

The rest of this article is organized as follows. Section 2 introduces the estimation
procedure. The theoretical properties including consistency and asymptotic normality
of the estimators are established in Sect. 3. Section 4 presents the simulation stud-
ies which are performed to evaluate the performance of the method. Section 5 is
devoted to applying this method to analyze the white matter tract dataset obtained
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from Alzheimer’s Disease Neuroimaging Initiative (ADNI). Section 6 concludes the
paper and discusses future work. Technical proofs are given in the “Appendix”.

2 Methods

In this paper, we focus on sparse data situations. Suppose that we observe the random
functions Yi at discrete points ti j , that is,

Yi j = xTi α(ti j ) + ηi (ti j ) + εi j , j = 1, . . . ,mi , i = 1, . . . , n, (2)

where the observation locations ti j are independent and identically distributed random
variables with density function f (·). Throughout this paper, we shall assume that xi ,
ti j , η(·) and ε(·) are all independent and the noise terms, εi j , are independent and
identically distributed random errors with mean zero and variance σ 2. Suppose that
2 ≤ mi ≤ M , for somefinite constantM , for all i = 1, . . . , n. Our proposed estimation
procedure contains two key steps: (I) calculate the initial estimate α̃(t) of α(t) and
construct the nonparametric covariance estimation for �(s, t); (II) use the estimated
covariance function and the initial estimate α̃(t) to develop a refined estimate for α(t),
denoted by α̂(t).

2.1 Initial estimation

We adopt the local linear scatter-plot smoother (Fan and Gijbels 1996) to estimate
the varying coefficient function α(t) and the covariance function �(s, t). For any T
in a small neighborhood of t , applying the Taylor’s expansion, we have αk(T ) ≈
αk(t) + α̇k(t)(T − t) ≡ ak + bk(T − t) for k = 1, . . . , p, where α̇k(t) = dαk(t)/dt .
Denote A0 = (a1, . . . , ap)T and A = (a1, . . . , ap, b1, . . . , bp)T . Let K (·) be a
kernel function and Kh(·) = h−1K (·/h) be a scaled kernel with bandwidth h. Then
the local linear estimate of the regression coefficients, α(t), is simply α̃(t) = ̂A0
where

̂A = arg min
A

⎧

⎨

⎩

n
∑

i=1

mi
∑

j=1

[

Yi j −
p
∑

k=1

[

ak + bk(ti j − t)
]

xik
]2
Khα (ti j − t)

⎫

⎬

⎭

, (3)

Let Ci jl = (Yi j − xTi α̃(ti j ))(Yil − xTi α̃(til)) be the “raw” covariances, where
α̃(·) is the estimated varying coefficient function obtained from (3). Note that
E(Ci jl |xi , ti j , til) ≈ �(ti j , til) + σ 2 I (ti j = til), where I (·) is an indicator func-
tion. Therefore the local linear surface smoother for covariance function �(s, t) can
be achieved by the raw covariances with their diagonal elements being removed, and
this yields that ̂�(s, t) = ̂β0, wherêβ = (̂β0,̂β1,̂β2)

T and
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̂β =arg min
β

{ n
∑

i=1

∑

1≤ j �=l≤mi

KhC (ti j − s)KhC (til − t)

× [Ci jl − β0 − β1(ti j − s) − β2(til − t)]2
}

. (4)

In order to estimate σ 2, we first estimate the variance R(t) = �(t, t)+σ 2 of Y (t).
Let ̂R(t) be the local linear smoother of R(t), then ̂R(t) = ̂β0, wherêβ = (̂β0,̂β1)

T

and

̂β = arg min
β

⎧

⎨

⎩

n
∑

i=1

mi
∑

j=1

[Ci j j − β0 − β1(ti j − t)]2KhV (ti j − t)

⎫

⎬

⎭

. (5)

The estimate for the variance σ 2 is then,

σ̂ 2 = 1

|T |
∫

T
{̂R(t) − ̂�(t, t)}dt, (6)

where the notation |T | denotes the length of the interval T . The more detailed pro-
cess for the estimation of mean and covariance functions for longitudinal and sparse
functional data, one can refer to Yao et al. (2005b) and Li and Hsing (2010).

2.2 Refined estimation for varying-coefficient functions

We know that the local kernel smoothing uses only local observations near the target
point for estimation. However, the within-subject correlation, presented in the lon-
gitudinal and functional data, may result in observations outside the neighborhood
of the target point carrying relevant information. Therefore, the local linear method
used in Sect. 2.1 for estimating the varying-coefficient functions may reduce to loss of
efficiency. In this subsection, we employ the generalized least squares method incor-
porating a modification of local linear smoothing to conduct a refined estimator for
α(·). This new method not only adopts the idea that uses all observations instead of
the local observations near the target point for estimation but also incorporates the
estimated covariance structure which can be used to account for the within-subject
correlation into the estimation process to improve the resulting estimators.

WriteY i = (Yi1, . . . ,Yi,mi )
T , t i = (ti1, . . . , ti,mi )

T ,α(t i ) = (α1(t i ), . . . , αp(t i ))T

and α j (t i ) = (α j (ti1), . . . , α j (ti,mi ))
T for j = 1, . . . , p. Note that E(Y i |xi , t i ) =

αT (t i )xi and cov(Y i |xi , t i ) = �i +σ 2 Imi , where�i = {�(ti j , til)}mi
j,l=1 is the covari-

ance matrix of ηi (t i ) = (ηi (ti1), . . . , ηi (ti,mi ))
T and Imi is the identity matrix of order

mi for i = 1, . . . , n. For convenience, let V i = �i + σ 2 Imi . Then the generalized
least squares estimator of α(t) is obtained byminimizing the follow objective function

Q(α) =
n
∑

i=1

{Y i − αT (t i )xi }T V−1
i {Y i − αT (t i )xi }. (7)
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Firstly, we replace V i with its estimates. Since we do not assume any structure on
the covariance function of Y (t) other than that it is a smooth function, the local linear
estimates presented in Sect. 2.1 is recommended. Let ̂�i be the estimated covariance
matrix of �i and σ̂ 2 be the estimated variance of measurement errors obtained from
(4), (5) and (6). Then V i is substituted by ̂V i = ̂�i + σ̂ 2 Imi .

Secondly, we adopt a similar strategy in Chen et al. (2010) and Zhou et al. (2018)
to approximate α(t). Specifically, let Bn(t) be a neighborhood of t , it is easy to see
that

α(ti j ) = α(ti j )I (ti j ∈ Bn(t)) + α(ti j ){1 − I (ti j ∈ Bn(t))}. (8)

Based on the idea of local linear smoother, we use linear function ζ + ζ̇ (ti j − t) to
approximate α(ti j ) in the first term of (8) and replace I (ti j ∈ Bn(t)) with a kernel
function K {(ti j − t)/h}. Then for ti j in a neighborhood of t , we have

α(ti j ) ≈ {ζ + ζ̇ (ti j − t)}hKh(ti j − t) + α(ti j ){1 − hKh(ti j − t)},
where ζ = (ζ1, . . . , ζp)

T , ζ̇ = (ζ̇1, . . . , ζ̇p)
T and Kh(·) = h−1K (·/h) is a scaled

kernel function with bandwidth h. This expansion is of great use in longitudinal and
functional data analysis by the reason of it not only absorbs the advantage of local linear
smoother but also utilizes the information available at data outside the neighborhood
region Bn(t). Substituting this approximation and the estimated covariancematrix into
(7), we can obtain the refined estimator for ϑ = (ζ T , ζ̇

T
)T by solving the following

equation

∂Q(ϑ;α)

∂ϑ
=

n
∑

i=1

�T
i K i,ĥV

−1
i

{

Y i − hK i,h�iϑ − (Imi − hK i,h)α
T (t i )xi

}

= 0,

(9)

where K i,h = diag(Kh(ti1 − t), . . . , Kh(ti,mi − t)) and

�i =
⎛

⎜

⎝

xi1 · · · xip xi1(ti1 − t) · · · xip(ti1 − t)
...

