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A B S T R A C T

OBJECTIVES
We detail a procedure for generating a set of templates for the hippocampal region
in magnetic resonance (MR) images, representative of the clinical conditions of the
population under investigation.
METHODS
The first step is robust standardization of the intensity scale of brain MR images, belonging
to patients with different degrees of neuropathology (Alzheimer’s disease). So similar
tissues have similar intensities, even across images coming from different sources. After
the automatic extraction of the hippocampal region from a large dataset of images, we
address template generation, choosing by clusterization methods a small number of the
extracted regions.
RESULTS
We assess that template generation is largely independent on the clusterization method
and on the number and the clinical condition of the patients. The templates are chosen
as the most representative images in a population. The estimation of the “minimum”
number of templates for the hippocampal region can be proposed, using a metric based
on the geometrical position of the extracted regions.
CONCLUSIONS
This study describes a simple and easily reproducible procedure to generate templates for
the hippocampal region. It can be generalized and applied to other brain regions, which
may be relevant for neuroimaging studies.

Introduction
Magnetic resonance imaging (MRI) has been used in nu-
merous in vivo anatomical studies of the brain,1 especially
for the hippocampus, and plays an important role in the di-
agnosis of temporal lobe epilepsy, or degenerative diseases
such as Alzheimer’s dementia, and in the evaluation of their
course.2 In MR images, a significant atrophy or a degeneration
not only in the striatum, but also of other structures such as
white matter (WM), cerebral cortex, amygdala, and hippocam-
pus, contribute to identifying Huntington’s chorea or cognitive
impairment.3,4

Anatomical reference images (templates) are then becom-
ing of vital importance for result comparison, and to allow
better identification of structures. Such templates are primar-
ily intended to serve as anatomical references for spatial nor-
malization usually required before studying human anatomical
or functional variability. Atlases derived from those templates,
built with different modalities and most often characterized by
specific structure labeling,5,6 have been used with success in
various computer-aided decision systems. They are usually built
from a single acquisition of different control subjects reflecting
the population targeted by the clinical study.7,8
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Atlas-generation has to account for inter-subject variability
of anatomy and function, in order to offer a powerful frame-
work which facilitates comparison over time, between subjects,
between groups of subjects and across sites.9 This the signif-
icant goal. With this aim, various probabilistic and statistical
approaches have been developed to establish anatomical refer-
ence images (templates), representative of the population under
investigation.10,11

Studying and quantifying local anatomical differences or
changes in a population, in a sense of characterizing anatomical
differences between subjects and templates, is a very challeng-
ing and difficult task. Especially the problem of identifying dif-
ferences in relative positions of brain structures and detecting
local differences requires complex models. Linear or nonlin-
ear forms of spatial normalization are used to register images
from larger cohorts into a common stereotactic space, enabling
region by region comparisons.1,7-12,14-17

In this work, we describe a rather simple procedure for gen-
erating a set of templates for the hippocampal region. It rep-
resents a refinement and a generalization of the Calvini et al12

research. Against that background, many aspects are differ-
ently treated, especially regarding image standardization and
the estimation of the “minimum” number of templates for the
hippocampal region, and the effect of these different strategies
are evaluated.

The complete procedure foresees different steps. First, we
build up a robust method for standardizing the intensity scale
of brain MR images. This way similar tissues have similar inten-
sities, even across images coming from different sources. Then
we automatically extract the hippocampal region from a large
dataset of MR images, with great accuracy. Subsequently, tem-
plate generation is addressed, by choosing a small number of
the extracted regions, using clusterization methods.

Because morphological variability is captured by rigid trans-
formations, a number of templates are necessary for group anal-
ysis. Thus, the number of images belonging to each considered
template set, obtained in the clusterization step, are the means
to account for variability.

Finally, we propose an estimation of the “minimum” number
of templates for the chosen brain area, using a metric based on
the geometrical position of the extracted hippocampal regions.

We also attempt a preliminary generalization test of the pro-
cedure, applying it to other brain areas, which may be relevant
for future neuroimaging studies.

The procedure was developed within the “Medical Applica-
tion on a Grid Infrastructure Connection” (MAGIC-5) group,
an Italian collaboration related to Istituto Nazionale di Fisica
Nucleare (INFN), involving many academic and clinical insti-
tutions in the field of computer-aided detection (CAD) software
systems for the analysis of medical images,11,13 such as MR or
positron emission tomography (PET) images, as a support for
the early diagnosis of neurological pathologies, especially the
Alzheimer’s disease (AD).12

Materials and Methods
Materials

Various datasets of brain T1-weighted MR images downloaded
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

website (http://www.loni.ucla.edu/ADNI/) were used to de-
velop the procedure detailed in the next paragraphs.

Each image in the ADNI dataset has undergone specific
image preprocessing correction steps.

