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Abstract 

Classification of subjects based on Amyloid PET scans is increasingly utilized in research studies and 

clinical practice.  While qualitative, visual assessment is currently the gold-standard approach, 

automated classification techniques are inherently more reproducible and efficient.  The objective of 

this work was to develop a statistical approach for the automated classification of subjects with 

different levels of cognitive impairment into amyloid-low (AβL) and amyloid-high (AβH) groups using 

Amyloid PET data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. 

Methods:  Our framework employs an iterative, voxelwise, regularized discriminant analysis 

combined with a Receiver Operating Characteristic (ROC) approach that optimizes the selection of a 

region-of-interest (ROI) and a cutoff for automated classification of subjects into AβL and AβH groups.  

The robustness, spatial stability, and generalization of the resulting target ROIs were evaluated using 

standardized uptake value ratio (SUVR) values of 18F-florbetapir PET images from healthy control, 

mild cognitive impairment (MCI), and Alzheimer’s disease (AD) subjects participating in the ADNI 

study. 

Results:  We determined that several iterations of the discriminant analysis improved the classification 

of subjects into AβL and AβH groups.  We found that an ROI consisting of the posterior cingulate 

cortex/precuneus and medial frontal cortex yielded optimal group separation and showed good stability 

across different reference regions and cognitive cohorts.  A key step in this process was the automated 

determination of the cutoff value for group separation, which was dependent on the reference region 

employed for SUVR calculation and was shown to have a relatively narrow range across subject 

groups.    

Conclusion:  We have developed a data-driven approach for determination of an optimal target ROI 

and associated cutoff value for separation of subjects into AβL and AβH groups.  Future work should 

include application of this process to other data sets, which will allow us to determine the translatability 
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of the optimal ROI determined in this study to other populations.  Ideally, the accuracy of our target 

ROI/cutoff could be further validated using PET-autopsy data from large-scale studies.  It is anticipated 

that this approach will be extremely useful for enrichment of study populations in clinical trials 

involving putative disease-modifying therapeutic agents for AD. 
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Introduction   

The advent of positron emission tomography (PET) radiotracers with high specificity for β-amyloid 

plaques represents a paradigm shift in Alzheimer’s disease (AD) research.  The use of “Amyloid PET” 

has markedly improved our understanding of the relationship between β-amyloid pathology and 

cognition (1–3), brain structure (4,5), cerebral glucose metabolism (6–8), and brain connectivity (9–

11).  Amyloid PET is also increasingly utilized in clinical trials of putative amyloid-lowering agents for 

enrichment of the study population with “amyloid-positive” subjects (12–14).  Finally, the approval of 

several fluorine-18-labeled tracers by regulatory authorities has facilitated the use of Amyloid PET as 

part of the clinical diagnostic work-up patients with cognitive impairment.        

 Conventional Amyloid PET studies employ the standardized uptake value ratio (SUVR) 

measure to assess subject “amyloid-status”.  The cerebellum has been widely utilized as the reference 

region for Amyloid PET studies.  Clark and colleagues (15) found that whole cerebellum provided the 

strongest correlation between in vivo 18F-florbetapir SUVR and post-mortem, quantitative 

immunohistochemistry measures.  However, the cerebellum may not satisfy the conditions for a 

reference region in certain cases, including familial forms of AD and cerebral amyloid angiopathy 

(CAA) in which cerebellar amyloid is present, leading to the use of other reference regions (e.g. pons, 

centrum semiovale, cerebral white matter) (16–19). 

 In addition to selection of the most suitable reference region for analysis of Amyloid PET data, 

determination of the appropriate target region (i.e. the numerator in SUVR-based analysis) and 

corresponding SUVR cut-off value are also matters of current debate.  The choice of a suitable target 

region-of-interest (ROI) is crucial when performing quantitative analysis of the PET imaging data.  

