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Abstract. The effectiveness of brain magnetic resonance imaging (MRI) as a useful evaluation tool strongly
depends on the performed segmentation of associated tissues or anatomical structures. We introduce an
enhanced brain segmentation approach of Bayesian label fusion that includes the construction of adaptive
target-specific probabilistic priors using atlases ranked by kernel-based similarity metrics to deal with the
anatomical variability of collected MRI data. In particular, the developed segmentation approach appraises
patch-based voxel representation to enhance the voxel embedding in spaces with increased tissue discrimina-
tion, as well as the construction of a neighborhood-dependent model that addresses the label assignment of
each region with a different patch complexity. To measure the similarity between the target and training atlases,
we propose a tensor-based kernel metric that also includes the training labeling set. We evaluate the proposed
approach, adaptive Bayesian label fusion using kernel-based similarity metrics, in the specific case of hippo-
campus segmentation of five benchmark MRI collections, including ADNI dataset, resulting in an increased
performance (assessed through the Dice index) as compared to other recent works. © 2019 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.1.014003]
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1 Introduction
Magnetic resonance imaging (MRI) is a dynamic and fast-
growing imaging modality that has been increasingly admitted
in research and clinical applications such as detection of subtle
or small brain abnormalities and identification of pathological
structure conditions,1,2 monitoring of disease progression,3

and diagnosis of soft-tissue lesions and inflammatory foci.4,5

Nonetheless, in cases of neuroimaging, the effectiveness of
MRI tools strongly depends on the performed segmentation
of associated brain tissues or anatomical structures, for which
qualitative expert assessments may become impractical because
of increased time and human resource consumption. To name
a few applications: the detection of subtle or small brain
abnormalities and identification of pathological structure condi-
tions,1,2 monitoring of disease progression,3 and diagnosis
of soft-tissue lesions and inflammatory foci.4,5 Nonetheless,
the effectiveness of MRI tools for neuroimaging applications
strongly depends on the performed segmentation of associated
tissues or anatomical structures.

In a first approach, brain tissue intensities can be assumed to
be linearly separable, supporting the classification of tissues,
having very different diamagnetic properties such as white
matter, gray matter, and cerebrospinal fluid. Nevertheless, this
assumption does not hold in the volume compartments with

very similar magnetic susceptibility (as the hippocampus,
basal ganglia, and putamen), producing a histogram overlapping
that degrades automatic segmentation.6 An effective way to
overcome this issue is to incorporate the prior information
about the expected location and structure of volume shapes
using image templates or atlases, which are MRI pairs (intensity
images joined to their label maps) that must be spatially warped
to the target spatial coordinates. To encompass the inherent
ambiguity of volume inhomogeneities, Bayesian algorithms
are employed together with local intensity models,7 resulting
in a single spatial model prior. For instance, the unified segmen-
tation approach simultaneously performs registration, filtering,
and delineation of brain structures using a single probabilistic
template together with Gaussian mixtures to model space-vary-
ing intensity.8–10 To extract a broader anatomical heterogeneity,
however, priors are to be collected from large human groups,
which may incorporate high inter- and intrasubject variability
of intensity distributions.11

Modern segmentation approaches consider subject-specific
atlas strategies to tackle the intrasubject variability, which
demand the registration of available training MRI sets to
a unique image. Hence, the full processing stage is carried out
over the target coordinate space, but weighting the contribution
of each training image. Thus, the most similar templates to the
target image are engaged, applying different measures of prox-
imity: active shape patterns,12 manifold learning,13 appearance
models,14 and probabilistic atlases.15 All these metrics highly
rely on the accuracy supplied by each applied pairwise image
alignment that, in practice, is deteriorated by the misregistration
artifact, increasing the computational cost that becomes huge for
large training datasets.
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Aiming at dealing with atlas misalignments, the pairwise
agreement is computed between each atlas to the target
using a template search strategy (nonlocal methods), for
which the voxel labeling depends on the intensity similarity
over a predefined neighborhood. To infer the tissue class, the
similarity is computed between intensity patches centered at
target and atlas voxels. Therefore, the patch-based approaches
differ in the selected label fusion strategy. Thus, basic methods
assign the labels using a weighted voting strategy ruled
by patch similarity metrics measured over neighboring
patches.16,17 Also, the hierarchical patch-based label fusion
involves multiscale feature representation to characterize
the local anatomical information, dynamically adjusting the
patch size during the label procedure.18 More elaborate
approaches are spatially localized random forests,19,20 patchwise
metric learning with multiscale features,21,22 probabilistic
labeling following confidence maps,23 and progressive labeling
by multilayer dictionaries.24 In attempting to undertake the
space-varying labeling difficulty, however, these approaches
demand a significant number of atlas voxels, therefore
reducing the benefit of the voting strategies.25 Although the
above approaches attempt to undertake the space-varying
labeling difficulty by increasing the number of atlas voxels,
still many atlas voxels may cause a segmentation loss if they
are neither representative for the query tissue nor suitably
aligned with the target voxel. In either case, instead of reinforc-
ing the labeling decision, the arisen uncertainty decreases the
achieved performance.