These corrections include gradwarp, B1, and N3 corrections.
Gradwarp is a system-specific correction of image geometry
distortion due to gradient nonlinearity. B1 nonuniformity cor-
rection procedure employs the B1 calibration scans to correct
the image intensity nonuniformity, that results when radiofre-
quency transmission is performed with a more uniform body
coil, while reception is performed with a less uniform head coil.
N3 is a histogram peak sharpening algorithm applied to all im-
ages, after gradwarp and after B1 corrections, for systems on
which these two correction steps are performed. N3 processing
reduces residual intensity nonuniformity.

Each dataset is nonhomogeneous in terms of age, cardinality,
and pathology of the subjects, with clinical conditions ranging
from good health state (Normal) to probable dementia of AD
type as well as with MCI. The minimental state examination
(MMSE) test was used to estimate the severity of the cognitive
impairment.

In particular, for a study including 190 patients, we have 65
Normal (27 women and 38 men) with average MMSE score
29.1 ± 1.1 and average age 81.9 ± 6.4; 63 MCI (30 women
and 33 men) with average MMSE score 26.2 ± 2.3 and av-
erage age 70.3 ± 8.5; and 62 AD (28 women and 34 men)
with average MMSE score 24.5 ± 2.7 and average age 75.7 ±
5.1. Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu). The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Insti-
tute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceuti-
cal companies and non-profit organizations, as a $60 million,
5-year public private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD). Determination
of sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center and
University of California — San Francisco. ADNI is the result of
efforts of many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have been re-
cruited from over 50 sites across the United States and Canada.
The initial goal of ADNI was to recruit 800 adults, ages 55 to
90, to participate in the research, approximately 200 cognitively
normal older individuals to be followed for 3 years, 400 people
with MCI to be followed for 3 years and 200 people with early
AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

Methods

Before detailing the procedure, some general considerations
have to be addressed.
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One of the most important application of an atlas is to iden-
tify the abnormality within patient population, in order to ac-
count for the maximum intersubject variability of anatomy and
function, which facilitates comparison of anatomy and function
over time, between subjects, between groups of subjects, and
across sites.9

A critical step is to transform all individual images toward a
common space consistently. In the literature pairwise registra-
tions toward a chosen template, which can be either a subject in
the population, or an averaged image obtained from multiple
aligned subjects (such as ICBM152 template), are widely used
for atlas construction.

However, a limitation associated with this approach is that
the resulting atlas may be biased toward the predefined tem-
plate.15

To overcome this limitation, Joshi et al,16 for example, devel-
oped an unbiased groupwise registration approach,16 in which
the template (mean) image was gradually formed during the
registration procedure. But this approach ignores the possible
inhomogeneous distribution of data within the population, and
uses only a single image to represent all the subjects.

On the other end, Wolz et al14 consider the propagation of
a relatively small number of atlases to a large and diverse set of
MR brain images, exhibiting a significant amount of anatomical
variability. Then a propagation framework is identified and
labeled atlases can be propagated in a stepwise fashion, starting
with the initial atlases, on the whole population. They assess
that deformations between dissimilar images are broken down
to several small deformations between comparatively similar
images and registration errors are reduced.

We propose a different method, selecting a set of images
to be used as suitably chosen templates17 for a region of in-
terest, here the hippocampal formation, preserving the ample
morphological variability contained in the population of MR
images.

Whereas in most of the aforementioned examples, the mor-
phological variability is captured by nonrigid transformations,
we make use of rigid transformations, accounting for the vari-
ability by the number of images belonging to each template
set.

Our template generation starts with the extraction of the
searched region from the images of a MRI dataset, by coreg-
istering each image with a hippocampal reference image. This
means that the extraction will be able to identify the searched
region unambiguously if a reference image, hereafter called
box, of well-defined initial coordinates, dimension, and shape
is used. Some cautions have to be employed in choosing these
parameters.

As regards the dimension of the reference image, we can
consider that small boxes contain too little information. For ex-
ample, if a brain region is represented by a box of 10 × 10 ×
10 pixels, coregistration and extraction can be performed, but
it is questionable if the extracted region has the same anatomic
meaning as the reference image. Therefore, the optimal ex-
tent for the box size is to be defined to properly distinguish
it among the different structures. Neuroanatomical consider-
ations are fundamental, because this extent has to take into
account the intersubject variability of the anatomy that can be
significant especially in template generation.

After various tests with boxes of different and increasing
size on images belonging to patients with different degrees of
neuropathology, we assessed that a box extension of 30 × 70 ×
30 mm3 meets the requirements to identify a region containing
the hippocampal formation unambiguously, taking into account
intersubject variability

Hereafter, we detail the complete template-extraction pro-
cedure, composed of three main steps:

(1) Histogram standardization and spatial normalization to stereo-
tactic space (ICBM152).

(2) “Exhaustive” extraction of the hippocampal regions from all the
images.

(3) Template-set selection.

The open-source Insight Segmentation and Registration
Toolkit (ITK, available at http://www.itk.org), Statistical Para-
metric Mapping (SPM8, available at http://www.fil.ion.ucl.ac.
uk/spm), and MATLAB, a high-level technical-computing lan-
guage (http://www.mathworks.com/products/matlab), are cur-
rently required as software platforms.