Several Amyloid PET target ROIs have been proposed, varying from whole cortex (20) to more 

specific cortical regions (e.g. frontal, superior parietal, lateral temporal, lateral occipital, medial 

temporal, anterior cingulate and posterior cingulate cortex) (21–25).  While these target regions have 
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largely been selected based on high levels of tracer binding, they are not necessary optimal for the 

classification of subjects into “amyloid-low” (AβL) and “amyloid-high” (AβH) groups (note that we 

prefer this terminology opposed to “amyloid-negative” and “amyloid-positive”, which requires 

neuropathologic confirmation).  Further, the classification of subjects into AβL and AβH groups 

depends on the specification of a cutoff SUVR value that discriminates individuals into two 

populations according to the amount of tracer binding in the pre-defined target ROI.  A common 

approach has been determination of the optimal cutoff value from control (e.g. cognitively normal 

subjects) populations (7,25–27).  The main drawback of this approach is that the cutoff value is 

typically dependent on the SUVR distribution of the control group.  As such, the objective of this work 

was to employ a data-driven approach to determine the target region and associated SUVR threshold to 

achieve maximal separation between AβL and AβH groups.  In order to assess the robustness and 

generalization of the resulting target region, we have performed extensive testing using different 

subject populations and different reference regions.              
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Materials and Methods 
 
Subjects and Image Acquisition 

 
Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (http://adni.loni.usc.edu).  The ADNI was launched in 2003 by the National 

Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), 

the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5-year public private partnership.  The primary goal of ADNI has been 

to test whether serial magnetic resonance imaging (MRI), PET, other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of MCI and AD.  

Determination of sensitive and specific markers of very early AD progression is intended to aid 

researchers and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials.  ADNI is the result of efforts of many co-investigators from a broad 

range of academic institutions and private corporations, and subjects have been recruited from over 50 

sites across the U.S. and Canada.  The initial goal of ADNI was to recruit 800 subjects, but ADNI has 

been followed by ADNI-GO and ADNI-2.  To date, these three protocols have recruited over 1500 

adults, ages 55 to 90, to participate in the research, consisting of cognitively normal older individuals, 

people with early or late mild cognitive impairment (MCI), and people with early AD.  The follow-up 

duration of each group is specified in the protocols for ADNI-1, ADNI-2, and ADNI-GO.  Subjects 

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2.  For up-to-

date information, see www.adni-info.org. 

The subjects of this study consisted of 155 healthy control (HC) subjects, 151 early MCI 

subjects (EMCI), 125 late MCI subjects (LMCI), and 23 AD subjects from the ADNI study who had 

available 18F-florbetapir PET, 3D T1-weighted anatomical MRI, and APOE ε4 genotyping.  

Cognitively normal subjects had Mini-Mental State Exam (MMSE) scores between 24 and 30 
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inclusively, a CDR of 0, were non-depressed, non-MCI, and non-demented.  Subjects classified as 

EMCI had MMSE scores between 24 and 30 inclusively, Clinical Dementia Rating (CDR) of 0.5, a 

reported subjective memory concern, an absence of dementia, an objective memory loss measured by 

education-adjusted scores on delayed recall of one paragraph from Wechsler Memory Scale Logical 

Memory II, essentially preserved activities of daily living (ADL), and no impairment in other cognitive 

domains.  LMCI subjects had the same inclusion criteria, except for the objective memory loss 

measured by education adjusted-scores on delayed recall of one paragraph from Wechsler Memory 

Scale Logical Memory II.   AD subjects presented with MMSE scores ranging from 20 to 26 

inclusively, a CDR of 0.5 or higher, and met the NINCDS/ADRDA criteria for probable AD. 

Subject characteristics are provided in Table 1.  We grouped the subjects into two cohorts in 

order to examine the stability of the proposed, optimal target ROI across subjects with different levels 

of cognitive impairment.  Cohort 1 included EMCI and LMCI subjects, while Cohort 2 consisted of the 

combination of HC and AD subjects.  A detailed description of the ADNI MRI and PET image 

acquisition protocols can be found at http://adni.loni.usc.edu/methods.  ADNI studies are conducted in 

accordance with the Good Clinical Practice guidelines, the Declaration of Helsinki, and U.S. 21 CFR 

Part 50 (Protection of Human Subjects), and Part 56 (Institutional Review Boards).  This study was 

approved by the Institutional Review Boards of all of the participating institutions.  Informed written 

consent was obtained from all participants at each site. 