In this paper, for the concrete case of hippocampus,
we propose a brain tissue segmentation methodology that
aims at selecting the most related atlases with a query,
using more elaborate kernel-based similarity metrics and
adapting the Bayesian model parameters to the spatial labeling
complexity. The methodology, termed adaptive Bayesian
label fusion using kernel-based similarity metrics (ABKS),
comprises two stages: (i) an atlas selection strategy using
a tensor-based similarity between the target and atlases at
regions of interest (ROI) in an attempt to better the anatomical
variability extraction from a pool of image collections, accu-
rately fitting the target brain structure and enhancing the
tissue delineation. (ii) Estimation of adaptive Bayesian models
according to the neighborhood labeling complexity. In the
cases of labels with low uncertainty, estimation relies on
a maximum a posteriori classifier that is supplied by spatially
varying priors at neighborhoods. Otherwise, a nonlocal patch
scheme is applied with conditional distributions learned from
structural information and uniform priors to tackle regions
with high uncertainty. Further, the incorporated collectionwise
agreement threshold delimits the neighborhood labeling
complexity, ruling more accurately the segmentation model.
To assess the benefit of the proposed methodology, we con-
sider the popular segmentation of labeling the hippocampus
from public MRI collections, showing that proposed ABKS
approach achieves a Dice index similarity than the compared
state-of-the-art approaches. The remainder of the paper is
organized as follows: Sec. 2 introduces the proposed tissue
segmentation approach, ABKS, explaining the ranking pro-
cedure of the training atlases in the template search strategy.
Then, Sec. 3 describes the experimental setup validated on
four publicly available datasets, providing results that are
discussed in Sec. 4. Last, conclusions and future work are
outlined in Sec. 5.

2 Methods

2.1 Bayesian Segmentation Using Atlas-Based
Priors

Let X ¼ fxr∶r ∈ Ωg be a raw intensity image set, holding
a measurement xr ∈;R at location r defined over the spatial
domain Ω. Provided a tissue class set C;¼ f1; : : : ; Cg, the
image segmentation task intends to find the optimal partition,
that is, it builds the label image set L ¼ flr ∈ Cg by assigning
a label lr to r’th spatial element, relying on its measured inten-
sity xr.

In image processing, Bayesian methods perform the optimal
segmentation task determined as the partition that has the high-
est a posteriori probability, incorporating the anatomical infor-
mation extracted from an available atlas (or prior image). Thus,
the posterior conditional probability PðLjXÞ (or segmentation
probability) is expressed in terms of PðX jLÞ, the conditional
probability computed from the image X , given a segmentation
set L as well as the corresponding prior probability PðLÞ.
So, the segmentation probability reads as follows:

EQ-TARGET;temp:intralink-;e001;326;526PðLjXÞ ∝ PðX jLÞPðLÞ: (1)

Under the assumption that all spatial elements are i.i.d., the
segmentation probability of a given image can be expressed as
PðLjXÞ ¼ Q

r∈ΩPðlr ¼ cjxrÞ, so that the maximum a posteriori
criterion assigns a label l⋆r as