Methods: Histogram Standardization and Spatial
Normalization

It is well known that the MRI intensity scale has no absolute,
physical meaning: pixel gray levels in fact depend on the pulse
sequence and other variable scanner and postprocessing pa-
rameters. It is evident that the lack of a standard image-intensity
scale may cause difficulties in imaging analyses. The ability of a
tissue classification method to automatically adapt to a MR im-
age is especially important when the data is collected in multiple
sites, or with several different MRI scanners.

Even if our sample dataset contains ADNI images that have
undergone specific preprocessing image correction steps (eg,
bias-field correction), the existence of images with quite differ-
ent gray level histograms is immediately apparent. The extrac-
tion method described in this paper might be strongly affected
by intervolume (of the same or different individuals) lack of in-
tensity uniformity. Various approaches address the problem in
the literature, for example, Nyúl and Udupa,18 Nyúl et al,19 Ge
et al,20 Hellier,21 Weisenfeld and Warfield,22 Schmidt,23 Jäger
and Hornegger,24 and Leung et al.25 A detailed review of some
recent standardization algorithms is in Bergeest and Jäger.26

Here we build up a robust method for standardizing the in-
tensity scale across multiple scans, in such a way that similar
intensities have similar tissue meaning, even across images com-
ing from different sources. In Calvini et al12 this step was lim-
itedly present, and only a histogram equalization was applied
to the boxes after extraction. On the contrary, in the approach
described in this paper, histogram standardization is considered
essential to achieve general applicability and extraction quality.

Our standardization method is simple and easy to imple-
ment, quite light from the computational point of view, and
produces reasonable results. It is mainly inspired by Nyúl and
Udupa,18 Nyúl et al,19 and Ge et al20 works, where gray level
normalization is obtained by selecting for each image of a train-
ing set some histogram landmarks, averaging them to obtain
a list of reference mean landmarks (to be used as a standard
scale). Each training-set image is then standardized, by project-
ing its landmarks onto the standard ones, while the gray levels
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between the landmarks are linearly interpolated. Thus a con-
tinuous, piecewise linear intensity mapping to a standard scale
is achieved. When a new image is acquired, the transformation
to the standard scale is used to standardize it.

In the original paper by Nyúl and Udupa18 the landmarks
were mode-based, that is, the local maxima of the histogram
were used. In their subsequent work they chose a set of popula-
tion percentiles instead, to make the method more robust and
avoid incorrect standard scales. In fact, as pointed out by the
authors, it might happen that a particular mode corresponded,
in two images A and B, to different matters (eg, WM in image A,
gray matter [GM] in image B). In this case, the mode should not
be used as a landmark, because it would lead to tissue mixing,
in fact different tissues would be projected to the same “stan-
dard” levels. The consequence of training with such landmarks
would be to obtain a meaningless standard scale.

After coding and testing this standardization approach, we
remarked that even when percentiles were used, the risk of tis-
sue mixing was high. Figure 1 shows a typical case where tissue
mixing, produced by inaccurate standardization based on per-
centiles, is evident, and would be inevitable. The histograms
of two images acquired in different hospitals, and from differ-
ent patients, are shown. The original histograms are the thick
continuous lines on top of each plot. On these histograms a
particular percentile (80%) was calculated as an example, and
is marked as P on both images.

Following the approach by Nyúl et al,19 this percentile could
be chosen as a hypothetically stable landmark for standardiza-
tion, without incurring in the tissue mixing involved in choos-
ing maximum points as landmarks. We now show that this
landmark potentially generates tissue mixing too. Consider the
three gray level histograms (continuous lines) under the main
original one (both images): from left to right, they correspond
to cerebrospinal fluid (CSF), GM, and WM histograms, and
were calculated by segmentation of the images into the three
main brain tissues (the sum of the three histograms is shown
with dotted lines).

It is evident that (neglecting background contribution) the
aforementioned landmark corresponds to almost pure WM in
the right image, and to a mix of about 50% WM and 50% GM
in the left one. If many MRI scans were taken for the training
database similar to the right one, the averaged 80% landmark
would correspond to pure WM, and an image like the left one
would undergo a “conversion” of part of its GM to WM. As a
consequence, the choice of a percentile-based landmark does
not ensure stability.

In our implementation of the algorithm, this drawback is
limited by separately applying the standardization procedure,
after segmentation by an atlas, to the three main cerebral tissue
classes instead of the whole brain. Moreover, deciles are chosen
as the histogram landmarks, so as to have a smoother map
function. Some details follow, depicting the overall procedure
and highlighting the novelty elements, whereas for a thorough
examination of the benefits of this technique and a comparison
with other approaches available in the literature, the reader is
referred to a future specific paper.

A group of training images is chosen by taking a sub-
set of the available database, checking that the correspond-

ing histograms are as representative of population variability
as possible.18,19 The images are then coregistered and seg-
mented into WM, GM, and CSF. Of course, a segmenta-
tion procedure based only on the pixel gray levels would
not be satisfying, because of lack of standardization, for this
reason we chose an atlas-driven procedure (Standard Uni-
fied Segmentation) implemented in SPM8.27 This segmenta-
tion is based on a modified Gaussian Mixture Model, which
has been extended to include spatial maps of prior belong-
ing probability. It uses Bayes’ rule to assign the probability for
each voxel to belong to each tissue class, based on combining
the likelihood for belonging to the tissue class and the prior
probability.