. . .
...

...
. . .

...

xi1 · · · xip xi1(ti,mi − t) · · · xip(ti,mi − t)

⎞

⎟

⎠ .

Note that the refined estimator can not be directly obtained by solving the the
Eq. (9) as there still exists an unknown function vector α(t i ). Therefore, we present
an iterative procedure by substituting α(t i ) with its previous estimator to address this
problem. Let t1 < t2 < · · · < tM be the distinct points of ti j for i = 1, . . . , n and
j = 1, . . . ,mi . The iterative algorithm is described as follows.

• Step 0 Taking the estimator fulfilled by (3) as the initial values of α(t), denoted
by α[0](t) = α̃(t) for t = t1, . . . , tM .

• Step 1 For each t = t1, . . . , tM , solve the Eq. (9) in which α(t) is replaced by its
previous estimator, that is,

n
∑

i=1

�T
i K i,ĥV

−1
i {Y i − hK i,h�iϑ − (Imi − hK i,h)α

T[s−1](t i )xi } = 0, (10)
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where αT[s−1](t i ) is the (s − 1)th iterative estimator of αT (t i ). (10) yields the

estimator̂ϑ(t), given by

̂ϑ(t) =
(

̂ζ (t)
̂ζ̇ (t)

)

=
{

n
∑

i=1

�T
i K i,ĥV

−1
i hK i,h�i

}−1

×
n
∑

i=1

�T
i K i,ĥV

−1
i {Y i − (Imi − hK i,h)α

T[s−1](t i )xi }. (11)

Hence, α[s](t) =̂ζ (t).
• Step 2 Repeat Step 1 until convergence.

The selection of the bandwidth h for the estimation procedure presented above
is achieved by the leave-one-curve-out cross-validation (Rice and Silverman 1991).
Specifically, let α̂(−i)(·) be the estimated varying-coefficient function of α(·) after
removing the i th subject from the data. Then the optimal bandwidth h can be chosen
by minimizing the cross-validation score based on the squared prediction error given
by

PE(h) = 1

n

n
∑

i=1

1

mi

mi
∑

j=1

{Yi (ti j ) − xTi α̂(ti j )
(−i)}2.

Remark 1 The proposed iterative estimation procedure can be readily implemented as
there is a closed-form at each step. Compared to the local linear method used in Zhu
et al. (2012), the newly presented estimation approach may be more efficient since
it takes the within-subject correlation structure and the observations on the whole
grid of each subject into consideration, two of which are significantly important in
longitudinal and functional data analysis. It is not hard to see that the estimation in (3)
is, in essence, a local marginal estimation, assuming that the within-subject covariance
matrices are identities. This leads to a working independence estimator for α(t)which
ignores the correlation among the observations on the grid of each subject, and further
causes a loss of efficiency.

Remark 2 Replacing α(t) with its estimate to model (1), we also can conduct the esti-
mation of each random effect function ηi (t). Many existing non-parametric methods
such as the local linear regression have been developed to directly estimate all individ-
ual functions ηi (t), i = 1, . . . , n, (see, e.g., Zhu et al. 2012; Li et al. 2017). However,
these non-parametric methods may be not suitable for our sparse data situations when
the number of observation points for each subject is small. Functional principle com-
ponent analysis (FPCA) as a key technique in characterizing the features of unknown
functions in functional data analysis, is another feasible method for the estimation of
ηi (t). We recommend using the version of FPCA developed by Yao et al. (2005b)
which they refer to as principal components analysis through conditional expectation
(PACE) for longitudinal data to estimate each random effect function ηi (t). The PACE
approach is appealing since it is implemented mainly based on the estimated popu-
lation covariance function of ηi (t), which utilizes the whole sample information and
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can be easily obtained by using the method presented in Sect. 2.1. Comprehensive
surveys on FPCA for longitudinal or sparse functional data were developed in Yao
et al. (2005b) and Hall et al. (2006).

3 Asymptotic properties

In this section, we study the asymptotic properties of our estimators. Some regularity
conditions needed for the theoretical developments are stated in “Appendix A.1”. All
these conditions are very mild and most of these are also adopted by Chen et al. (2010)
and Zhou et al. (2018). The detailed proofs for the following theorems are given in
“Appendix A.2–A.3”.

To start with, we give some notations which will be used in the theorems. Let
νr = ∫

ur K (u)du and υr = ∫

ur K 2(u)du for notational simplicity. For a vec-
tor of functions α(t) of t , denote α̇(t) = dα(t)/dt and α̈(t) = d2α(t)/dt2,
which are the componentwise derivatives. Let Vi, jk be the ( j, k)th element of
V−1

i = (�i + σ 2 Imi )
−1. Denote γ1(s) = lim

n→∞ n−1∑n
i=1

∑mi
j=1 E[Vi, jk |ti j = s],

γ2(s1, s2) = lim
n→∞ n−1∑n

i=1
∑mi

j �=k E[Vi, jk |ti j = s1, tik = s2] and X = E[xxT ].
Let I be the identity operator, and A be the linear operator satisfying A(H)(t) =
∫

z γ2(t, z)/γ1(t)H(z) f (z)dz for any function H .

Theorem 1 Under the regularity Conditions (C1)–(C8) in “Appendix A.1”, when n →
∞, we have

sup
t∈[0,1]

|̂α j (t) − α j (t)| → 0, j = 1, . . . , p,

in probability.

Theorem 2 Suppose that conditions of Theorem 1 hold. Then, for any t ∈ (0, 1), we
have

(I + A)(̂α − α)(t) = (nh)−1/2�(t)1/2ϕ + 1

2
υ2h

2α̈(t) + op{h2 + (nh)−1/2},

where �(t) = υ0[X f (t)γ1(t)]−1 and ϕ is a random vector following the standard
normal distribution.

Theorem 2 implies the following Corollary 3.

Corollary 3 Under the Conditions (C1)–(C8) in the “Appendix A.1”, we have

√
nh

{

(̂α − α)(t) − 1

2
(I + A)−1(α̈)(t)υ2h

2
}

L−→ N (0,
(t))

for any t ∈ (0, 1), where 
(t) = {(I + A)−1(�1/2)(t)}{(I + A)−1(�1/2)(t)}T .
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Remark 3 Theorem 1 shows the proposed estimator α̂ j (·), j = 1, . . . , p, is uniformly
convergent. Theorem 2 shows the asymptotic bias of (I + A)(̂α − α)(t) is of order
O(h2), and the asymptotic variance is of order O((nh)−1). As a consequence, the
theoretical optimal bandwidth is of order n−1/5. These results are similar to that of
Zhou et al. (2018). The asymptotic properties presented above can be viewed as a
generalization of the results in Zhou et al. (2018) from mean function estimation to
varying-coefficient function estimation. These results will be more widely used in
solving various practical problems than that of Zhou et al. (2018). Especially, it can
provide theoretical guidance for analyzing the dynamic relationship between a set of
covariates and the functional response variable, rather than only exploring the feature
of functional variables.

