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Summary. Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies
on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although, kernel-
based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are
only well studied for independent data, but not for longitudinal data. It is thus important to develop time-sensitive prediction
rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for
longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account
for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly
common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical
learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of
various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction
power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and
then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one
on Huntington’s disease and the other on Alzheimer’s Disease (Alzheimer’s Disease Neuroimaging Initiative, ADNI) where
we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and
show a substantial gain in performance while accounting for the longitudinal aspect of the data.
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1. Introduction
Accurate prediction of current and future clinical status of a
patient based on subject-specific clinical and biological mark-
ers is an important goal for early diagnosis and monitoring
disease progression. Modern technologies offer opportunities
to collect data from heterogeneous sources such as genetic
data, imaging data, and clinical data including electronic
health records. Therefore, it is valuable to develop prediction
rules that can accommodate heterogeneous sources of data
to boost prediction power. Furthermore, many cohort studies
on natural history and etiology of chronic diseases often span
years and data may be collected at multiple visits. It is thus
important to develop time-sensitive prediction rules that not
only integrate data from multiple sources but also make use
of the longitudinal nature of the data collected from the same
subjects.

There is an extensive body of literature on longitudinal
data analysis exploring the association between candidate
predictors and outcomes measured repeatedly over time (e.g.,
Diggle et al., 2002). In these association analyses, primary
goals are estimation and hypothesis testing of regression pa-
rameters which may not necessarily yield powerful prediction
rules. The focus of the current work is on prediction of out-
comes in future subjects or prediction of future observations
on the same subject from longitudinal data with a potentially
large number of predictors. For the purpose of prediction

with longitudinal data, some previous research has focused
on linear or quadratic discriminant analysis of longitudinal
profiles or a sample of curves (e.g., James and Hastie 2001;
Marshall and Baron 2000; Luts et al., 2013). These papers
aim to classify a functional curve into two groups and rely
on either linear mixed effects models (Verbeke and Leseffre,
1996; Marshall and Baron, 2000) or functional data analysis
or their extensions (James and Hastie, 2001) to perform clas-
sification. In the past decades, there has been growing interest
in using powerful machine learning methods to build effective
predictive models for binary and continuous disease outcomes
(Oquendo et al., 2012). Particularly, kernel-based methods
such as support vector machine or support vector regression
are proposed to classify longitudinal profile into groups
(Pearce and Wand, 2009; Luts et al., 2012). However, disease
outcomes in these approaches do not change with time so
they are not applicable to classify clinical outcomes assessed
repeatedly over time. Since most of the existing statistical
learning methods assume the sample to be independent
and identically distributed, there is a lack of literature on
how to effectively incorporate within-subject dependence to
improve prediction of future subjects’ clinical outcomes or
within-subject change especially when the clinical outcomes
are binary.

In this paper, we introduce a novel statistical learning
method to predict longitudinal binary outcomes in the
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multiple kernel learning (Lanckriet et al., 2004; Bach and
Lanckriet, 2004) framework. Our method not only uses ob-
served feature variables but also introduces subject-specific
unobserved latent variables to extract information from
correlated outcomes and build time-sensitive prediction
rules. More specifically, we use multiple additive kernels for
observed feature variables, which can account for heteroge-
neous data sources taking advantage of the correlation within
each data modality, while at the same time, we account for
within-subject correlation of longitudinal measurements by
introducing subject-specific short-term and long-term latent
random effects modeled through a separate kernel. In many
biomedical studies, the observed feature variables only ex-
plain some proportion of variability in outcomes, and the gain
from using latent random effects to extract information from
the remaining unexplained variability can be substantial. The
weights used for each kernel are tuned based on minimizing
the overall loss, therefore we optimally combine data across
modalities in a data-driven fashion. In addition to methods
for training model, we also develop methods for predicting
future outcomes through observed features and unobserved
latent effects when longitudinal training data are available.