In all of the reference papers, standardization was applied
to the original image. In Leung et al,25 mean GM, WM, and
CSF gray values for the images to be standardized were deter-
mined by k-means segmentation, and used by linear regression
as landmarks for the calculation of the intensity transforma-
tion. The latter is then applied to any brain tissue. On the con-
trary, in our approach three standardizing transformations are
calculated and separately applied to the GM, WM, and CSF
images, using a group of functions written in the MATLAB
environment.

For this purpose, an analysis of probability maps for GM,
WM, and CSF was performed. We observed in the original
images the presence of partial volume voxels belonging to the
edge of the brain neighborhood and that can be shared by two
or three matters. To assign each voxel to one class of tissue and
then get the masks on the three tissues, a threshold was applied
in terms of probability maps.

For the voxels located on the edge of the brain a value
of 1 was assigned, if their intensity value was greater than .5,
otherwise a value of 0 was assigned. In the latter case, the voxel
is presumably vacuum, or may represent bone or fat (removed
during segmentation).

For mixed voxels, the voxel is assigned to the mask with the
highest probability of membership. For example, a voxel with
a probability value of belonging to GM, WM, and CSF of .7, .2,
and .1, respectively, will be assigned to the gray matter mask.

In such a manner, a correspondence between the voxels of
the original images and the corresponding three different types
of tissues (GM, WM, and CSF) is obtained.

A large set of landmarks, composed by deciles, is chosen in
the histograms of each of the three tissues, to get quite smooth
descriptions of the three standardization functions. Once GM,
WM, and CSF images are individually standardized, we com-
bine them again to get the complete standardized images, whose
voxel size is 1 mm × 1 mm × 1 mm. This way we can safely
assume that the probability of mixing pixels of different tis-
sues during intensity standardization is minimized. Some his-
tograms before and after standardization are shown in Figures
A and B. The standardized images, indexed with a cardinal
number j , MRj , j = 1,..,n, are then spatially normalized to
stereotactic space (ICBM152) via a 12-parameter affine trans-
formation28 which coregisters the volumes so that all the hip-
pocampi share similar position and orientation. The n MR stan-
dardized and coregistered images are now ready for the next
step.
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Fig 1. Tissue mixing produced by inaccurate standardization based on percentiles. The original histograms of two images acquired in different
hospitals, from different patients, are the thick continuous lines on top of each plot. The dotted line represents the sum of the three histograms
for CSF, GM, and WM, calculated by segmentation of the images into the three main brain tissues. On these histograms a particular percentile
(80%) was calculated as an example, and is marked by a dot on the x-axis and labeled by P in both images.

Fig 2. Histograms of some MR volumes (A) before and (B) after standardization. Only GM, WM, and CSF are considered, while other tissues
(bone, fat, etc) and the dark background have been removed.

Methods: “Exhaustive” Extraction

This paragraph describes the extraction of the hippocampal
regions from a MRI dataset, strictly following the description
of such step given in Calvini et al,12 with the aim to make this
paper easier to read.

This procedure, henceforth called “exhaustive,” is auto-
matic, requires minimal manual intervention and can be em-
ployed both on the right and left hippocampal box (HB).

The ITK NormalizedCorrelationImageToImageMetric29

module was used. It performs a coregistration, via a 6-parameter
rigid transformation, that computes pixelwise cross-correlation
and normalizes it by the square root of the autocorrelation of
the “moving” (the n MR histogram-standardized and spatially
normalized) images and the “fixed” image (a reference box of
30 × 70 × 30 mm3 in our case). The use of this module is lim-

ited to images obtained using the same imaging modality. This
transformation returns the grabbed box and the registration pa-
rameters, that is, the Euler angles and the (x, y, z ) coordinates
of the lower leftmost anterior corner of the HB. The extraction
is performed iteratively, so once extracted all the HBs from the
whole dataset, for each iteration, we chose the next fixed image
among the already extracted boxes, evaluating the correlation
coefficient CA,B .

CA,B , for two assigned HBs, the fixed image with respect to
which the extraction is performed, and the box extracted from
the moving one, named A and B, respectively, each consisting
of N pixels (N = 63,000 in our case), is

CA,B =
∑N

i=1 (Ai − Ā) (Bi − B̄)√∑N
i=1 (Ai − Ā)2

√∑N
i=1 (Bi − B̄)2

, (1)
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where Ai and Bi are the ith pixels of A and B, respectively, Ā
and B̄ are their average values.

The evaluation of similarity, that is, the success of the overlap
between the moving and fixed images, is performed through the
correlation coefficient. CA,B gives the best sensitivity because,
as discussed earlier, the dimension and the initial coordinates
of the fixed image are chosen in a manner that the search for
the hippocampal formation requires the exploration of a small
parameter space. Being all images aligned in the same stereotac-
tic space, the level of spatial registration of similar anatomical
structures is very high and CA,B is significant.