4 Simulation studies

In this section, we are going to perform some simulation studies to illustrate the finite
sample properties of the proposed estimation method. In consideration of the estima-
tion procedure we proposed is aimed at estimating the varying-coefficient functions,
we will use the accuracy of the varying-coefficient function estimators to demonstrate
how well the procedure works. The performances are evaluated via the bias, standard
deviation (SD), and root mean squared error (RMSE), at given grid points, which also
are used by Zhou et al. (2018). Specifically, the bias, SD and RMSE of an estimator
α̂(·) are respectively defined as

Bias =
⎡

⎣

1

ng

ng
∑

j=1

{

E α̂(t j ) − α(t j )
}2

⎤

⎦

1/2

, SD =
⎡

⎣

1

ng

ng
∑

j=1

E
{

α̂(t j ) − E α̂(t j )
}2

⎤

⎦

1/2

andRMSE = (bias2 + SD2)1/2, where α̂(·) is an estimator ofα(·), E α̂(ti ) is estimated
by the sample mean based on the N simulated data sets, and t j ( j = 1, . . . , ng) are
the grid points at which the function α̂(·) is evaluated. In addition, comparisons are
also made between our method and the local linear method employed in Zhu et al.
(2012) (Local hereinafter). In the following simulated examples, the Epanechnikov
kernel is used for nonparametric regression. We set grid points ng = 100 and compute
the results based on N = 500 replications.

Example 4 Generate data from the following model

Yi j = xTi α(ti j ) + ηi (ti j ) + εi j ,

where ti j ∼ U [0, 1], εi j ∼ N (0, σ 2) and xi = (1, xi1, xi2)T for i = 1, . . . , n,
j = 1, . . . ,mi .Moreover, (xi1, xi2)T ∼ N ((0, 0)T , diag(0.9, 0.9)+0.1(1, 1)⊗2), and
ηi (ti j ) = ξi1ψ1(ti j ) + ξi2ψ2(ti j ), where ξi j ∼ N (0, λ2j ) for j = 1, 2. Furthermore,
(xi1, xi2), ti j , εi j , ξi1 and ξi2 are independent random variables. We set (σ, λ1, λ2) =
(0.3, 1, 0.5), and the varying-coefficient functions, and eigenfunctions as follows:
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α1(t) = t2, α2(t) = −3(t − 0.5)2 + 1, α3 = 4t(t − 1),

ψ1(t) = √
2 sin(2π t), ψ2(t) = √

2 cos(2π t).

We first conducted simulation studies under the following two regular time points
settings.

• Setting 1: mi = 5 with various sample size: n = 200 and n = 400.
• Setting 2: n = 150 with various time points: mi = 7 and mi = 13.

Setting 1, two different sample size n = 200, 400, and a fixed time points mi = 5 are
designed. Setting 2, sample size n = 150 is fixed with various time points settings
mi = 7 andmi = 13,which guarantees the total number of observations is comparable
to that in Setting 1, by decreasing the number of subjects and increasing the observation
number from the same individual. Tables 1 and 2 report the numerical results for the
proposed method and Local method under Setting 1 and Setting 2, respectively.

Table 1 The simulation results for Setting 1 in Example 4. Bias, SD and RMSE of α̂1(·), α̂2(·) and α̂3(·)
using the proposed method and the Local method

mi = 5, n = 200 mi = 5, n = 400

α̂1(·) α̂2(·) α̂3(·) α̂1(·) α̂2(·) α̂3(·)
Prop.

Bias 0.0120 0.0375 0.0569 0.0109 0.0279 0.0382

SD 0.0798 0.0856 0.0823 0.0613 0.0623 0.0611

RMSE 0.0807 0.0935 0.1001 0.0623 0.0683 0.0721

Local

Bias 0.0135 0.0394 0.0575 0.0112 0.0296 0.0396

SD 0.0840 0.0899 0.0881 0.0636 0.0646 0.0635

RMSE 0.0851 0.0982 0.1052 0.0646 0.0711 0.0748

Table 2 The simulation results for Setting 2 in Example 4. Bias, SD and RMSE of α̂1(·), α̂2(·) and α̂3(·)
using the proposed method and the Local method

mi = 7, n = 150 mi = 13, n = 150

α̂1(·) α̂2(·) α̂3(·) α̂1(·) α̂2(·) α̂3(·)
Prop.

Bias 0.0145 0.0424 0.0557 0.0155 0.0432 0.0554

SD 0.0858 0.0878 0.0877 0.0782 0.0771 0.0792

RMSE 0.0870 0.0975 0.1039 0.0797 0.0884 0.0967

Local

Bias 0.0152 0.0440 0.0561 0.0168 0.0442 0.0572

SD 0.0911 0.0930 0.0931 0.0833 0.0820 0.0845

RMSE 0.0924 0.1029 0.1087 0.0850 0.0932 0.1020
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Example 5 To illustrate that the proposed procedure is applicable even to the case that
the observation times for each trajectory are randomlymissed,we replicatedExample 4
with an irregular time points design used in Fan, Huang and Li (2007). Specifically,
we will generate the observation times randomly, assuming that each individual has
a set of “scheduled” observation points, {0, 1, 2, . . . , 11}, and each scheduled time,
except time 0, has a 20% probability of being skipped, then a uniform [0, 1] random
variable is added to a nonskipped scheduled time so that the actual observation time
is in fact a random perturbation of a scheduled time. Table 3 presents the numerical
results for this case with sample size n = 200 and 400.

Tables 1, 2 and 3 summarize the numerical performance of the proposed method
and the Local method through the Bias, SD and RMSE. It is shown from Tables 1, 2
and 3 that the RMSE of the proposed method is consistently smaller than that of the
Local method for all varying-coefficient function estimators α̂1(t), α̂2(t) and α̂3(t),
which indicates that the proposed method performs better than the Local method.
Moreover, the proposed method has less bias and variance than the Local method,
mainly because of the incorporation of the correlation information and the modified
local linear technique. Tables 1, 2 and 3 also show that the Bias, SD and RMSE values
decrease as the sample size increases, which corroborates with our consistency and
asymptotic normality established in Sect. 3. From Tables 1 and 2, we find that the
resulting estimators obtained in Example 4 with Setting 1 have smaller RMSE than
those obtained in Example 4 with Setting 2 when the total number of observations
for these two settings is close. This finding implies that the sparsity is beneficial to
the performance of the proposed method and the estimators of the varying-coefficient
functions can be improved with increasing the number of subjects. For all simulation
cases, we chose h0 = 0.12 as the bandwidth for the initial estimates of the varying-
coefficient functions and the estimates of the covariance functions. We discover that
the proposed method is not sensitive to the initial values. Furthermore, the optimal
bandwidth for the proposed method is slightly larger than that for the Local method.
This is likely because the correlationmatrix is incorporated into the estimation process

Table 3 The simulation results for Example 5. Bias, SD and RMSE of α̂1(·), α̂2(·) and α̂3(·) using the
proposed method and the Local method

n = 200 n = 400

α̂1(·) α̂2(·) α̂3(·) α̂1(·) α̂2(·) α̂3(·)
Prop.