 
Image Processing 
  
All MRI and PET images were processed using the PIANO™ software package (Biospective Inc., 

Montreal, Canada).  T1-weighted MRI volumes underwent image non-uniformity correction using the 

N3 algorithm (28), brain masking, linear spatial normalization utilizing a 9-parameter affine 

transformation, and nonlinear spatial normalization (29) to map individual images from native 

coordinate space to MNI reference space using a customized, anatomical MRI template derived from 
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ADNI subjects.  The resulting image volumes were segmented into gray matter (GM), white matter 

(WM), and cerebrospinal fluid (CSF) using an artificial neural network classifier (30) and partial 

volume estimation (31).  The gray matter density map for each subject was transformed to the same 

final spatial resolution (i.e., re-sampled to the same voxel size and spatially smoothed) as the FDG PET 

data in order to account for confounding effects of atrophy in the statistical model.  The cerebral mid-

cortical surface (i.e., the mid-point between the pia and WM) for each hemisphere was extracted to 

allow for surface projection of PET data using a modified version of the CLASP algorithm (32).   

The 18F-florbetapir PET images underwent several pre-processing steps, including frame-to-

frame linear motion correction, smoothing using a scanner-specific blurring kernel, and averaging of 

dynamic frames into a static image. The scanner-specific blurring kernels that were used to obtain an 

isotropic spatial smoothing of 8mm FWHM across all PET data were based on the work of Joshi and 

colleagues (33) to reduce the between-scanner differences in the ADNI multi-center study.  The 

resulting smoothed PET volumes were linearly registered to the subject T1-weighted MRI and, 

subsequently, spatially normalized to reference space using the nonlinear transformations derived from 

the anatomical MRI registration.  Voxelwise standardized uptake value ratio (SUVR) maps were 

generated from 18F-florbetapir PET using several reference regions, including full cerebellum 

(CbFull), cerebellum gray matter (CbGM), cerebellum white matter (CbWM), pons, and cerebral white 

matter (CWM).  The cortical SUVR measures were projected onto the cortical surface, and the data 

from each subject was mapped to a customized surface template by non-rigid 2D surface registration 

for visualization purposes (34). 

 

Subject Characteristic Analysis 

A statistical analysis of subject characteristics within each cohort was performed.  The clinical 

classification (NC, EMCI, LMCI, and AD) and APOE ε4 genotype (non-carrier and carrier) were 
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treated as independent, binary categorical variables. Cognitive performance measures, including 

MMSE score and Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog), as well as 

CSF Aβ1-42 were treated as continuous variables.  Associations amongst categorical variables (e.g. 

gender, clinical classification, APOE ε4 genotype) were determined using contingency tables, while 

analysis of continuous variables (e.g. age, 18F-florbetapir SUVRWC, MMSE, ADAS-Cog, Aβ1-42) was 

performed by analysis-of-variance (ANOVA).  The statistical significance for all tests was set at α = 

0.05.  All values are reported as mean ± standard deviation. 

 

Optimal Target ROI Definition   

The mean 18F-florbetapir SUVR across the whole cerebral cortex was calculated for each subject 

(SUVRWC).  An initial Regularized Discriminant Analysis (RDA) (35) was performed in order to 

determine the optimal threshold to separate subjects into two distinct classes based on individual 

SUVRWC measurements.  RDA assumes an underlying Gaussian distribution and defines discriminative 

functions based on the sample means and covariance matrices.  RDA includes a regularization 

parameter that controls the degree of contraction of each individual class covariance matrix estimate 

(quadratic discriminant analysis [QDA]) towards the pooled (over all classes) covariance matrix (linear 

discriminant analysis [LDA]).  As a result, RDA is a general discriminant analysis technique that 

includes LDA and QDA as particular cases.  Individual 18F-florbetapir SUVRWC measurements were 

ranked, and cutoff values that separated measures into two different classes were defined.  The RDA 

defined the contraction parameter that yielded the maximal accuracy at each cutoff.  The optimal cutoff 

value was then determined via Receiver Operating Characteristic (ROC) analysis.  Based on this 

SUVRWC cutoff value, subjects were designated as AβL or AβH.   