EQ-TARGET;temp:intralink-;e002;326;451l⋆r ¼ arg max
c∈C

Pðlr ¼ cjxrÞ

¼ arg max
c∈C

Pðxrjlr ¼ cÞPðlr ¼ cÞ;
(2)

where the conditional probability Pðxrjlr ¼ cÞ describes the
intensity distribution for class c at position r, and Pðlr ¼ cÞ
is the label prior probability regardless of its intensity.
Considering that the tissue conditional probability locally
follows a Gaussian distribution N ðxrjμrc; σ2rcÞ, both probability
parameters are derived from an available atlas set, A ¼
fXn;Ln∶n ∈ ½1; : : : ; N�g, as7

EQ-TARGET;temp:intralink-;e003;326;311Pðlr ¼ cÞ ¼ EnfPðlnr ¼ cÞg; (3)

EQ-TARGET;temp:intralink-;e004;326;279μrc ¼ EnfxnrPðlnr ¼ cÞg; (4)

EQ-TARGET;temp:intralink-;e005;326;252σ2rc ¼ Enfðxnr − μrcÞ2Pðlnr ¼ cÞg; (5)

where μrc ∈ R and σ2rc ∈ Rþ are the estimated mean and vari-
ance of tissue c at location r, and Pðlnr ¼ cÞ is the probability
that n’th atlas has the label c at r. Notation Enf·g stands for
the expectation operator over variable n.

2.2 Atlas Selection by Similarity using
Tensor-Product Kernels

Due to the anatomical variability between subjects, Eqs. (3)–(5)
are biased toward the population average, hindering the seg-
mentation performance. To overcome this issue, we introduce
an atlas selection stage that allows computing the parameters
of local Gaussians from the atlas subset with the largest
similarity to the target image. That is, it holds that
fXn;Ln∶kðX ;XnÞ > ϵg, being kðX ;XnÞ ∈ Rþ a similarity
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function between the target and n’th atlas. For the implementa-
tion of this stage, we consider our previous tensor-product
kernel-based (TPK) similarity to build the atlas subset.26

To this end, we extract the set of pairwise interslice kernel
(ISK) relationships along each MR image axis into a set of
kernel matrices fSν ∈ RLv×Lv∶ν ∈ fa; s; cgg, where Lv is the
number of slices across ν’th axis, namely, axial (a), sagittal
(s), and coronal (c). Relying on a positive-definite kernel func-
tion κð·; ·Þ, any intensity image is mapped into the symmetric
matrix Sν with elements sνll 0 ¼ κXðXν

l ;X
ν
l 0 Þ, where Xν

l is l’th
slice of ν’th axis. The resulting set of ISK relationships feeds
the TPK similarity, combining the pairwise image similarity
along each axis as

EQ-TARGET;temp:intralink-;e006;63;608kðX ;XnÞ ¼
Y

v∈fa;s;cg
κSðSν; SνnÞ; ∀ n ∈ ½1; N�: (6)

In particular, both kernels follow the Gaussian function:

EQ-TARGET;temp:intralink-;e007;63;553κXðXν
l ;X

ν
l 0 Þ ¼ exp½−kXν

l − Xν
l 0 k2F∕ð2σ2XÞ�; (7)

EQ-TARGET;temp:intralink-;e008;63;519κSðSν; SνnÞ ¼ expð−kSν − Sνmk2F∕ð2σ2SÞÞ; (8)

where notation k · kF stands for matrix-based Frobenius norm.
Then, the similarity function in Eq. (6) benefits of the

anatomical changes on images to be compared across the axes.
As a result, the combination of axiswise similarities allows
ranking the atlases according to their similarity with the target
image so that the closer each atlas is—the better its contribution
to building the local probability distributions in Eq. (2).

2.3 Adaptive Fusion Labeling in Neighboring
Patches

Commonly, the estimation in Eq. (3) implies the existence of
one-to-one relationships between the training dataset images.
Nonetheless, the voxels, neighboring a boundary region B,
hold mostly more uncertainty than the far voxels do, making the
segmentation of voxels with less uncertainty (e.g., deep inside
the structures) have lower computational effort. This means that
the assumption of a one-to-one relationship does not hold
entirely for the edges that belong to the tissues of interest, intro-
ducing several errors into the label fusion procedure.