Bias 0.0112 0.0337 0.0447 0.0096 0.0243 0.0325

SD 0.0724 0.0723 0.0773 0.0562 0.0597 0.0568

RMSE 0.0733 0.0798 0.0893 0.0570 0.0645 0.0654

Local

Bias 0.0125 0.0371 0.0469 0.0100 0.0268 0.0365

SD 0.0752 0.0745 0.0802 0.0574 0.0606 0.0576

RMSE 0.0762 0.0832 0.0929 0.0583 0.0663 0.0682

123



X. Cai et al.

Table 4 The mean and SD of
RASE for estimators η̂i (·) using
the PACE method and the local
linear method with data
generated from Example 5

n PACE Local linear

Mean SD Mean SD

100 0.3009 0.0393 0.6692 0.0599

200 0.2461 0.0278 0.6599 0.0486

400 0.2073 0.0165 0.6521 0.0322

of the proposedmethod, which can be treated as theweight aswell as the kernelmatrix,
and further lower data usage. Therefore, the larger bandwidth for the proposed method
is needed to enlarge the included range of data.

We also apply the PACE method to Example 5 to conduct the estimation of ηi (t).
A comparison is made between the PACE method and the local linear approach.
The PACE method is implemented with the FPCA function available in the package
fdapace (Dai et al. 2019).Wechoose thefirst four functional principal components to
construct the estimators of ηi (t) (i = 1, . . . , n) for the PACE method. The bandwidth
for the local linear method is selected by generalized cross-validation (GCV). We
evaluate the performances through the root average square errors (RASE) given by

RASE =
⎡

⎣

1

n

n
∑

i=1

1

n∗
g

n∗
g

∑

j=1

{

η̂i (t
∗
i j ) − ηi (t

∗
i j )
}2

⎤

⎦

1/2

,

where t∗i j ( j = 1, . . . , n∗
g) are the grid points at which the function η̂i (·) is evaluated.

Since the observation points for each subject are sparse, we set n∗
g = 50 to calculate

the RASE. Table 4 presents the mean and standard deviation (SD) of RASE, both of
which are computed based on 200 simulation replications. We can see from Table 4
that all the mean and SD of RASE for the PACE method are significantly smaller than
that of the local linear method. These results imply that the PACEmethod is superior to
the local linear method for the estimation of ηi (t). Moreover, we observe that the mean
value of RASE for the PACEmethod decreases as the sample size increases, while the
value for the local linear method has hardly changed. This is likely due to the fact that
the PACEmethod for constructing the estimators η̂i (t) (i = 1, . . . , n) is mainly based
on the estimated population covariance function of ηi (t), which applies the whole
sample information in estimation. Nevertheless, the local linear method for directly
estimating each ηi (t) only utilizes the observations on the grid of its corresponding
curve, therefore, the resulting estimators could not be improved by increasing the size
of samples.

To have a more visual display about how well the proposed estimation procedure
works,wechooseExample5with sample sizen = 200 as an example. Figure 1 exhibits
the averaged estimated varying-coefficient functions based on 50 replications and the
boxplot of RASE of the varying-coefficient functions over 500 simulations. It can
be seen from Fig. 1a–c that the estimated varying-coefficient curves (broken lines),
obtained by the proposed method, closely resemble the corresponding true curves
(solid lines), reflecting the good performance of the proposed procedure. Figure 1d
shows the proposed method performs better than the Local method in terms of RASE.
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Fig. 1 The averaged estimated varying-coefficient functions in a)–(c over 50 simulations and the boxplot
for the three varying-coefficient functions in d over 500 simulations under Example 5 with sample size
n = 200. The solid lines are the true functions and the broken lines are the estimated one in (a)–(c)

5 Real data analysis

We apply model (2) and the newly proposed procedure to analyze a real diffusion
tensor imaging (DTI) dataset with n = 213 subjects that was collected from NIH
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. One goal of the NIH
ADNI is to test whether genetic, structural and functional neuroimaging, and clinical
data can be integrated to evaluate the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For more details on this dataset, see the ADNI
publicly available database (http://adni.loni.usc.edu/). In diffusion data analysis, frac-
tional anisotropy (FA), which quantifies the directional strength of white matter tract
structure, at a particular location, is one of the most used measures, and has been
widely applied to statistical analyses in many imaging studies. During the stage of
data processing, we calculate the FA curve for each subject using a Tract-Based Spa-
tial Statistics (TBSS) pipeline analysis (Smith et al. 2006) and the FMRIB software
library tool. The more details for this process, one can refer to Li et al. (2017).

In this study, 213 subjects with age of 48.4–73.2 years old are sampled to assess
the impact of some indicators which are commonly occurred in diffusion data, such
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as gender (123 male and 90 female), handiness (193 righthand and 20 left-hand),
education level (years, ranges from 9 to 20 (years), mean 15.91), Alzheimer’s disease
(AD) status (19.6%), mild cognitive impairment (MCI) status (55.1%) and Mini-
Mental State Exam (MMSE) of ADNI on the FA. We aim to evaluate the effects of
these indicators on the FA using model (2). Specifically, the response Yi (t) represents
the FA curve and the covariate vector xi includes an intercept term, the gender variable
coded by a dummy variable indicating for male, the age of the subject, a handiness
indicator coded by a dummy variable indicating for left-hand, the education level, an
indicator for AD status, an indicator forMCI status andMMSE.We randomly selected
15 observations from the 83 grid points of each FA curve, so that we can compare
the results obtained from the sparse data and the complete data and further validate
the new approach. We standardize all variables to be mean zero and variance one,
and apply the proposed procedure established in Sect. 2 to estimate the corresponding
coefficients.

Figure 2 shows the estimated varying-coefficient functions corresponding to inter-
cept, gender, age, education, AD status, MCI status and MMSE indicator and the
associated 95% pointwise confidence intervals for both sparse and complete data. The
pointwise confidence intervals were obtained with the standard error based on 200
bootstrap resampling. The dashed lines are the estimates fulfilled by the proposed
method for sparse data and the solid lines are estimated by the local linear method for
complete data. Figure 2 indicates that the proposed estimationmethodworkswell even
though data are sparse; it also reveals that age, handiness, education, AD andMCI have
more effects onFA than that of gender andMMSE.The intercept function characterizes
the nonlinear overall trend of FA. It can be seen from Fig. 2 that the coefficient curve
for gender is positive and that for MMSE is near to the zero line, while the coefficients
for the other five covariates of interest are negative, at most of the grid points. These
findings may indicate that males tend to have higher FA values than females, MMSE
has no remarkable effects on FA, AD and MCI patients tend to have lower FA values
and being older, left-hand, or more educated may lead to smaller FA values. These
discoveries are also consistent with the previous analysis in Li et al. (2017). Finally, we
calculated the squared prediction error (i.e., SPE = ∑n

i=1
∑mi

j=1{Yi (ti j )−̂Y ∗
i (ti j )}2,

where ̂Y ∗
i is the predicted trajectory for the i th subject by using the data with the i th

subject being pulled out.) both for the proposed method and the local linear method.
The corresponding SPE values for these two approaches are respectively 18.34 and
18.42, which implies that the proposed method has a smaller prediction error than that
of the local linear method for analyzing this data.