 This preliminary classification of subjects served to initialize an automated, iterative, voxelwise 

RDA  to optimize the selection of a set of regions-of-interest (ROIs) and a cutoff value for automated 
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re-classification of AβL and AβH subjects (see flow diagram in Figure 1).  Specifically, at the first 

iteration, an RDA was performed at every cortical voxel to produce maps of accuracy, specificity, and 

sensitivity (relative to the current subject’s classification as AβL or AβH).  These maps were thresholded 

using a non-parametric permutation approach for control of multiple comparisons (36).  The 

conjunction (i.e. intersection) of the resulting thresholded maps served to define a single, composite 

ROI which maximized the accuracy, specificity, and sensitivity.  The average 18F-florbetapir SUVR 

was then computed over this composite ROI (SUVRROI) for each subject.  Another round of RDA was 

performed based on the SUVRROI data, rather than the voxelwise values, and an optimal SUVRROI 

cutoff value was determined via ROC analysis.  Based on this new cutoff value, the subjects were re-

classified into AβL and AβH groups.  Using this approach, subjects are re-labeled as AβL or AβH based 

on RDA analysis from a data-driven, composite ROI and associated optimal cutoff value.  The entire 

process was then iterated until the subject classification remained stable. 

 

Results 

Subject Characteristics 

The analysis of subject characteristics from Cohort 1 revealed no statistically significant association 

between the clinical classification (EMCI vs. LMCI) and the APOE ε4 genotype (p = 0.08).  Similarly, 

there was no significant association between gender and clinical classification (p = 0.82).  In contrast, 

there was a statistically significant age difference between EMCI and LMCI subjects (p = 0.0017).  The 

initial whole cortex SUVR measurements (SUVRWC with full cerebellum as a reference region) also 

showed a statistically significant difference (p = 0.002) between EMCI (1.21 ± 0.17) and LMCI (1.28 ± 

0.18) subjects.  Statistical analysis of the cognitive measures and CSF biomarkers reported in Table 1 

revealed strong, statistically significant differences (p < 0.0001) between EMCI and LMCI subjects.  

Analysis of data from Cohort 2 subjects revealed a statistically significant association (p < 0.0001) 
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between clinical classification (NC vs. AD) and APOE ε4 genotype, but no significant association (p = 

0.24) with gender.  Similar to Cohort 1, the initial SUVRWC measurements were significantly higher (p 

< 0.001) in the AD group (1.36 ± 0.20) than in the NC group (1.17 ± 0.15).  The cognitive performance 

measures and CSF Aβ1-42 showed strong, statistically significant differences (p <0.0001) between NC 

and AD subjects. 

 

Optimal Target ROI 

The initial RDA and ROC analysis based on the whole cortical SUVR (SUVRwc; full cerebellum as 

reference region) for Cohort 1 yielded a cutoff value of 1.20.  The top row in Figure 2 shows the 

distribution and estimated probability density function of the SUVRWC values.  This analysis separated 

Cohort 1 into two groups, consisting of 131 AβL with SUVRWC values less or equal than 1.20, and 145 

AβH subjects with SUVRWC values greater than 1.20.  This preliminary classification was used to 

initialize the voxelwise RDA that generated the accuracy, specificity, and sensitivity maps shown in 

Figure 3.  Permutation testing with a multiple comparison correction approach yielded respective 

thresholds of 0.80, 0.86, and 0.83, which revealed the bilateral precuneus and medial frontal cortex as 

regions with statistically significant, high values of accuracy, specificity, and sensitivity.  The 

conjunction analysis (i.e. intersection) of the thresholded maps produced a composite target ROI (top 

row in Figure 4) corresponding to the first iteration of our automated classification process.  The ROC 

analysis over the SUVRROI values corresponding to this composite target region yielded an SUVRROI 

cutoff value of 1.27.  