To address above issue, we define the probability distribution
models in Eqs. (3)–(5) for boundary and nonboundary regions.
The nonboundary region is composed by voxels r where
the maximum a priori probability [Eq. (3)] is larger than
or equal to an introduced threshold α ∈ ð1∕C; 100%�., i.e.,
maxc EnfPðlnr ¼ cÞg ≥ α. On the contrary, all voxels that fail
this condition (that is, having the largest label uncertainty)
are assumed to belong to the boundary region. In either case
of regions, estimation of the prior and likelihood function
parameters are as follows:
EQ-TARGET;temp:intralink-;e009;63;165

boundary regions∶ max
c

EnfPðlnr ¼ cÞg < α

Pðlr ¼ cÞ ¼ 1∕C; (9)

EQ-TARGET;temp:intralink-;e010;63;110μrc ¼ En;sfxsrPðlns ¼ cÞPðdXXq
rXn

s jϵφÞg; ∀ s ∈ N ðrÞ;
(10)

EQ-TARGET;temp:intralink-;e011;326;741σ2rc ¼ En;sfðxsr − μrcÞ2Pðlns ¼ cÞPðdXXq
rXn

s jϵφÞg; (11)

EQ-TARGET;temp:intralink-;e012;326;728nonboundary regions∶ max
c

EnfPðlnr ¼ cÞg ≥ α

Pðlr ¼ cÞ ¼ δðlr − cÞ
(12)

EQ-TARGET;temp:intralink-;e013;326;678μrc ¼ EnfxnrPðlnr ¼ cÞg; (13)

EQ-TARGET;temp:intralink-;e014;326;651σ2rc ¼ Enfðxnr − μrcÞ2Pðlnr ¼ cÞg; (14)

where N ðrÞ describes a cubic searching volume (or neighbor-
hood) that is centered at r and limited in size by an included
radius parameter ϵΩ ∈ Rþ (neighborhood radius). The local
intensity set Xn

r builds a patch of radius ϵβ ∈ Rþ that represents
the r’th voxel. Further,P½dX ðXq

rXn
s Þjϵφ� is the probability that the

patches Xq
r and Xn

s become similar within the threshold value
ϵφ ∈ Rþ, employing the distance function dX ðXq

rXn
s Þ ∈ Rþ.

As a result, the agreement threshold α selects the model
according to the labeling complexity within the boundary and
nonboundary regions. In the former case, we propose the
uniform distribution as the priors to reduce the labeling errors
related to a poor agreement between training atlases in Eq. (3).
Moreover, the conditional distributions (computed from the
neighborhood search and pairwise volume similarity) are incor-
porated to locate the most similar voxels across the atlas set, and
therefore, the label of a targeted voxel is assigned more accu-
rately. For the nonboundary regions, inside most of the atlases
agree, a voxelwise probabilistic model reduces the computa-
tional cost, without compromising the tissue delineation.

3 Experimental Setup

3.1 MRI Datasets and Image Preprocessing

We evaluate the proposed approach of adaptive Bayesian label
fusion using kernel-based similarity metrics in delineating the
hippocampal tissue, appraising the following pipeline stages:
(i) preprocessing of MRI scans using the ANTS tool to perform
the affine-registration of all volumes into each target; (ii) sub-
ject-dependent atlas selection based on the TPK, ranking the
atlases according to their similarity to the target in the RKHS
space; (iii) construction of a spatial domain, aiming to gather
all hippocampus-labeled voxels of the whole dataset within
a region of interest and thus reducing the computational effort;
(iv) tissue label estimation, relying on a nonlocal patch search
over the sets of intensity and label images for boundary regions
and point-to-point comparisons for nonboundary regions;

Fixing the acquisition parameters as shown in Table 1, the
discussed segmentation approach is tested on the following
benchmark MRI collections:

(a) SATA: This collection, publicly available,27 had been
created by the “Multi-Atlas Labeling beyond the
Cranial Vault: Workshop and Challenge” for assess-
ing the image segmentation of blind-folded data. We
consider the training subset, which holds 35 T1 MR
images and is equipped with the manually delineated
hippocampus.

(b) LONI:28 This database consists of 40 T1-weighted
MR brain images that had been collected from
healthy volunteers (20 males and 20 females), aging
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from 20 to 40 years (29.2 average �6.4 years). Each
scan is manually delineated to extract 56 partitions;
most of them within the cortex. In addition to
brain atlas construction, this image reservoir is
widely used for evaluating segmentation algorithms
of hippocampal subcortical structures.