Figure 3 presents the estimated eigenvalues and eigenfunctions for the covari-
ance function �(s, t) with sparse data. The top four nonzero eigenvalues are 0.0028,
0.00047, 0.0003 and 0.00016 respectively. The first four eigenvalues explain about
94% of the total variability, while, it can be seen from Fig. 3 that the remaining
eigenvalues rapidly drop to zero. The first eigenfunction, with a dominant eigenvalue
accounting for 70% of the total variation, varies simply in structure. While the other
eigenfunctions also have quite simple structures and most of them are roughly sinu-
soidal.
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Fig. 2 The estimated varying coefficients for intercept, sex, age, handiness, education, AD,MCI andMMSE
and their 95% pointwise confidence intervals for the ADNI data. The dashed lines are the estimates fulfilled
by our proposed estimation procedure with sparse data and the solid lines are estimated by the local linear
method with complete data

6 Conclusions

In this paper, we used a functional varying-coefficient mixed effects model to investi-
gate the dynamic association between a set of covariates of interest and the functional
response. An iterative estimation procedure was developed to estimate the varying-
coefficient functions in this model for longitudinal or sparse functional data. The
proposed estimation procedure not only employs the idea that uses all observations
instead of the local observations near the target point for estimation but also incor-
porates the estimated covariance structure into the estimation process to improve the
resulting estimators. The asymptotic properties including uniform consistency and
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Fig. 3 The estimated eigenvalues in decreasing order (left), the estimated eigenfunctions (middle) and the
corresponding cumulate FVE (right) for ADNI data analysis

asymptotic normality for the proposed estimators were also established. Finally, we
compared the proposed procedure with the local linear method numerically through
several simulation studies. The simulation results reveal that our method performed
better than the local linear method in terms of the root mean squared error. A real data
example is also provided to illustrate our approach.

Our future research will be focused on addressing several important issues. First, it
would be interesting to gain a more efficient estimator for the covariance function by
using the newlyproposed estimation procedure. Second, applying the proposed estima-
tion procedure to investigate othermore complex regressionmodels, such as functional
index models (Jiang andWang 2011), single-index varying coefficient (SIVC) models
(Luo et al. 2016) and functional additive models (Zhang, Park andWang 2013), is also
a meaningful issue. Third, it is also worthwhile to conduct statistical inferences such
as hypothesis tests for longitudinal and functional data.

Acknowledgements This work was supported by the National Natural Science Foundation of China
(11971001), the Beijing Natural Science Foundation (1182002), the grants from the National Natural
Science Foundation of China (11771145, 11801210). Data used in this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

A.1 Regularity Conditions and Notations

Our proofs use a strategy that is similar to that in Zhou et al. (2018). The following
regularity conditions, which will be used to establish the asymptotic properties of the
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proposed estimators, are imposed to facilitate the proof and are similar to Zhou et al.
(2018). They are not the weakest possible conditions, but mainly for mathematical
simplicity and may be modified if necessary.

(C1) The kernel K (·) is bounded symmetric probability density function with
the compact support [−1, 1] and satisfy νr = ∫

ur K (u)du < ∞, υr =
∫

ur K 2(u)du < ∞.
(C2) max1<i<n mi ≤ M , where M is a constant, and the dimension of covariate

vector is bounded.
(C3) ti j , i = 1, . . . , n, j = 1, . . . ,mi are independent and identically distributed

copies of a random variable T defined on [0,1]. Its density function f (·) is
positive and has continuous second derivatives.

(C4) The covariate vectors xi ’s are independent and identically distributed with
E(xi ) = μx and ||xi ||∞ < ∞. Assume that E[xixTi ] = X is positive def-
inite.

(C5) {αl(t), l = 1, . . . , p} have continuous third derivatives on their compact support
[0, 1].

(C6) There exist estimators α̃(t),̂�(s, t) and σ̂ such that sup
t∈[0,1]

|α̃i (t)−αi (t)| = op(1)

for i = 1, . . . , p, sup
s,t∈[0,1]

|̂�(s, t) − �(s, t)| = op(1) and |σ̂ 2 − σ 2| = op(1).

(C7) nh5 → c and nh/(log n)2 → ∞ as n → ∞, where c is a constant.
(C8) If h(·) ∈ Fp satisfies E[{γ1(t) + ∫ 10 γ2(t, z) f (z)dz}Xh(t)] = 0, then h(t) ≡

0, where Fp, γ1(t) and γ2(t, z) are defined in the following.

Conditions (C1)-(C5) are mild assumptions for the kernel function, covariates and
the function of interest, which are commonly used in many longitudinal literature.
Condition (C6) guarantees the convergence of the initial estimators which can be
easily achieved by the exiting kernel and spline estimation method. Condition (C7)
is the regular condition for the bandwidth, which also has been used in Chen et al.
(2010) and Zhou et al. (2018). Condition (C8) ensures identifiable.

For notational simplicity, denote that Fp = {ζ (·) : ζ (·) is continuous on [0, 1]p}
and F1 = {ζ(·) : ζ(·) is continuous on [0, 1]}. Let Vi, jk be the ( j, k)th element of
V−1

i = (�i + σ 2 Imi )
−1 and ̂Vi, jk be the corresponding estimates. Denote

γ1(s) = lim
n→∞

1

n

n
∑

i=1

mi
∑

j=1

E[Vi, jk |ti j = s]

and

γ2(s1, s2) = lim
n→∞

1

n

n
∑

i=1

mi
∑

j �=k

E[Vi, jk |ti j = s1, tik = s2].

DefineB p
n = {ζ : ‖ζ‖∞ ≤ C, ‖ζ (x)−ζ (y)‖ ≤ c[|x−y|+bn], x, y ∈ [0, 1], ζ ∈ Fp}

for some constants C > 0 and c > 0, where bn = h + (nh)−1/2(log n)1/2. Before
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beginning to proof the main results, we firstly present a lemma, which will be needed
to prove the theorems.

Lemma 1 Suppose that Conditions (C1)-(C7) hold, ζl(·) ∈ F1 is any bounded function
having continuous third derivatives on its compact support, where l = 1, . . . , p. Then,
for j = 1, . . . , p,

sup
t∈[0,1]

|anj (t) − Eanj (t)| = Op{(nh)−1/2(log n)1/2},

where anj (t) = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1
Kh(ti j − t)Vi, jk{αl(tik) − ζl(tik)}xil xij , and

sup
t∈[0,1]

|cnj (t)| = Op{h2 + (nh)−1/2h(log n)1/2},

where cnj (t) = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1
hKh(ti j − t)Vi, jk Kh(tik − t){ζl(t)+ ζ̇l(t)(tik − t)−

ζl(tik)}xil xij .
The proof of this lemma is similar to that of Theorem 1 in Zhou et al. (2018) and
follows from Theorem 37 and Example 38 in Chapter 2 of Pollard (1984).