Three additional iterations were performed in order to obtain the definitive composite target 

ROI (bottom row in Figure 4) that maximized the separation of Cohort 1 subjects into the AβL and AβH 

groups.  The resulting distribution and estimated probability density function of the optimal target 

SUVRROI values are also shown in Figure 2.  The sample size distribution of the two groups and the 
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optimal cutoff values obtained in each iteration are provided in Table 2.  In order to illustrate the 

dynamic allocation of subjects into the two groups during the iterative process, Table 2 also presents 

the accuracy, specificity, and sensitivity values of the resulting classification with respect to the initial 

labeling, based on SUVRWC (Acc-WC, Spec-WC, and Sens-WC), and with respect to the preceding 

iteration (Acc-Iter, Spec-Iter, and Sens-Iter).  Note that during the first iteration, 149 subjects were 

allocated to the AβH group, including 97.2% (i.e. Sens-WC = 0.972) out of the 145 AβH subjects from 

the initial classification.  By the fourth iteration, only 141 subjects were allocated into the AβH group, 

including 93.8% of the original 145 subjects in that particular group.  Interestingly, none of the 128 

subjects initially classified as AβL changed groups through subsequent iterations.  The definitive 

classification into 135 AβL and 141 AβH subjects based on the cutoff value of 1.24 produced accuracy, 

specificity, and sensitivity values of 0.985, 0.970 and 1.000, respectively. 

Given the lack of an autopsy gold-standard, we correlated the SUVRROI values in the optimal 

composite target ROI with the CSF Aβ1-42 in the subset of subjects that had this measure available.  The 

SUVRROI values in the optimal composite target ROI strongly correlated (p < 0.0001) with the CSF 

Aβ1-42 across the subjects corresponding to Cohort 1 (Spearman correlation coefficient r = -0.7361).   

The average CSF Aβ1-42 was significantly smaller (p < 0.0001) in the AβH group (133.54 ± 23.19) than 

in the AβL group (207.98 ± 41.32).   

Analogous to Figure 4, Supplementary Figure 1 shows the composite ROI for the optimal 

separation of the Cohort 1 MCI subjects into AβL and AβH groups using CbGM, CbWM, pons, and 

CWM  as reference regions.  The bilateral precuneus and medial frontal cortex define a composite 

target ROI that remains stable across the five different reference regions employed in this study (Figure 

4 and Supplementary Figure 1). 

  Figure 5 shows the composite target ROI resulting from our iterative classification process 

applied to Cohort 2 using the full cerebellum as a reference region.  The optimal composite target ROI 
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included bilateral precuneus, medial frontal cortex, and regions in the temporal-parietal cortex.  In this 

case, only three iterations were required to segregate this population into 108 AβL and 70 AβH subjects 

with a cutoff value of 1.29, and with accuracy, specificity and sensitivity of 0.983, 0.981, and 0.985, 

respectively.  

Similar to Cohort 1, the SUVRROI values corresponding to Cohort 2 subjects showed a 

statistically significant (p<0.0001) correlation with CSF Aβ1-42 (r = -0.7507).  The average CSF Aβ1-42 

values were significantly smaller (p<0.0001) in the AβH group (140.01 ± 37.05) compared to the AβL 

group (215.31 ± 41.58). 