Furthermore, this sensitivity is significant also when intro-
ducing, for example, MR images with bad spatial normalization,
obtaining low CA,B . This means that the correlation coefficient
value is able to capture the anatomical variations resulting from
pathology across subjects, that is, between the fixed image and
the boxes extracted from the whole moving image dataset, for
each iteration.

In the first iteration, the fixed image (hereafter named HB0)
is an hippocampal formation manually segmented by a neurol-
ogist by accurately positioning the box boundaries, including
also some neighboring regions (an example is available in the
Supporting Information). The image from which HB0 is ex-
tracted must also be preventively standardized and coregistered
with the n images of the dataset.

After the coregistration of the n images with HB0 and the
calculation of C 0j (where j goes from 1 to n), a new HB is
extracted from the image, for which C 0j was maximum. The
latter box (called HBk 1, if for example j = k1 gives the max-
imum value) is inserted in the set of the extracted boxes S =
{HBk 1}. This box takes the role of the new fixed image and its
registration parameters are used to initialize the registration of
the remaining n – 1 images in the following step.

Thus, in the second iteration, the population of the remain-
ing n – 1 images is coregistered to HBk 1, giving C 1j . The box
for which the maximum of {C 0j , C 1j} is found, is chosen as
fixed image for the next extraction of the HBs, suppose it is
HBk 2: this box will be inserted in S = {HBk 1, HBk 2}.

The progressive extraction of all HBs stops once the whole
set of n MR images has been processed and the n (right or left)
HBs have been obtained. Set S is now full and contains all the
extracted HBs, ex fixed images. Thus n(n + 1)/2 iterations are
performed and except for the first extraction that requires a
predefined hippocampal box HB0 to start, the whole process
is fully automatic and, as already pointed out, can be applied
both to right and left hippocampi.

This procedure being based on an iterative process, its use is
prohibitive when even a single image is added, because it does
not permit a dynamic variation of the dataset, and the process
has to be completely restarted. In principle, one could extract
all the HBs in a dataset starting from a generic fixed image
alone, without performing such a number of iterations, but a
single fixed image (HB) that matches all anatomies in a dataset,
even if constructed for example by group-averaging proce-
dures, doesn’t exist.9 This iterative process assure instead that
the extracted HBs really take into account the intersubject mor-
phological variability, which in turn ensures that the extracted
images can be useful in generating templates for that region of
interest, allowing comparison over time and over datasets.

Fig 3. The pattern of the D parameter versus the number k of
clusters, for two different clusterization methods (hierarchical and k-
means), with templates extracted by images belonging to patients
with different clinical conditions. The solid line represents the fitting
curve for the mean values of the two datasets.

Of course the histogram standardization step is of crucial
importance because, if the images were not based on a common
standard gray level scale, the notion of metric given in Eq. (1)
would lose sense and the extraction-procedure accuracy would
be severely affected.

Methods: Template-Set Selection

The “exhaustive” procedure, explained earlier, shows how to
extract a brain region (in particular, a hippocampal box) from
a large dataset of volumetric MR images, iteratively building a
set S of HBs from the image dataset.

Now we address template generation, by choosing a small
number of the extracted regions, using clusterization meth-
ods.30

Our work does not fix a priori the number of hippocampal
box templates (HBTs) to be selected for a target dataset. In
our approach, each HB ∈ S is treated as an object having a
location in space, where the coordinates are given by the vector
of gray levels of its N pixels (30 × 70 × 30 in our case) and
whose distances from all other HBs are calculated. We use
Euclidean and Correlation distances for the hierarchical and k-
means clusterization methods, respectively, but we also assessed
that other common distance measures such as Spearman or
Mahalanobis did not significantly affect the results.

According to the above considerations, the procedure works
applying clusterization methods to set S to obtain the desired S′
set of templates, varying its cardinality k (starting from k = 1 up-
wards). The HBs closest to the centroids are chosen as the clus-
ter representatives, and are inserted into a set S′

k as HBTs. This
way we obtain a set of templates sets {S′

1, S′
2, S′

3, S′
4, S′

5, . . .},
each element differing for cardinality and composition. For ex-
ample, Figure 3 shows the templates selected after a k-means
clusterization method for k = 12, from the dataset of 190 im-
ages belonging to subjects with different clinical conditions, and
the fixed reference box HB0 from which the “exhaustive” ex-
traction started. As regards the clinical conditions, two boxes
belong to AD, three boxes to MCI, and seven boxes to Normal
subjects.

To assess the independence on the clusterization method,
while choosing the cluster members on the same dataset of

6 Journal of Neuroimaging Vol XX No X



HBTs, we considered the composition of each template set
{S′

1, S′
2, S′

3, S′
4, S′

5, . . .} in terms of subjects with a particular clin-
ical condition. In other words, we know how many AD, MCI,
and Normal boxes are contained in each cluster, obtained by
the hierarchical and k-means clusterization methods. Then an
independent two-sample t-test is applied on two HBT datasets.
Because the test statistic (t) does not fall into the rejection region,
we can state that the null hypothesis is supported and thus that
different clusterization methods give no appreciable difference
between the means of the two samples. For example, P (T ≤ t)
one-tail = .3 on the set of template sets {S′

1, S′
2, S′

3, S′
4, S′

5, . . .}
extracted from 190 images belonging to subjects with different
clinical conditions.