On one hand, depending on the choice of kernels, the
proposed method has some similarity to semiparametric or
nonparametric mixed effect models for longitudinal data.
However, unlike traditional mixed models, our proposed
method aims at prediction accuracy, allows greater flexibility
through the use of kernel machines, and is relatively easy to
scale up for large dimensional data. On the other hand, using
different kernels for feature variables and latent variables
shares the same advantages with multiple kernel learning
methods which have been developed to handle the challenges
of integrating different data sources (Pavlidis et al., 2002;
Lanckriet et al., 2004; Yu et al., 2010; Zhang and Shen, 2012).
Specifically, the latter treats each data source component,
for example, genetic data, imaging data or clinical data, as
belonging to separate kernel spaces and finds an optimal way
to combine them for prediction. The multiple kernel methods
have been shown to yield much improved performance as
compared to using one single kernel in various biomedical
applications (Yu et al., 2010). Although our proposed method
uses multiple kernel algorithms, one significant difference
from the above literature is that separate kernels are also
applied to unobserved latent variables.

The paper is structured as follows. In Section 2, we propose
a learning method to predict longitudinal binary outcomes
based on the support vector machine with multiple kernels.
In Section 3, extensive simulation studies are conducted to
illustrate small-sample performance of the proposed method
and compare with some existing approaches. In Section 4,
we apply the developed method to analyze the Alzheimer’s
disease neuroimaging initiative (ADNI) data, where a unique
opportunity is presented to combine various modalities of
imaging and genetic data to distinguish subjects with mild
cognitive impairment (MCI) from subjects with Alzheimer’s
disease (AD), and we show a substantial gain in performance
while accounting for the longitudinal correlation in the data.
The proposed multiple kernel fusion with random effects
proves to be effective in this application. Some remarks are
provided in Section 5.

2. Multiple Kernel Fusion Learning for
Longitudinal Data

We start by briefly introducing standard statistical learning
through support vector machine with a single kernel, followed
by incorporating a longitudinal component to the learning
through fusing two kernels, and lastly we discuss integration of
multiple data sources through fusing multiple heterogeneous
kernels.

2.1. Review of Support Vector Machine

Let X denote a complete separable space for feature vari-
ables. The random feature variables X take values in X, and
the binary disease outcomes Y take values in R. The goal of
statistical learning is to train an optimal prediction function
f : X → R to predict Y given X for any future subject, where
the performance of prediction is quantified by the prediction
error defined as E[I(Yf (X) < 0]. Due to the non-smoothness
of I(Yf (X) < 0), the optimal prediction function is usually ob-
tained by minimizing the empirical version of some surrogate
loss function. One such loss function most commonly used is
the hinge loss, or the so called support vector machine (SVM,
Vapnik, 1995), and it has been proven to be successful in a
wide range of applications (Orru et al., 2012).

Assume that we have n independent observations
(xi, yi), i = 1, ..., n. With a linear prediction function f (xi) =
〈xi,w〉 + d, where the inner product 〈a,b〉 = aTb, the primal
optimization problem of the SVM has the form (e.g., Hastie
et al., 2009)

min
w∈X,d∈R

{
1

2
wTw + C

n∑
i=1

ξi

}
(1)

subject to the constraints with slack variables ξi

yi(〈xi,w〉 + d) ≥ 1 − ξi and ξi ≥ 0, for all i = 1, ..., n.

To accommodate nonlinear boundary, a Mercer kernel k(·, ·)
is defined such that k(xi,xj) = 〈�(xi), �(xj)〉, where �(·) is
the mapping from the input space to a higher dimensional
feature space, and 〈·, ·〉 is the inner product defined in the
reproducing kernel Hilbert space (RKHS, Wahba 1990). The
corresponding dual form becomes

max
α∈Rn

{
n∑

i=1

αi − 1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)

}
,

leading to the decision functions of the form d(x) =
sign (

∑n

i=1
αiyik(x,xi) + d). Note that one advantage of solv-

ing the optimization from the dual form is that the explicit
form of �(·) does not need to be known as long as the kernel
function k(·, ·) is well defined (Kimeldorf and Wahba, 1970).