A.2 Proof of Theorem 1

Let ζ (t) = (ζ1(t), . . . , ζp(t))T , ζ̇ (t) = (ζ̇1(t), . . . , ζ̇p(t))T and ϑ(t) = (ζ T (t),

ζ̇
T
(t))T . Denote the score function

Sm(ϑ; t) =1

n

n
∑

i=1

�T
i K i,h(t)̂V

−1
i

× [Y i − hK i,h(t)�iϑ(t) − {Imi − hK i,h(t)}ζ T (t i )xi ]. (A.1)

For the sake of convenience, we define for j = 1, . . . , p,

Sj (ϑ; t) = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

Ki j (t)Vi, jk{αl (tik) − ζl (tik)}xil xij

− 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

hKi j (t)Vi, jk Kik(t){ζl (t) + ζ̇l (t)(tik − t) − ζl (tik)}xil xij ,

(A.2)

S∗
j (ϑ; t) = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

Ki j (t)(ti j − t)Vi, jk{αl (tik) − ζl (tik)}xil xij
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− 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

hKi j (t)(ti j − t)Vi, jk Kik(t){ζl(t) + ζ̇l (t)(tik − t) − ζl(tik)}xil xij

and

sj (ζ ; t) =
p
∑

l=1

τj l f (t)

[

γ1(t){αl(t) − ζl(t)} +
∫ 1

0
γ2(t, z){αl(z) − ζl(z)} f (z)dz

]

(A.3)

where Ki j (t) = Kh(ti j − t), τj l = E(xij xil), γ1(s) and γ2(s1, s2) are defined in

“Appendix A.1”. Let S(1)
j (ϑ; t) be the first term in the right of (A.2) and S(2)

j (ϑ; t) be
the second term. Under the Conditions (C1)-(C4), it is easy to get that

S(1)
j (ϑ; t) = E{S(1)

j (ϑ; t)} + Op

[√

Var{S(1)
j (ϑ; t)}

]

= E{S(1)
j (ϑ; t)} + Op{(nh)−1/2}

→ sj (ζ ; t).

Similarly,we can check that S(2)
j (ϑ; t) = Op{(nh)−1/2} and S∗

j (ϑ; t) = Op{(nh)−1/2}.
Let D1(ϑ; t) = (S1(ϑ; t), . . . , Sp(ϑ; t))T , D2(ϑ; t) = (S∗

1 (ϑ; t), . . . , S∗
p(ϑ; t))T

and D(ϑ; t) = (D1(ϑ; t)T , D2(ϑ; t)T )T . Note that Sm(ϑ; t) = D(ϑ; t) + op(1),
then by Conditions (C1)-(C5), we have

Sm(ϑ; t) = E[D(ϑ; t)] + Op{(nh)−1/2} + op(1)

→ (s1(ζ ; t), . . . , sp(ζ ; t))T ⊗ (1, 0)T ≡ sm(ζ ; t) ⊗ (1, 0)T ,

where ⊗ is the Kronecker product. The proposed estimation procedure shows that
Sm (̂α,̂α̇; t) = 0 uniformly over t ∈ [0, 1], and it is easy to see sj (α; t) ≡ 0 for
j = 1, . . . , p. Then, it follows from Condition (C8) that α(·) is the unique root of the
equation sm(ζ ; t) ≡ 0 over ζ ∈ Fp. Therefore, to show the uniform consistency of
α̂(t), it suffices to prove the following three conclusions.

(i) For any continuous function vector ζ and bounded function vector
ζ̇ , sup

t∈[0,1]
‖Sm(ϑ; t) − sm(ζ ; t) ⊗ (1, 0)T ‖ = op(1).

(ii) sup
t∈[0,1]

‖Sm(ϑ; t) − sm(ζ ; t) ⊗ (1, 0)T ‖ = op(1) uniformly holds over ζ ∈ B p
n

and bounded function vector ζ̇ .
(iii) P (̂α(t) ∈ B p

n ) → 1.

Once (i)-(iii) are established, applying the Arzela-Ascoli theorem and (iii), it is easy to
show that, for any subsequence of α̂(t), there exist a convergent subsequence α̂nk (t)
such that, uniformly over t ∈ [0, 1], α̂nk (t) converges to α∗(t) in probability with
α∗(t) ∈ Fp. Observing that

sm(α∗; t) ⊗ (1, 0)T = Sm (̂αnk ,
̂α̇nk ; t) − {Sm (̂αnk ,

̂α̇nk ; t) − sm (̂αnk ; t) ⊗ (1, 0)T }
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− {sm (̂αnk ; t) ⊗ (1, 0)T − sm(α∗; t) ⊗ (1, 0)T }

Note that Sm (̂αnk ,
̂α̇nk ; t) ≡ 0, the continuity of sm(ζ ; t) and (ii) implies that sm(α∗; t)

converges to 0 uniformlyover t ∈ [0, 1].As a result, sm(α∗; t) ≡ 0. Since sm(ζ ; t) ≡ 0
has a unique root α by Condition (C8), we then have α∗(t) = α(t) for all t ∈ [0, 1],
which ensures the uniform consistency of α̂.
Proof of (i). Note that

sup
t∈[0,1]

‖Sm(ϑ; t) − sm(ζ ; t) ⊗ (1, 0)T ‖ ≤ sup
t∈[0,1]

‖D(ϑ; t) − sm(ζ ; t) ⊗ (1, 0)T ‖ + op(1).

For convenience, we only give the proof of sup
t∈[0,1]

‖Sj (ϑ; t) − sj (ζ ; t)‖. The similar

arguments lead to the conclusion about sup
t∈[0,1]

‖D(ϑ; t)−sm(ζ ; t)⊗(1, 0)T ‖. It follows
from (A.2) and (A.3) that

sup
t∈[0,1]

‖Sj (ϑ; t) − sj (ζ ; t)‖ ≤ I + I I ,

where

I ≡ sup
t∈[0,1]

∣

∣

∣

∣

1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

Ki j (t)Vi, jk{αl(tik) − ζl(tik)}xil xij

−
p
∑

l=1

τj l f (t)

[

γ1(t){αl(t) − ζl(t)} +
∫ 1

0
γ2(t, z){αl(z) − ζl(z)} f (z)dz

] ∣

∣

∣

∣

and

I I ≡ sup
t∈[0,1]

∣

∣

∣

∣

1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

hKi j (t)Vi, jk Kik(t){ζl (t) + ζ̇l (t)(tik − t) − ζl (tik)}xil xij
∣

∣

∣

∣

.

ByConditions (C1)-(C7) andLemma1, it is easily seen that I ≤ Op{(nh)−1/2(log n)1/2}
and I I ≤ Op{h2+(nh)−1/2h(log n)1/2}, which implies sup

t∈[0,1]
‖Sj (ϑ; t)−sj (ζ ; t)‖ =

op(1), and hence statement (i) follows.
Proof of (ii). By (A.1), we obtain that, for any continuous function vectors φ =
(φ1, . . . , φp)

T and any bounded function vector ζ̇ = (ζ̇1, . . . , ζ̇p)
T ,

Sm(ϑ; t) − Sm(φ, ζ̇ ; t) = D(ζ , ζ̇ ; t) − D(φ, ζ̇ ; t) + op(1)

→ {sm(ζ ; t) − sm(φ; t)} ⊗ (1, 0)T .

According to (A.2), (A.3) andLemma1, it can be shown that, uniformly over t ∈ [0, 1],

Sj (ζ , ζ̇ ; t) − Sj (φ, ζ̇ ; t)
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= 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

Ki j (t)Vi, jk{φl(tik) − ζl(tik)}xil xij

− 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

hKi j (t)Vi, jk Kik(t){ζl(t) + ζ̇l(t)(tik − t) − ζl(tik)}xil xij

+ 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

hKi j (t)Vi, jk Kik(t){φl(t) + φ̇l(t)(tik − t) − φl(tik)}xil xij

=
p
∑

l=1

τj l f (t)

[

γ1(t){φl(t) − ζl(t)} +
∫ 1

0
γ2(t, z){φl(z) − ζl(z)} f (z)dz

]

+ Op{h2 + (nh)−1/2(log n)1/2}
≡ sj (ζ ; t) − sj (φ; t) + Op{h2 + (nh)−1/2(log n)1/2}.