An interesting result is the independence of the template-set
selection on the choice of the first fixed image (HB0) from which
the “exhaustive” procedure starts. Given the same dataset, we
observed that the cluster members chosen after an “exhaustive”
procedure started from an hippocampal formation (HB0) with
severe atrophy, and those obtained starting from an HB0 with
a minimal atrophy, are statistically compatible. We mean that
the composition of each template set {S′

1, S′
2, S′

3, S′
4, S′

5, . . .}, in
terms of subjects with a particular clinical condition, is inde-
pendent on the condition of the first hippocampal formation
(HB0).

At this point, we have a set of template sets, {S′
1, S′

2, S′
3,

S′
4, S′

5, . . .}, but we do not know yet which ones can be used as
templates’ set, able to represent the morphological variability
of the whole population. A large k value, comparable with
the number n of MRI, would reasonably give the complete
description of the morphological variability, but this would be a
trivial solution. On the contrary, a too small k value is expected
to give poor accuracy.

Two questions arise, if a “natural” number k of templates
exists, and, if not, how can we choose the “minimum” number
k of templates. The problem of the existence of the “natural”
number of clusters, representing the hippocampal boxes popu-
lation is discussed in Esposito et al.31 It is solved by analyzing
the centroids distance distribution versus the number of clus-
ters. As expected the resulting “natural” number of clusters is
independent on the amount of boxes considered (if statistically
consistent), and, for the hippocampal boxes, the centroids of
the found clusters are the searched HBTs.

The problem of the selection of the “minimum” number k
value for given set of images is very similar to a very known
problem in unsupervised clustering techniques, that aim to iden-
tify a data-driven optimal number of clusters without a priori
knowledge. For example, Wang and Zhang32 conducted exten-
sive comparisons of fuzzy cluster validity indices in conjunc-
tion with the Fuzzy C -Means clustering algorithm on a number
of widely used datasets, with a simple analysis of the experi-
mental results. They found that none of the abovementioned
indices correctly recognizes optimal cluster numbers for all con-
sidered datasets, confirming the difficulties in cluster validation
task.

For these reasons the next section will concern the assess-
ment of quality of the template-based extraction procedure,
and then the choice of a “minimum” k value, proposing an a
posteriori validation.

Results and Discussions
Here we want to discuss the impact of the template-set selection
upon template generation quality, carrying out a number of
tests. For this purpose, we consider the possibility of an accurate
extraction procedure (hereafter called “normal”) based on a set
S′

k of HBTs, having cardinality k far lower than n. The aim
is to show how well a small subset of S, called ,S′

k, S′
k ⊂ S, is

able to fit the task of extracting HBs from an arbitrary set of
images, in particular any dataset not related to the one from
which the elements of S′

k are selected, taking into account the
morphological variability of the population.

We assume that the “exhaustive” extraction of n HBs rep-
resents our “gold standard,” to which we shall compare the n
boxes, obtained from the extraction performed by the selected
HBTs (“normal” extraction).

The hippocampal boxes will now be extracted using as fixed
images all the elements of each set S′k , and coregistering them
in turn with all the moving images of a dataset, using the same
algorithm as in the “exhaustive” procedure. This way of extract-
ing the HBs doesn’t require a determined first fixed image to
start, but the registration procedure of each n moving images is
performed with respect to all the k HBTs. In terms of computa-
tion, the extraction cost is n × k , instead of n(n + 1)/2 as in the
“exhaustive” procedure, and even if a number of images are
added to the dataset the procedure doesn’t need to be restarted.

First we observe that it is not reasonable to evaluate template
generation quality through the correlation coefficient between
each box extracted by the “exhaustive” procedure (ie, HBj

x )
and the same box extracted with the “normal” one at given k
(ie, HBj

k ). In fact, as expected due to the rationale of the proce-
dure, the mean value of the correlation coefficient between all
the (HBj

x , HBj
k ) couples, for any k , gives a strong correlation

between the two sets of boxes. With a t-test applied to the two
sets of boxes we have a probability <10−6 that the difference
between the two means is caused by chance.