2.2. Proposed Multiple Kernel Learning for Longitudinal
Data

For longitudinal biomedical data, outcome measures on the
same subjects are correlated after accounting for the observed
fixed effects feature variables. Taking advantage of such cor-
relation is expected to lead to improved prediction. Classi-
cal longitudinal analysis divides into two camps: estimating
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the marginal population-average effect, and estimating the
subject-specific effect given the random effects. For the for-
mer view, correlation among repeated measures is treated as
nuisance parameter, while for the latter it is modeled through
subject-specific random effects. In our setting, subject-specific
classifications are of interest instead of population average
effects, therefore we introduce random effects to the SVM
framework to improve prediction in our proposed approach.

Assume that we have n independent subjects and the ith
subject has ni visits. Let yij denote the disease outcome for the
ith subject at the jth visit coded as “1” for diseased subjects
and “−1” for non-diseased subjects. Let xij denote a vector
of feature variables collected at the same visit. We introduce
two latent random effects for subject i, a time-invariant effect
aij, which aims to capture the long-term latent effect across
all the visits from the same subject, and a time-varying effect
bij, which attempts to account for short-term latent effect or
local influence from recent history that depends on the time
interval between visits. Therefore, for a subject with feature
variables xij at time tij, a prediction rule with subject-specific
random effects can be expressed as

sign{f (xij, aij, bij)},

where the prediction function has the form

f (xij, aij, bij) = 〈�x(xij),w〉 + wa�a(aij) + wb�b(bij). (2)

Here, �x(x) consists of some mapping from the input space X
to a higher-order feature space (e.g., the basis function asso-
ciated with some reproducing kernel Hilbert space) and both
�a(a) and �b(b) are nonlinear transformation of the latent ef-
fects which will be induced by some kernel functions defined
for aij and bij, respectively in Section 2.3. For identifiability,
we also assume that aij and bij are standardized random vari-
ables with mean zero and variance one. Clearly, since a and
b are unobserved random variables, conventional SVM tech-
niques cannot be directly applied.

When including the random effects into the model, the sin-
gle kernel SVM becomes a multi-kernel SVM with one kernel
for fixed effects and two kernels for random effects. Following
the multiple kernel learning framework, a weight parameter θ

is then assigned to each kernel and a fused kernel is formed
as a linear combination of kernels under an L2-norm regu-
larization constraint on the weight parameters. The weights
are chosen in a data-driven way to minimize the loss function
under the fused kernels. Thus, the primal form in the feature
space becomes

min
wx∈X

1

2

(
wT

x wx

θx

+ w2
a

θa

+ w2
b

θb

)
+ C

n,ni∑
i,j

ξij (3)

subject to yij

(√
θx〈�x(xij),wx〉 +

√
θawa�a(aij)

+
√

θbwb�b(bij)
)

≥ 1 − ξij

ξij ≥ 0, i = 1, ..., n, and j = 1, ..., ni,

θ2
x + θ2

a + θ2
b = 1, θx, θa, θb ≥ 0.

As a remark, comparing the optimization problem for lon-
gitudinal data (3) with the original standard SVM primal
form (1), we observe that the objective function for the for-
mer is a conic combination of the separate objective functions
for the latter with a quadratic constraint. Furthermore, the
resemblance with multiple kernel learning allows easy gener-
alization to accommodate data from heterogeneous sources
by using separate kernels for observed feature variables from
each source. Such method incorporates prior knowledge on
each source while performing integration. Contrary to con-
catenating all variables in a single kernel, using separate ones
reflects prior knowledge that the feature variables from the
same source have stronger correlations than with variables
from difference sources. For example, assuming there are P

data sources of fixed effects and two kernels for random ef-
fects, the corresponding primal form is

min
w∈X,θp,θa,θb∈R

1

2

(
P∑

p=1

wT
pwp

θp

+ w2
a

θa

+ w2
b

θb

)
+ C

n,ni∑
i,j

ξij

subject to yij

(
P∑

p=1

√
θp〈�p(xijp),wp〉 +

√
θawa�a(aij)

+
√

θbwb�b(bij)

)
≥ 1 − ξij

ξij ≥ 0, i = 1, ..., n, and j = 1, ..., ni,

P∑
p=1

θ2
p + θ2

a + θ2
b = 1, θp, θa, θb ≥ 0, p = 1, · · · , P.