Then, for any ζ ∈ B p
n and bounded function vector ζ̇ , we have

sup
t∈[0,1]

|Sj (ζ , ζ̇ ; t) − Sj (φ, ζ̇ ; t)| =
p
∑

l=1

sup
t∈[0,1]

|φl(t) − ζl(t)|Op(1) + op(1) (A.4)

and

sup
t∈[0,1]

|sj (ζ ; t) − sj (φ; t)| =
p
∑

l=1

sup
t∈[0,1]

|φl(t) − ζl(t)|Op(1). (A.5)

Using the similar arguments in Zhou et al. (2018), (ii) immediately holds by (A.4) and
(A.5).
Proof of (iii). Note that

(

α̂(t)
̂α̇(t)

)

=
{

1

n

n
∑

i=1

�T
i K i,ĥV

−1
i hK i,h�i

}−1

× 1

n

n
∑

i=1

�T
i K i,ĥV

−1
i {Y i − α̂T (t i )xi + hK i,h α̂

T (t i )xi }

=
(

A B
B C

)−1 (U0
U1

)

≡ G−1
n (t)Hn (̂α; t), (A.6)

where A, B and C are p × p symmetric matrices with the (r , s)th elements are,
respectively, given by

Ar ,s = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)̂Vi, jk Kik(t)xir xis,
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Br ,s = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)(ti j − t)̂Vi, jk Kik(t)xir xis,

Cr ,s = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)(ti j − t)̂Vi, jk Kik(t)(tik − t)xir xis,

and U0, U1 are two p-dimensional vectors with the r th elements respectively are

U0r =1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)̂Vi, jk

{

Yik −
p
∑

l=1

α̂l(tik)xil

}

xir

+ 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

hKi j (t)̂Vi, jk Kik(t )̂αl(tik)xil xir ,

U1r =1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)(ti j − t)̂Vi, jk

{

Yik −
p
∑

l=1

α̂l(tik)xil

}

xir

+ 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

p
∑

l=1

hKi j (t)(ti j − t)̂Vi, jk Kik(t )̂αl(tik)xil xir ,

r , s = 1, . . . , p. Denote

A∗
r ,s = n−1

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xir xis,

then by Condition (C6), it can be shown that

Ar ,s = A∗
r ,s + op(1) = E A∗

r ,s + Op

{√

Var(A∗
r ,s)
}

+ op(1)

= τrs f (t){γ1(t)υ0 + h f (t)γ2(t, t)} + Op{(nh)−1/2}.

Similarly, we can get that

Br ,s = Op{h(nh)−1/2},
Cr ,s = τrsh

2 f (t)γ1(t)υ2 + Op{h2(nh)−1/2},

U0r =
p
∑

l=1

f (t)τrl
[

υ0γ1(t)ζl(t) + h f (t)γ2(t, t)ζl(t) + γ1(t){αl(t) − ζl(t)}

+
∫ 1

0
γ2(t, z){αl(z) − ζl(z)} f (z)dz

]

+ Op{(nh)−1/2},
U1r = Op{h(nh)−1/2}.
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Therefore, we have

Gn(t) = f (t)

(

γ1(t)υ0 + h f (t)γ2(t, t) 0
0 h2γ1(t)υ2

)

⊗
⎛

⎜

⎝

τ11 · · · τ1p
...

. . .
...

τp1 · · · τpp

⎞

⎟

⎠+ op(1)

= f (t)

( {γ1(t)υ0 + h f (t)γ2(t, t)}X 0
0 h2γ1(t)υ2X

)

+ op(1), (A.7)

and Hn(ζ ; t) = (H1(ζ ; t), . . . , Hp(ζ ; t), 0p)T +op(1), where 0p is a p-dimensional
row vector with elements 0, and for r = 1, . . . , p,

Hr (ζ ; t) =
p
∑

l=1

f (t)τrl

[

υ0γ1(t)ζl(t) + h f (t)γ2(t, t)ζl(t)

+ γ1(t){αl(t) − ζl(t)} +
∫ 1

0
γ2(t, z){αl(z) − ζl(z)} f (z)dz

]

. (A.8)

Combine (A.7), (A.8) and the first equation of (A.6), we have

α̂(t) = −1
X (H∗

1 (̂α; t), . . . , H∗
p (̂α; t))T + op(1),

where

H∗
r (̂α; t) = {γ1(t)υ0 + h f (t)γ2(t, t)}−1

p
∑

l=1

τrl [υ0γ1(t )̂αl(t)

+ h f (t)γ2(t, t )̂αl(t) + γ1(t){αl(t) − α̂l(t)} + κ(αl , α̂l; t)]

and

κ(αl , α̂l; t) =
∫ 1

0
γ2(t, z){αl(z) − α̂l(z)} f (z)dz

for r = 1, . . . , p. Following some straightforward derivations, we can obtain that

p
∑

l=1

α̂l(t)τrl =
p
∑

l=1

αl(t)τrl +
p
∑

l=1

κ(αl , α̂l; t)τrl/γ1(t) + op(1),

where r = 1, . . . , p. Let τ r = (τr1, . . . , τrp)
T and κ(̂α; t) = (κ(α1, α̂1; t), . . . ,

κ(αp, α̂p; t))T . It can be seen that τ T
r {̂α(t) − α(t)} = τ T

r κ(̂α; t)/γ1(t) + op(1). By
Conditions (C3)-(C5), (iii) is held immediately. ��
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A.3 Proof of Theorem 2

For convenience of notation, denote

β(t) = (̂α1(t) − α1(t), . . . , α̂p(t) − αp(t), h{̂α̇1(t) − α̇1(t)}, . . . , h{̂α̇ p(t) − α̇p(t)})T ,

en,1 = sup
t∈[0,1]

‖α̂(t) − α(t)‖, en,2 = sup
t∈[0,1]

‖ĥα̇(t) − hα̇(t)‖, en = en,1 + en,2.

Note that Sj (̂α,̂α̇; t) can be rewritten as

Sj (̂α,̂α̇; t) = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)Vi, jk xij {αT (tik) − α̂T (tik)}xi

− 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xij {̂αT (t) +̂α̇T
(t)(tik − t) − α̂T (tik)}xi .

Then, it follows that

∂Sj (̂α,̂α̇; t)
∂α̂T (t)

= −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xijxTi ,

∂Sj (̂α,̂α̇; t)
∂α̂T (tik)

= −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)Vi, jk xij {1 − hKik(t)}xTi ,

∂Sj (̂α,̂α̇; t)
∂{ĥα̇T

(t)}
= −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xij {(tik − t)/h}xTi .

It is easy to check that E
{

∂Sj (̂α,̂α̇; t)/∂α̂T (t)
} = O(1), E

{

∂Sj (̂α,̂α̇; t)/∂α̂T (tik)
} =

O(1) and E
{

∂Sj (̂α,̂α̇; t)/∂{ĥα̇T
(t)}

}

= O(h). Using a Taylor expansion and the

consistency of (̂α, ĥα̇), we have, for j = 1, . . . , p,

Sj (̂α,̂α̇; t) − Sj (α, α̇; t)

= −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xijxTi {̂α(t) − α(t)}

− 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)Vi, jk xij {1 − hKik(t)}xTi {̂α(tik) − α(tik)}

− 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xij {(tik − t)/h}xTi {ĥα̇(t) − hα̇(t)}

+ Op{‖α̂(t) − α(t)‖} + Op{‖α̂(tik) − α(tik)‖} + Op{h‖ĥα̇(t) − hα̇(t)‖}
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= −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xij × (

xTi {(tik − t)/h}xTi
)

β(t)

− 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)Vi, jk xij {1 − hKik(t)}xTi {̂α(tik) − α(tik)}

+ Op(en,1 + hen,2)

= W1 + W2 + Op(en,1 + hen,2),

where

W1 = −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)xij × (

xTi {(tik − t)/h}xTi
)

β(t),

W2 = −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)Vi, jk xij {1 − hKik(t)}xTi {̂α(tik) − α(tik)}.