(c) IBSR. This repository29 assembles 18 T1-weighted
MRI scans acquired from normal subjects (14 males
and 4 females, aging from 7 to 71 years), and allows
evaluating the sensitivity of segmentation tools to
the signal-to-noise ratio, contrast-to-noise ratio, shape
complexity, and degree of partial volume effect.

(d) HAMMERS. The dataset available at Ref. 30
contains 30 T1-weighted MR brain images, which
have been collected from 15 women (median age
31 years and range 20 to 54) and 15 men (median
age 30 years and range 20 to 53); all of them are
subjects with no neurological, medical, or psychiatric
conditions. Each scan has 83 manually labeled ROI
sets with hippocampal segmentation.

(e) ADNI. The Alzheimer’s disease neuroimaging initia-
tive (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public–private partnership,
led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography,
other biological markers, and clinical and neuro-
psychological assessment can be combined to mea-
sure the progression of mild cognitive impairment
and early Alzheimer’s disease (AD). For up-to-date
information, see Ref. 31, for download, see Ref. 32
gathers imaging biomarkers, biosignals, and neuro-
psychological tests to characterize dementia patients.
We selected 101 T1 whole-brain MR images from
different healthy control subjects, along with their
hippocampus masks. Selected subjects average age
80-years old and 49% are men.

During validation, the leave-one-out strategy provides the
segmentation performance assessed by Dice similarity index
dS ∈ ½0;100�, defined as follows:

EQ-TARGET;temp:intralink-;e015;326;752dSðΩHΩ̃HÞ ¼ 200
jΩH ∩ Ω̃Hj
jΩHj þ jΩ̃Hj

; (15)

where ΩH ¼ fr ∈ Ω∶lr ¼ Hg holds the ground-truth voxels
that belong to the hippocampus, and Ω̃H ¼ fr∶l̃r ¼ Hg—the
automatically labeled voxels. Notation ∩ stands for the intersec-
tion set operator. The Dice similarity index measures the overlap
between the estimated and manual segmentation label sets,
rating 100 for fully matching regions and 0 for nonoverlap at all.

Note that for comparison purposes, the above-processing
pipeline of hippocampal segmentation is also performed
for the following approaches: adaptive gradient distribution on
the boundary map based on active contour models and multiat-
las concept (AGDB),33 hierarchical patchbased label fusion
(HPBLF),18 patch-based label fusion with discriminative dimen-
sionality reduction (PLFDDR),34 patch-based label fusion via
matrix completion (PLFMC),17 spatial confidence maps label
fusion (SCMLF),23 ensembling multiview convolutional neural
network (9ViewEnsem-Net1),35 embedding patch-based label
fusion (EPLF),36 and multiscale patch-based label fusion
(MSPLF).37 The latter one was implemented setting its param-
eters as it is suggested in the document.

3.2 Parameter Setting in Evaluating Segmentation
Pipeline

In the beginning, we tune the kernel bandwidth [see Eqs. (7) and
(8)] in accordance with the procedure proposed by Ref. 26. That
is, in the reproduced-kernel Hilbert space, all variances are
maximized, enhancing the difference among slices and images.
Section 3.2 displays the resulting pairwise volume, showing that
the MRI dataset distribution differs from each other. At the same
time, HAMMERS and IBSR evidence several image clusters,
whereas the SATA, ADNI, and LONI collections lack any
group structure (Fig. 1).

Then, the pairwise volume similarity values in Eq. (6) feeds
the atlas selection stage, having as the main parameter the
probability function that measures the voxel similarity across
a patch domain as
EQ-TARGET;temp:intralink-;e016;326;321

PðdXXq
rXn

s Þjϵφ

¼
�
expð−kXq

r − Xn
sk2F∕γnÞ ϵφ ≤ dX ðXq

rXn
s Þ ≤ 1

0 Otherwise
;

(16)

where the RBF kernel width hyperparameter γn is set, as
suggested in Ref. 38, as the minimal distance between the target
patch Xq

r and the neighboring patches under consideration Xn
s ,

that is, γn ¼ min∀ skXq
r − Xn

sk2F. The value dXX
q
rXn

s ∈ Rþ is
the structure similarity index that allows selecting the patches
with similar contrast and luminance so that the exponential
similarity calculation in expð−k · k2F∕γnÞ is not performed over
unlike patches, decreasing substantially the computational
burden of the accomplished nonlocal patch search. The structure
similarity index is given as39