The computation of the multiple kernel learning is es-
sentially a quadratically-constrained quadratic programming
(QCQP) problem

max
α

min
θ

n,ni∑
ij

αij − 1

2

n∑
i,k

ni∑
j,l

αijαklyijykl{
P∑

p=1

θpkp(xijp,xklp)

+ θaka(aij, akl) + θbkb(bij, bkl)} (4)

subject to 0≤ αij ≤ C, i, k = 1, . . . , n, j, l = 1, . . . , ni,

n,ni∑
i,j

αijyij = 0,

P∑
p

θ2
p + θ2

a + θ2
b = 1, θp, θa, θb ≥ 0, p = 1, · · · , P.

where kp(xijp,xklp) = 〈�p(xijp), �p(xklp)〉 is the kernel for the
reproducing kernel Hilbert space for xijp, and ka(aij, akl) =
〈�a(aij), �a(akl)〉 and kb(bij, bkl) = 〈�b(bij), �b(bkl)〉 are kernel
functions for some inner products defined for latent effects we
discuss next.

2.3. Choice of Kernel Functions for Latent Effects

Here we introduce kernels to model the two random effects aij

and bij respectively. Recall kernel matrix measures similarity
between two observations, a natural choice of kernel func-
tion is the covariance structure of the random effects which
can also be considered as the inner product with respect to
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its distribution function. Thus, we assume that the similarity
between the latent effects from independent subjects is zero,
the similarity between the long term random effects on the
same subjects is a constant ρ, and the similarity between local
short term random effects depends on the time interval be-
tween the two measurements. Specifically, to account for the
long-term latent effects, we can consider aij to represent the
common random effect shared across visits plus an indepen-
dent random error component, and therefore the commonly
shared random effect will contribute to prediction at each
visit. Equivalently, construct elements in a kernel matrix as
ka(aij, akl) = 1 if i = k, j = l; ka(aij, akl) = ρ if i = k, j 	= l; and
ka(aij, akl) = 0 if i 	= k. Next, in order to account for short term
latent random effects, we assume an exponential covariance
structure for bi. Thus, kb(bij, bkl) = exp{−α|tij − til|} if i = k;
and kb(bij, bkl) = 0 if i 	= k. The kernel function for ni long-
term random effects ai = (ai1, · · · , aini

)T and short term ran-
dom effects bi = (bi1, · · · , bini

)T with measurement time points
(ti1, · · · , tini

)T are defined as

Kai
=

⎛
⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · · · · · · · ·
ρ · · · ρ 1

⎞
⎟⎟⎠

ni×ni

Kbi
=

⎛
⎜⎝

1 e−α|ti1−ti2| . . . e−α|ti1−tini
|

e−α|ti1−ti2| 1 . . . e−α|ti2−tini
|

...
...

. . .
...

⎞
⎟⎠

ni×ni

where α is a scale parameter.
Under the above choice of kernels, we can optimize the dual

form (4) using the quadratic programming. Earlier work sug-
gests exhaustive search at given values of θ and treating the
fused kernels as a new kernel in a standard SVM optimiza-
tion problem. However, the computational burden is high. A
computationally efficient algorithm for solving the optimiza-
tion problem (4) was proposed in Yu et al. (2010) to solve for
weights θ and α simultaneously. Specifically, the dual form (4)
is solved under the Cauchy–Schwarz inequality as

min
t,α

1

2
t −

n,ni∑
i,j

αij

subject to

n,ni∑
i,j

αijyij = 0, 0 ≤ αij ≤ C, t ≥ ‖γ‖2,

where γ = {
αT YK1Yα, ..., αT YKPYα, αT YKaYα, αT YKbYα

}T
,

and the optimal weight parameters for the pth kernel is
θ∗
p = αT YKpYα/‖γ‖2.

2.4. Prediction of Future Observations

For a longitudinal study, we distinguish two types of predic-
tion of interest. We define type A prediction as predicting
outcome for a new subject with the observed feature vari-
ables x only and no prior history information, for example,
prediction for a new subject at the baseline visit. We define

type B prediction as predicting outcomes at future follow-up
time points for an existing subject with observed prior visit
outcomes and feature variables x. One of the main compo-
nents of our proposed learning is to extract information from
existing correlated outcomes to improve future prediction. For
each type of the prediction, we discuss a different strategy in
predicting the outcomes.