Therefore the correlation coefficient, although useful in the
extraction process, is not sensible enough to discriminate be-
tween the boxes extracted by each S′

k .
To give this estimation, we propose a metric based on the

geometrical position of the boxes. For each MRj image, we take
the corresponding HBj

x extracted by the “exhaustive” proce-
dure and HBj

k extracted by the “normal” one (for each k value).
Let Vj 1 and Vj 2 be two opposite vertices of the “exhaustive”

box HBj
x , and V′

j1 and V′
j2 the corresponding vertices in the

“normal” box, we calculate a parameter Dj (k) as the mean of the
Euclidean distances (dist) between Vx

j1 and Vk
j1, and between

Vx
j2 and Vk

j2.
By averaging Dj (k) on all the n boxes, we obtain a parameter

that measures how much the HB set extracted by the “normal”
method at a particular k value reproduces the “exhaustive” one:

D(k) = 1
n

n∑
j=1

1
2

[
dist

(
V x

j1, V k
j1

)
+ dist

(
V x

j2, V k
j2

)]
. (2)

In principle, if we would use as HBTs all the boxes ob-
tained by the “exhaustive” procedure and clusterized for k =
n, this parameter would vanish, because any template would
extract itself with the maximum accuracy, for this reason we
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Fig 4. The pattern of the D parameter versus the number k of clus-
ters, obtained by k-means clusterization method, when performed
before or after the histogram standardization step.

expect a downward trend of D(k) when the number of templates
increases.

Figure 3 shows the D parameter versus the number k of
clusters, for a dataset of 190 subjects with clinical conditions
(AD) from Normal to MCI to AD, comparing two different
clusterization methods, k-means and hierarchical, respectively.
We observed that the accuracy error shown by the extraction
process does not depend on the clusterization method, and both
the plots confirm the decreasing trend of D(k).

In Figure 4 the D parameter versus the number k of clus-
ters is shown, for the same dataset of 190 subjects, obtained
by the k-means clusterization method, with and without14 the
histogram standardization step. In general, D values are lower
when standardization is applied and the trend of the curve ex-
hibits smaller fluctuations, with a more stable behavior. These
aspects affect the choice of a “minimum” k number of templates,
as explained hereafter.

In Figure 5A a plot of the D parameter versus the number
k of clusters is shown, for three different but homogeneous sets
of MR images, belonging to subjects with analogous clinical
conditions (ie, Normal or MCI or AD). Also, in these cases the
D(k) graphs show a similar decreasing trend as in Figure 3.

Now we want to discuss the possibility of estimating a “min-
imum” k number of templates, able to faithfully reproduce the
extraction performed by the “exhaustive” procedure. In a sense,
this set of k templates would be capable of describing the mor-
phological variability of the whole image dataset.

As already pointed out, D(k) has a downward trend, there-
fore we could estimate a “minimum” k value (hereafter called
kmin), where this function becomes stable and low enough, as a
good compromise for describing population variability.

Two possible approaches to the choice of kmin can be ad-
dressed, involving absolute and relative thresholds.

An absolute threshold leads to an estimation of a suitable
kmin as the value for which y(k) becomes lower than an arbitrary
but “small enough” threshold value θ , for example, 1 or .5 mm.
This is a natural approach, and, for example, the choice of θ = 1
mm applied in the case of the nonhomogeneous dataset (Fig 3)
leads to kmin ≈ 7.

Extending this absolute θ value to the different D(k)’s in
Figure 5 would lead to kmin ≈ 4, that is, a template set com-

posed of only four templates. However, observing the Figure 5
it is evident that the D(k) data is rapidly varying in the region
around this kmin value. Therefore, this estimation cannot take
into account that no stability is achieved in this k domain.

According to these observations, the option of choosing a
relative approach was explored. It consists in an estimation
obtained by fitting D(k) with a parameterized exponential func-
tion, such as y (k) = a e−k/b + c . This function is applied as fitting
curve both to the mean values of the two sets of data in Figure 3
(solid line) and to the MCI data (Fig 5B).

The fitting lines seem to describe the experimental data quite
well. Then, a suitable kmin can be chosen where y becomes
stable enough and “small.”

For example, we can decide to select kmin as the value for
which the decreasing exponential reaches 10% of its amplitude,
after subtracting the baseline, that is, y(kmin) = a/10+c . This
means that kmin = b ln 10 , that is, the “minimum” k , only de-
pends (linearly) on the b parameter.

In all the cases we analyzed, we remarked that D(k) fitting
functions in homogeneous datasets are characterized by smaller
a, b, and c values than nonhomogeneous ones, that is, y(k) starts
lower, goes down faster, and gets lower for high k values, as
intuitively expected. Therefore, choosing kmin in a relative way
assures us that the correlation between “homogeneous sample”
and “small kmin” is respected, reflecting the high intersubject
anatomy similarity in homogeneous datasets.

From the above considerations, in the case of a relative
threshold, kmin ≈ 11 can be considered the “minimum” num-
ber of templates able to describe the morphological variability
of the hippocampal region in a sample of subjects with clinical
conditions (AD) from Normal to MCI to AD (Fig 4). The “min-
imum” k for the three datasets of Figure 5 (solid line in Fig 5B
concerns MCI data) is obtained for a lower value, about 7, as
expected due to dataset homogeneity.

Comparing the kmin values obtained by the two different
approaches, we can conclude that

(1) both approaches give lower values for homogeneous datasets
with respect to nonhomogeneous ones; and

(2) in our opinion, the choice of a relative threshold gives more
reliable results.

Another observation can be made. Due to variability in
shape and/or asymmetry between left and right hippocampus,
is it possible that D(k) can be different in the two cases, and
hence may yield to different kmin values for the same popula-
tion. In point of fact we assessed for all the datasets we investi-
gated, that the choice of a “minimum” k with a relative threshold
gives no significant difference for left and right hippocampi.