 

Comparison with Anatomical Target ROI 

The performance of our data-driven composite target ROI and associated, automated cutoff has been 

compared with subject classification based on 18F-florbetapir SUVR values (with full cerebellum as a 

reference region) obtained from an anatomically pre-defined composite ROI (Anat-ROI).  Specifically, 

this ROI included anatomically-parcellated regions of the precuneus, posterior cingulate, and medial 

frontal cortex (cutoff value = 1.10), which  has been one of the most commonly used target ROIs for 

discriminating subjects with low and high levels of β-amyloid (15,25,37).  The cutoff value of 1.10 

over the SUVRAnat-ROI values split Cohort 1 into 111 AβL and 165 AβH subjects.  A discriminant analysis 

based on this classification demonstrated an accuracy of 0.942, specificity of 0.981, and sensitivity of 

0.915, which is a clear decrease in discriminative power as compared to the accuracy of 0.985 achieved 

with our data-driven composite target ROI and cutoff of 1.24.   A contingency table analysis between 

both classifications showed an agreement of 91.3%, explained by an identical classification of 111 AβL 

and 141 AβH subjects.  Similarly, the cutoff of 1.10 over the SUVRAnat-ROI values split Cohort 2 into 100 

AβL and 78 AβH subjects, with accuracy, specificity, and sensitivity of 0.966, 0.970, and 0.961, 
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respectively.  This classification showed a 94.3% agreement with our automated, data-driven 

classification. 

 

Stable Target ROIs  

The intersection of the composite ROIs corresponding to the five different reference regions produced 

an optimal, stable composite ROI for the Cohort 1 subjects.  This stable target ROI (ROI-Cohort 1) is 

shown in the top row of Figure 6.  The high discriminative power (average accuracy of 0.987) 

recovered with ROI-Cohort 1 (see details in Supplementary Table 1) confirms that this target ROI is 

indeed stable across the five different reference regions.  Similar to Cohort 1, optimal composite ROIs 

were generated for Cohort 2 using CbGM, CbWM, pons, and CWM as reference regions 

(Supplementary Figure 2).  Correspondingly, the intersection of the composite ROIs for these five 

reference regions produced a stable target ROI for Cohort 2 (ROI-Cohort 2), which is shown in the 

middle row of Figure 6.  The recovered discriminative parameters and corresponding cutoff values for 

ROI-Cohort 2 are also shown in Supplementary Table 1. 

In order to determine if a “generalized” target ROI could be applied to both Cohort 1 and 

Cohort 2 with good performance characteristics, we intersected the target ROIs corresponding to the 

two cohorts.  This composite ROI (ROI-Combined) is shown in the bottom row of Figure 6.  The data 

in Supplementary Table 1 demonstrates that the ROI-Combined yields similar results to the ROI from 

the individual cohorts.  This observation suggests that it is primarily the medial frontal cortex and 

posterior cingulate/precuneus driving the classification, and the lateral cortical regions in ROI-Cohort 2 

do not have substantial influence on the group separation.  
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Discussion 

In this work, we have introduced a new statistical framework for determining an optimal target region 

that best segregates subjects according to their level of 18F-florbetapir amyloid PET tracer binding.  

This approach involves iterative generation of voxelwise maps of accuracy, specificity, and sensitivity, 

which are combined with a multiple comparisons criteria approach to produce the desired optimal 

target region.  A subsequent ROC analysis over the target region SUVR measure yields the 

corresponding optimal cutoff value.  The performance of this approach was evaluated on two different 

cohorts of subjects from the ADNI study, as well as SUVR measures computed with multiple, different 

reference regions. 

Our approach was able to converge to a generalized composite target ROI (ROI-Combined in 

Figure 6), which included regions in the posterior cingulate cortex/precuneus and medial frontal cortex, 

and shows good stability across the two different cognitive cohorts and the five different reference 

regions.  Our results are in agreement with those reported by Camus et al. (20), which showed that 

SUVR values in the posterior cingulate cortex, precuneus, and medial frontal cortex were statistically 

significant higher in AD patients than in MCI and HC subjects.  Correspondingly, the SUVR values 

associated with the areas comprising our optimal target ROI have been reported to be highly correlated 

with β-amyloid burden as measured by both immunohistochemistry and neuritic plaque density (15). 