Using the similar technique in the proof of Theorem 1, it can be shown that

W1 = EW1 + Op{
√

Var(W1)}
= − (υ0τ T

j { ḟ (t)/ f (t) + γ̇1(t)/γ1(t)}υ2hτ T
j

)× γ1(t) f (t)β(t)

− h f 2(t)γ2(t, t)τ
T
j {̂α(t) − α(t)} + op(h

2) + Op{(nh)−1/2en}

and

W2 = (υ0 − ν0) f (t)γ1(t)τ
T
j {̂α(t) − α(t)} + ν0 f (t)τ

T
j κ(̂α; t)

+ h f 2(t)γ2(t, t)τ
T
j {̂α(t) − α(t)} + Op{(nh)−1/2en,1},

where τ j = (τ1j , . . . , τpj )
T and κ(̂α; t) = (κ(α1, α̂1; t), . . . , κ(αp, α̂p; t))T . There-

fore, we can obtain that, for j = 1, . . . , p,

Sj (̂α,̂α̇; t) − Sj (α, α̇; t)
= − ( ν0τ T

j { ḟ (t)/ f (t) + γ̇1(t)/γ1(t)}υ2hτ T
j

)× γ1(t) f (t)β(t)

+ ν0 f (t)τ
T
j κ(̂α; t) + op(h

2) + Op{en,1 + hen,2 + (nh)−1/2en}.

Similarly,

S∗
j (̂α,̂α̇; t) − S∗

j (α, α̇; t)

= −1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

h2Ki j (t){(ti j − t)/h}Vi, jk Kik(t)xij
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× (

xTi {(tik − t)/h}xTi
)

β(t) − 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t){(ti j − t)/h}

× Vi, jk xij {1 − hKik(t)}xTi {̂α(tik) − α(tik)} + Op(h
2en,1 + hen,2)

= − ( { ḟ (t)/ f (t) + γ̇1(t)/γ1(t)}ν2h2τ T
j ν2hτ T

j

)

γ1(t) f (t)β(t)

+ ν2h
2τ T

j {κ1(̂α; t) f (t) + κ(̂α; t) ḟ (t)}
+ op(h

2) + Op{h2en,1 + hen,2 + (nh)−1/2hen},

where κ1(̂α; t) = (κ1(α1, α̂1; t), . . . , κ1(αp, α̂p; t))T and κ1(αl , α̂l; t)
= ∫ 1

0 ∂γ2(t, z)/∂t{αl(z) − α̂l(z)} f (z)dz for l = 1, . . . , p. Thus, we can conclude
that

Sm (̂α,̂α̇; t) − Sm(α, α̇; t)
= −

(

ν0X { ḟ (t)/ f (t) + γ̇1(t)/γ1(t)}υ2hX

{ ḟ (t)/ f (t) + γ̇1(t)/γ1(t)}ν2h2X ν2hX

)

× γ1(t) f (t)β(t) +
(

ν0 f (t)Xκ(̂α; t)
ν2h2X {κ1(̂α; t) f (t) + κ(̂α; t) ḟ (t)}

)

+ op(h
2)

+ Op

{(

(en,1 + hen,2)1p
(h2en,1 + hen,2)1p

)

+ (nh)−1/2en

(

1p
h1p

)}

, (A.9)

where 1p is a p-dimensional column vector with elements 1. Furthermore, by Condi-
tions (C5) and (C6), we have

Sm(α, α̇; t) = 1

n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)Vi, jk(ηik + εik)ξ i j

+ 1

2n

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)(tik − t)2xTi α̈(t)ξ i j

+
(

op(h2)1p + Op{(nh)−1/2}1p
op(h4)1p + Op{h(nh)−1/2}1p

)

, (A.10)

where ξ i j = (xTi , (ti j − t)xTi )T . Note that Sm (̂α,̂α̇; t) = 0, then substitute (A.10)
into (A.9), we get

β(t) = 1/γ1(t)

(

κ(̂α; t)
{κ1(̂α; t) − γ̇1(t)/γ1(t)κ(̂α; t)}h

)

+ 1

n f (t)γ1(t)
n
∑

i=1

mi
∑

j=1

mi
∑

k=1

{

Ki j (t)Vi, jk(ηik + εik) + hKi j (t)Vi, jk Kik(t)(tik − t)2xTi
α̈(t)

2

}

×
(

−1
X xi [1 − { ḟ (t)/ f (t) + γ̇1(t)/γ1(t)}(ti j − t)υ2/ν2]

−1
X xi [−h{ ḟ (t)/ f (t) + γ̇1(t)/γ1(t)} + (ti j − t)/(ν2h)]

)
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+ Op

{(

(en,1 + hen,2)1p
(hen,1 + en,2)1p

)

+ (nh)−1/2en

}

+ op

{(

h21p
h1p

)}

. (A.11)

Denote

�1(t) = 1

n f (t)γ1(t)

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

Ki j (t)Vi, jk(ηik + εik)
−1
X xi ,

�2(t) = 1

n f (t)γ1(t)

n
∑

i=1

mi
∑

j=1

mi
∑

k=1

hKi j (t)Vi, jk Kik(t)(tik − t)2xTi
α̈(t)

2
−1

X xi .

Following some straightforward calculations, we can easily obtain that E{�1(t)} = 0,

Var{�1(t)} = υ0
−1
X

f (t)γ1(t)nh
(1 + o(1)) and E{�2(t)} = 1

2υ2h
2α̈(t) + o(h2). Hence, it

follows that

α̂(t) − α(t) = −
∫

z

γ2(t, z)

γ1(t)
{̂α(z) − α(z)} f (z)dz + 1

2
υ2h

2α̈(t) + (nh)−1/2ξn(t)

+Op{(en,1 + hen,2) + (nh)−1/2en} + op(h
2) (A.12)

and

h{̂α̇(t) − α̇(t)} = Op{en,2 + (nh)−1/2} + op(h), (A.13)

where ξn(t) converges to the multivariate normal distribution with mean 0 and covari-
ance matrix �(t) = υ0[X f (t)γ1(t)]−1. Using Lemma 1 and taking the supremum
norm on both sides of (A.12) and (A.13), we have en,1 = Op{h2+(nh)−1/2(log n)1/2}
and en,2 = Op{(nh)−1/2(log n)1/2} + op(h). Therefore, it is seen from (A.12) that

α̂(t) − α(t) +
∫

z

γ2(t, z)

γ1(t)
{̂α(z) − α(z)} f (z)dz

= 1

2
υ2h

2α̈(t) + (nh)−1/2�(t)1/2ϕ + op{h2 + (nh)−1/2},

where ϕ is a random vector following the standard normal distribution. Then the proof
of Theorem 2 is completed. ��
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