EQ-TARGET;temp:intralink-;e017;326;129dX ðXq
rXn

s Þ ¼
�

2μsμr
μ2s þ μ2r

��
2σsσr
σ2s þ σ2r

�
; (17)

where μz ∈ R and σz ∈ Rþ are the mean and standard deviation
of the intensity patch Xq

z centered at z ∈ Ω, respectively.

Table 1 Technical specifications of the tested benchmark
databases.

Database Volumes Volume size (voxels) Voxel size (mm)

SATA 35 – training 256 × 256 × 261 1.0 × 1.0 × 1.0

12 – testing to 256 × 256 × 334

LONI 40 220 × 220 × 184 1.0 × 1.0 × 1.0

IBSR 18 256 × 256 × 128 0.8 × 0.8 × 1.5

to 1.0 × 1.0 × 1.5

HAMMERS 30 192 × 256 × 124 0.937 × 0.937 × 1.5

ADNI 101 160 × 192 × 192 1.2 × 1.25 × 1.25

166 × 256 × 256 1.2 × 0.94 × 0.94

256 × 256 × 256 1.0 × 1.0 × 1.0
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Practically, the performance of the proposed Bayesian seg-
mentation depends on the accurate tuning of algorithm hyper-
parameters: global and local. The parameter tuning follows
a two-staged grid search of the maximum average Dice index
similarity, employing a leave-one-out scheme. In the first
stage, we optimize both global parameters (number of atlases
jAj and agreement threshold α) by fixing the local values of
ðϵφ; ϵβ; ϵΩÞ ¼ ð0.9; 2;3Þ as recommended in Refs. 40 and 41.
In the second stage, we search the optimal local parameters
within ϵβ ∈ ½2;3� (that is, 5 × 5 × 5 and 7 × 7 × 7 voxels) and
ϵΩ ∈ ½2;7� (ranging from 5 × 5 × 5 till 15 × 15 × 15 voxels)
by setting jAj and α to above values. Figure 2 shows the average

Dice index that is estimated on each considered MRI collection,
at different values of agreement threshold. As seen, the
optimal parameters are attained at: ðjAj; αÞ ¼ ð18;65%Þ;
ð13;65%Þ; ð11;53%Þ; ð9;65%Þ; ð8;53%Þ for SATA, LONI,
IBSR, HAMMERS, and ADNI subjects, respectively. Note
that the performed Dice index values prove that the use of
all available atlases hampers the segmentation performance.

For the second tuning stage, we searched the optimal
local parameters within ϵβ ∈ ½2;3� (that is, 5 × 5 × 5 and
7 × 7 × 7 voxels) and ϵΩ ∈ ½2;7� (ranging from 5 × 5 × 5 till
15 × 15 × 15 voxels) by fixing jAj and α to above values.
Figure 3 shows that the pairs achieving the best performance
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Fig. 1 Resulting matrices of pairwise volume similarity of all tested MRI dataset, using their optimal
parameters.
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Fig. 2 Global parameters tuning for the different datasets over our method is tested.
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are ðϵβ; ϵΩÞ ¼ ð2;6Þ; ð2;5Þ; ð2;3Þ; ð2;4Þ; ð2;6Þ for SATA, LONI,
IBSR, HAMMERS, and ADNI, respectively. In almost all cases,
the Dice index increases as the neighborhood radius also rises,
meaning that the misalignment produced by the affine registra-
tion demands the presence of a larger number of regions to
achieve a set of similar patches. Nevertheless, dS decreases
as ϵΩ becomes too large since more similar patches may be dis-
covered across the adjacent structures. Regarding ϵβ, though the
computational cost rises, there is a very slight improvement in
some cases as the patch radius increases because the large
patches more adequately reflect the tissue properties.