With the aim of testing the generality of our procedure,
we wanted to perform template-set selection on other regions,
rather well characterized in the brain, properly choosing the
initial coordinates and dimensions of the fixed image. A first
investigation on a second brain zone (40 × 40 × 40 pixel large),
near the amygdala on a set of 100 new ADNI images not in-
cluded in the dataset from which the hippocampal extraction
was performed, shows a downward trend of D(k) versus the
number of templates, which is promising and suggests that the
procedure may be generalized to other brain regions, as long as
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Fig 5. (A) The pattern of the D parameter versus the number k of clusters, for datasets of images belonging to patients with homogeneous
clinical conditions (Alzheimer’s disease). (B) Fitting curve on the D parameter for a dataset of images belonging to MCI patients.

the chosen regions are well distinguishable from surrounding
tissue.

As regards the effectiveness of the proposed procedure,
Calvini et al12 evaluated the efficiency of the “normal” extrac-
tion by HBTs generated, as described, on images belonging
to patients with different clinical conditions. They showed that
the use of the HBTs significantly reflects on the capture of dif-
ferences between subgroups of interest with different stages of
cognitive impairment, with comparable discriminating capa-
bility between MCI converters and controls and between AD
patients and controls. We repeated these tests, investigating the
influence of histogram standardization on the ability of the �-
box projection to discriminate between the different classes of
subjects. The same simple classification scheme as in Calvini
et al12 was adopted, and ROC curves were drawn for each clas-
sification task (eg, control patients vs AD, AD vs MCI, etc). Our
calculations showed that the introduction of preliminary gray
level standardization really makes the classification task more
accurate, with AUC values that increased about two-three per-
centage points, when the images were acquired with the same
equipment. Comparing with the work in Calvini et al, we also
used datasets that were particularly nonhomogeneous in terms
of gray level scale, and the increase was even more evident. In
one case, for example, the discriminating power of the �-box
projection increased from AUC value equals to .78 without his-
togram standardization and to .86 with standardization. ROC
curve examples, controls versus AD, for a dataset with strong
gray level scale differences (with and without histogram stan-
dardization) are shown in the Supporting Information.

Conclusions
In conclusion, we detailed a procedure for generating a set
of templates for the hippocampal region, considering var-
ious MRI datasets, different for cardinality and (homoge-
neous/nonhomogeneous) conditions of the population.

In general, the images are not based on a common stan-
dard gray level scale and the extraction-procedure accuracy
would be severely affected, so robust standardization is applied.

Then an “exhaustive” extraction of the hippocampal region is
performed, starting from a fixed hippocampal box (HB0). At
the beginning, the early extractions exhaust the set of the HBs
which are very similar to the defined HB0. Then, the procedure
continues extracting HBs that are progressively different from
the first ones, but diversity creeps into the growing HB database
very slowly, thanks to the relevant size of the population of the
available MR images. Thus, the orientation and position of the
essential geometrical features of the searched region are pre-
served during the whole process of HB extraction.

Then the extracted regions are clusterized to choose the
most representative images in a large population, proposing an
estimation of the “minimum” number of templates that fulfill
our purpose.

We assess that this “minimum” number of templates is
largely independent on the clusterization method and on the
number of the MR images, if statistically consistent with re-
spect to the clinical conditions of the patients.

From the above, the best strategy, to be used when nonho-
mogeneous populations are considered, strictly depends on the
features and characteristics we want to emphasize better.

We stress that

(1) the extraction procedure is severely affected when the images
do not come from the same source (hospital/scanner) and do
not undergo proper histogram standardization. On the contrary,
when this step is applied, it is easier to propose a “minimum”
number of templates. Moreover, the discriminating power of
indicators based on the gray values of the extracted boxes is
increased;

(2) the “exhaustive” extraction of a given region is mandatory and
to be performed on a large number of images only once;

(3) a “minimum” number of templates can be estimated for the
hippocampal region;

(4) we chose the templates not as the mean images of a dataset, but
as a group of the most representative ones; and

(5) the number of templates able to describe the population is lower
for patients with homogeneous clinical conditions than with
mixed degrees of neuropathology (eg, AD).

The selected template set can be used for the extrac-
tion/evaluation of that region on various and different MRI
datasets.33
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The procedure is simple to use and can be considered a
promising approach in atlas generation. Because the first results
are encouraging, future work will be to extensively generalize
and apply the procedure to other brain regions, which may be
relevant for future neuroimaging studies.
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Supporting Information
Additional supporting information may be found in the online
version of this article:

Figure S1. Left: the initial hippocampal box (HB0) from
which an “exhaustive” extraction started Right: Templates se-
lected after clusterization for k = 12.

Figure S2. ROC curve examples, controls vs AD, for a
dataset with strong gray level scale differences. The introduc-
tion of preliminary gray level standardization (black) makes the
classification task more accurate than without standardization
(blue).

Please note: Wiley-Blackwell are not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the article.
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