The initial step in our iterative process was to apply a RDA to the individual SUVRWC 

measurements.  The global cortex florbetapir SUVR has been used by Camus et al. (20) to differentiate 

between patients with MCI and mild AD from HC subjects, reaching a sensitivity of 0.932 and 

specificity of 0.905 relative to pre-established visual assessment of the PET scans.  Similarly, whole 

brain neocortical SUVR measurements of 18F-florbetaben were used for discriminating AD versus HC, 

with a sensitivity of 0.97 and specificity of 0.84 (24).  In this work, we have demonstrated that the 

accuracy, sensitivity, and specificity achieved with the initial global cortex SUVR measurements can 
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be improved by iterating the discriminative process and refining the optimal target ROI.  As part of our 

work, we have found that the global cortical SUVR can be replaced by other measures (e.g. visual 

assessment) for the initial classification and still converge to similar results. 

A key step in our statistical framework is determination of the cutoff value for classification of 

subjects based on the optimal target ROI SUVR measurements.  Typically, cutoff values are selected 

based on the comparison of the SUVR distribution of a cognitively normal population with the 

abnormal population under study (4,20,25,27,37,38).  The main drawback of this approach is that there 

is no guarantee that cognitively normal subjects will be free of β-amyloid accumulation, which can 

only be confirmed either by the visual assessment of an experienced rater or by post-mortem 

neuropathology.  A cutoff value of 1.10 has been proposed following a 24-month autopsy study which 

confirmed that all the subjects without β-amyloid plaques (by silver stain plaque density scores) had 

SUVR values less than 1.10 (37).  The same cutoff value has been used to differentiate between normal 

scans from a population of cognitively normal young participants from abnormal scans visually 

assessed by experienced raters (25).  Similarly, a cutoff value of 1.12 was used in a routine clinical 

environment to differentiate MCI/mild AD patients from healthy control subjects (20).  A recent meta-

analysis showed that SUVR cutoff values separating β-amyloid positive and negative subjects vary 

from 1.1 to 1.6, with a mean of approximately 1.3 (39).  However, we have shown in this study that the 

SUVR cutoff value depends not only on the distribution of the SUVR measurements across the 

populations, but also on the selected reference region.  Most of the studies included in the 

aforementioned meta-analysis (39) employed the full cerebellum as a reference region.  To the best of 

our knowledge, our study is the first to determine an optimal target ROI and corresponding SUVR 

cutoff value derived from an exploration of several reference regions.  A distinctive aspect of our 

approach is that we have employed ROC analysis for automated, unbiased determination of the optimal 
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cutoff value and allowed for re-labeling of subject classification during the iterative process to achieve 

maximal group separation.  

 

Conclusions 

We have developed a data-driven approach for determination of an optimal target ROI and associated 

cutoff value for separation of subjects into AβL and AβH groups.  The accurate classification of subjects 

as AβL and AβH is vital to understand the relationship between β-amyloid burden and various other 

measures, including cognitive performance, cerebral blood flow, glucose metabolism, brain atrophy, 

and brain connectivity.  Further, the relationship between the presence of β-amyloid in “cognitively 

normal” subjects and the future development of cognitive impairment and dementia is actively being 

pursued as part of long-term, longitudinal, natural history studies.  Future work should include 

application of this process to other data sets, which will allow us to determine the translatability of the 

optimal ROI determined in this study to other populations.  While we have shown a strong correlation 

between our classification and CSF Aβ1-42, it would, of course, be ideal to validate the accuracy of our 

target ROI/cutoff on large-scale PET-autopsy study data.  Ultimately, it is anticipated that this approach 

will be exceptionally useful for enrichment of study populations in natural history research studies and 

in clinical trials involving putative disease-modifying therapeutic agents for AD.  
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Figure 1.  Flow diagram of the automated, iterative process for classification of subjects according to 
β-amyloid level. 
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Figure 2.  (Top) Distribution and estimated probability density function of the whole cortex SUVRWC 

values.  RDA combined with ROC analysis initially separated Cohort 1 into two groups of 131 AβL and 