Summarizing, the resulting values of the calculated optimal
parameters are as follows: ðjAjop;α;ϵΩ;ϵβ;ϵφÞ¼ð18;65%;
6;2;0.9Þ;ð13;65%;5;2;0.9Þ;ð11;53%;2;3;0.9Þ;ð9;65%;4;2;0.9Þ;
ð8;53%;6;2;0.9Þ for SATA, LONI, IBSR, HAMMERS, and
ADNI subjects, respectively. Note that the values of threshold
and patch radius tend together, respectively, to α ¼ 65% and
ϵβ ¼ 2 in most of the tested databases. In turn, in each one of
the databases, diverse tuned values are accomplished by the
number of atlases jAjop and neighborhood radius ϵΩ, which
varies within a broad range (from 2 to 6) across databases in
an attempt to compensate for the misalignment effect as reported
in Ref. 41.

For visual quality inspection of the segmented hippocampus,
Fig. 4 shows the best (top row) and worst (bottom row) subjects
of each database performed by the proposed method, marking in
a green, blue, and red dots the places denote that are correctly
labeled (true positives), undersegmented (false negatives),

and oversegmented (false positives) voxels, respectively. As
expected, most of the mistakes arise in those locations placed
near to the tissue boundaries. Thus, for the best-segmented
subjects, the proposed approach performs similarly in the four
dataset sets in terms of true positives, false negatives, and false
positives. In addition, the number of false positives is smaller
than the false negatives implying that most of the errors are due
to undersegmented voxels. On the contrary, errors in subjects
with the lowest Dice lack consistency: the subject is over-
segmented for SATA, IBSR, and ADNI; undersegmented for
HAMMERS; and the errors are evenly distributed in the case
of LONI.

Overall, the reached results show that ABKS outperforms
other approaches in almost all evaluated databases, as shown
in Table 2 that displays the averaged Dice index of segmenting
the left and right hippocampus, using the tuned parameter set.
Hence, we hypothesize that combination of the atlas selection and
adaptive fusion labeling enhances the hippocampal segmentation.

4 Discussion
To overcome the morphological variations and template-to-
target misalignment, this work introduces a brain tissue
segmentation approach, adaptive Bayesian label fusion using
kernel-based similarity metrics – ABKS, that constructs
adaptive target-specific probabilistic atlases to be ranked in the
template search strategy, appraising the following stages: Atlas
selection for dealing with segmentation of MRI data with high
anatomical variability; patch-based voxel representation to

2 3 4 5 6 786

87

88

89

90

dS

εΩ

εβ = 2

εβ = 3

HAMMERS

LONI

SATA

IBSR

ADNI

Fig. 3 Tuning of neighborhood and patch radii using the average Dice index for evaluation segmentation
quality over 10 subjects for each dataset.

SATA LONI IBSR HAMMERS ADNI

Fig. 4 Examples of segmented hippocampus performed by the proposed method in each database.
Best (top) and worst (bottom) subjects. Green, blue, and red regions mean correctly labeled, underseg-
mented, and oversegmented voxels, respectively.
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enhance the voxel embedding in spaces with increased tissue
discrimination, and construction of a neighborhood-dependent
model that addresses the label assignment of each region with
a diverse patch complexity. From the experiments performed on
four popular MRI collections, the following remarks are worth
being mentioned:

Atlas selection through similarity measures enables segmen-
tation with wide anatomical variability. Expressed in terms of
pairwise TPK relationships, the morphological variability within
each collection allows distinguishing cases of similarity, ranging
from very related images to remarkably different volumes.
Moreover, several distribution modes of atlases can be inferred
relying on the presence of diagonal blocks with separate pair-
wise volume similarities in the kernel matrices. In the specific
case of HAMMERS and IBSR collections, the modes may point
to demographic particularities of imaged subjects as seen in
Sec. 3.2. Still, the quality of the coarse registration constraints
the introduced representation. Figure 2 evidences that the use of
TPK takes advantage of this fact, ranking the atlases that con-
tribute the most to the image labeling. As a result, the introduced
atlas selection undertakes the anatomical variability of MRI
collections by selecting the image subset that better matches
to the morphological similarity of each target image, enhancing
the labeling efficiency.

Within the Bayesian segmentation framework, the spatial pri-
ors of tissue modeling can be enhanced by the involved adaptive
label fusion of neighboring patches, adjusting the patch and
neighborhood radii properly. Using a baseline heuristic grid
search, both ruling parameters are tuned in accordance to the
voxel uncertainty that highly depends on its boundary proxim-
ity. Therefore, the segmentation performance tends to increase
as the neighborhood radius also rises as clearly shown in Fig. 3
for LONI and SATA. This result suggests that the misalignment
produced by the affine registration demands the presence of
a more significant number of regions to achieve a set of similar
patches. However, the segmentation performance tends to
decrease as the neighborhood became too large due to more
similar patches may be found within adjacent structures (such
as in LONI and HAMMERS when the parameter is larger than
11 voxels). Note that the application of TPK-based similarity

implies a tuned parameter set, which is specific for each data-
base, making this issue the most challenging shortcoming for
generalizing the obtained results over other MRI collections.
As a result, the better performance at larger neighborhood radius
implies that anatomical relationships must be searched in
a broader region, and the patch size defines the shape variability
to be encoded at each voxel.

The segmentation framework enhances the shape variability
representation at separate levels of patch dimension, employing
two complementary strategies: atlas selection (collecting global
information) together with adaptive modeling (accumulating
local information). Results in Table 2 prove that the atlas
selection stage improves the multiatlas concept (AGDB) at
determining the most relevant templates for labeling a query
image. Regarding the patch-based approaches, proposed adap-
tive Bayesian model better decodes the local labeling complex-
ity than SCMLF; and the conditional probability estimator for
boundary regions enhances the local tissue modeling of HPBLF,
SCMLF, and MSPLF. Therefore, we conclude that the intro-
duced atlas selection together with adaptive fusion labeling
enhances the hippocampal segmentation with performance val-
ues comparable with convolutional neural network approaches
for filtering (EPLF) and labeling (9ViewEnsem-Net1).

5 Conclusion
With the purpose of enhancing the brain tissue segmentation,
this work introduces the ABKS approach that includes the con-
struction of adaptive target-specific probabilistic priors using
similarity-ranked atlases for dealing anatomical variability of
collected MRI data. In particular, the segmentation approach
appraises patch-based voxel representation to enhance the
voxel embedding in spaces with increased tissue discrimination,
as well as the construction of a neighborhood-dependent model
that addresses the label assignment of each region with diverse
patch complexity. To measure the similarity between the target
and atlases, we propose a tensor-based kernel metric that
also includes the labeling set. We evaluate the proposed
approach on four benchmark MRI collections used for hippo-
campus segmentation, resulting in an increased segmentation

Table 2 Mean Dice index score for hippocampus segmentation accomplished by the compared methods. Notation “—” stands for nonreported
values.

Approach SATA LONI IBSR HAMMERS ADNI

AGDB33 — — 84.0 — —

HPBLF18 86.5 81.4 — 84.6 88.5

PLFDDR34 83.8 — — — 81.1

PLFMC17 — 83.9 — — 84.1

SCMLF23 87.7 — — — 86.6

ABKS 90.3 ± 1.66 90.3 ± 1.58 89.0 ± 1.43 88.1 ± 1.37 86.6

MSPLF37 85.5 86.1 83.3 82.0 —

EPLF36 — — — — 85.4

9ViewEnsem-Net135 — — — — 89.5 ± 1.45

Note: Boldface stands for the best performing approach.

Journal of Medical Imaging 014003-7 Jan–Mar 2019 • Vol. 6(1)

Cárdenas-Peña, Tobar-Rodríguez, and Castellanos-Dominguez: Adaptive Bayesian label fusion. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 28 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



performance (assessed through the Dice index) as compared to
other recent works.

Nonetheless, some remarks remain to be improved in the
proposed segmentation approach. Thus, the incorporated atlas
selection stage may not extract accurately enough a very wide
heterogeneity from image collections as it is the case for the
IBSR and HAMMERS databases, yielding over- or underseg-
mentation flaws as seen in Fig. 4. Therefore, as a future work,
the authors plan to extend the proposed segmentation approach
to a wider class of brain structural variations, including abnor-
mal masses of tissue, and MRI data with high demographical
disparity (age, ethnicity, etc.). Another factor to be reflected is
the effect of varying acquisition conditions.
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