145 AβH subjects.  (Bottom) Distribution and estimated probability density function of the target ROI 

SUVR values obtained during four iterations of the automated discrimination process.   All refers to the 

mean of all subjects, AβL and AβH correspond to the initial classification, and New-AβL and New-AβH  

correspond to the definitive classification based on the SUVRROI values in the optimal target ROI. 
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Figure 3.  Cortical surface representation of the unthresholded maps of accuracy, specificity, and 

sensitivity following one iteration of voxelwise RDA.   
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Figure 4.  Target ROIs resulting from the initial and final iterations of the voxelwise RDA.  The final, 

optimal target ROI includes bilateral regions of the precuneus and medial frontal cortex.  A cutoff 

SUVR value of 1.24 for the average of the optimal target ROI separated Cohort 1 into two groups of 

135 AβL and 141 AβH subjects. 
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Figure 5.  Target ROIs resulting from the initial and final iterations of the voxelwise RDA on Cohort 2.  

The final, optimal target ROI includes bilateral regions of the precuneus, medial frontal cortex, and 

temporal-parietal cortex. 
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Figure 6.  (Top and middle) Target ROIs resulting from the intersection of the target ROIs from 

different reference regions. (Bottom) Stable target ROI common to both cohorts. 
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 Cohort 1-EMCI Cohort 1-LMCI Cohort 2-NC Cohort 2-AD 

Sample Size 151 125 155 23 

SUVRWC 1.21 ± 0.17 1.28 ± 0.18 1.17 ± 0.15 1.36 ± 0.20 

Age 71.28 ± 7.71 74.71 ± 7.89 76.74 ± 6.26 74.61 ± 10.95 

Gender (F/M) 66/85 53/72 81/74 9/14 

APOE ε4  

(Carrier/Non-Carrier) 

65/86 67/58 43/112 16/7 

MMSE 28.45 ± 1.49 26.01 ± 4.19 28.93 ± 1.31 22.78 ± 2.08 

ADAS-Cog 12.40 ± 5.24 21.52 ± 10.96 9.49 ± 4.58 30.82 ± 8.67 

Sample Size CSF 136 88 111 21 

CSF-Aβ1-42 (pg/ml) 183.21 ± 49.94 154.90 ± 46.02 189.62 ± 52.38 146.72 ± 52.03 

 

Table 1.  Summary of subject characteristics. 
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 Iter-0 Iter-1 Iter-2 Iter-3 Iter-4 

Cutoff 1.20 1.27 1.26 1.25 1.24 

NH 145 149 142 141 141 

NL 131 127 134 135 135 

Acc-WC 0.985 0.960 0.949 0.945 0.949 

Spec-WC 0.992 0.946 0.962 0.962 0.962 

Sens-WC 0.979 0.972 0.937 0.931 0.938 

Acc-Iter  0.960 0.975 0.996 1.000 

Spec-Iter  0.946 1.000 1.000 1.000 

Sens_Iter  0.972 0.953 0.992 1.000 

 

Table 2.  Sample size distribution, optimal cutoff values, and discrimination parameters obtained 

during the automatic iterative process applied to Cohort 1.  At each iteration, accuracy, specificity, and 

sensitivity are calculated with respect to the initial classification at iteration 0 (Acc-WC, Spec-WC, and 

Sens-WC), and with respect to the preceding iteration (Acc-Iter, Spec-Iter, and Sens-Iter).  
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 Cohort 1-AβL Cohort 1-AβH Cohort 2-AβL Cohort 2-AβH 

Sample Size 135 141 108 70 

SUVRROI 1.03 ± 0.08 1.58 ± 0.18 1.14 ± 0.06 1.58 ± 0.17 

MMSE 28.19 ± 2.48 26.53 ± 3.68 28.90 ± 1.49 26.95 ± 3.23 

ADAS-Cog 12.81 ± 6.65 20.01 ± 10.37 9.32 ± 4.86 16.77 ± 11.49 

Sample Size CSF 116 108 75 57 

CSF-Aβ1-42 (pg/ml) 207.98 ± 41.32 133.54 ± 23.19 215.31 ± 41.58 140.01± 37.05 

 

Table 3.  Summary of clinical outcomes and CSF biomakers in AβL and AβH groups. 
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