For type A prediction on a new subject with feature vari-
ables xi, directly using designed kernel functions and the fitted
prediction function (2) is equivalent to using fixed effects only
to predict the outcome and set the random effects at their
mean level, zero. This is because the designed kernel func-
tions ka and kb for random effects have non-zero values only
between two visits on the same subject. In type A problem,
the existing subjects and the new subject are independent,
and therefore the fitted score from solving the dual form (4)
do not involve random effects, which corresponds to using the
population mean value for all subjects with fixed effects xi to
perform prediction.

To include random effects for type A prediction, we re-
peatedly draw independent random effects ai and bi from a
working Gaussian distribution. For each random draw, we
computed the predictive function as in (2) and classify the
outcome using the sign of f (xi, ai, bi). The final predicted
outcome is based on a majority vote: if more than 50% of
random draws lead to positive predicted outcomes, the final
predicted outcome would be positive, and otherwise negative.

For type B prediction, we use an existing subject’s pre-
dictors and outcomes at prior visits to predict their future
follow up outcomes. We can then directly compute the ran-
dom effects for the same subject at a future time t∗ using the
designed kernel matrices Ka and Kb, and the fitted predictive
function is obtained from the solutions to (4).

3. Simulation Studies

In this section, we conducted simulation studies to compare
the empirical performance of multi-kernel SVM with sev-
eral standard alternatives for analyzing longitudinal data. We
started with a setting where we generated data from a single
data source. The first simulation setting and results are sum-
marized in the Supplementary Materials Section A.1. In order
to mimic the real data application where the data are com-
plex and from heterogeneous sources, in simulation setting 2,
we generated the dichotomous outcomes from the following
model:

Yij = sign{β0Tij + βT
1Zi + βT

2X∗
ij + β3W

∗
i + aij + bij + εij},

where Tij is the age of the ith subject at the jth visit. The age
was simulated from a uniform distribution ranging from 10
to 70 years old, and the two subsequent visits from a subject
were generated to be approximately 3 years apart. Here Zi is
a vector of time-invariant binary markers of the ith subject
which remain the same at each visit; X1i is a vector of time-
invariant continuous markers of ith subject uniformly rang-
ing from -2 to 2; and X2ij is a vector of time-varying continu-
ous markers with a correlation ρ(X2ij, X2ik) = exp(−α|tij − tik|)
with α = 1 between the jth and kth visits of the ith sub-
ject. Vector X = (X∗

1, X∗
2) are the mapping of (X1, X2) in
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the new feature space corresponding to a polynomial kernel
with degree 2, for example, the inner product < u∗, v∗ > in
the feature space equals K(u, v) in the original space, where
K is a polynomial kernel with degree 2. In the Supplemen-
tary Materials Figure A2 we demonstrated a typical set of X

when its dimension is 2. The boundary for the two groups is
nonlinear in the original space (top panel), while in the new
three-dimensional feature space the boundary becomes a sep-
arating plane which is linear (bottom panel). Markers W i is
a time-invariant three-dimensional vector randomly located
either on the outer sphere with a radius equal to 2 or on the
inner sphere with a radius equal to 1 (with equal probability,
and each radius has a small random error) (Supplementary
Materials Figure A1). A single radial kernel SVM can gener-
ate a sphere-shaped boundary and perfectly separate the two
groups of W ’s. Therefore, the corresponding oracle kernels to
use for the fixed effects in this setting are a linear kernel for
T , a linear kernel for Z, a polynomial kernel with degree 2 for
X, and a radial kernel for W .

Subject-specific latent effects ai and bi are subject-specific
random effects. ai is generated from MVN(0, 	a), where 	a

is a correlation matrix with compound-symmetric structure
(ρ = 0.5), and bi is generated from MVN(0, 	b), where 	b is a
correlation matrix with exponential correlation structure, for
example, ρj,k = exp(−α|tj − tk|) with α = 1. εij are normally
distributed random errors of the ith subject at the jth visit.

We conducted two types of prediction for different pur-
poses. In type A prediction we generated samples with a size of
n = 500 subjects, each having 4 visits. Two-thirds of the sub-
jects are included in the training set and the remaining one-
third as the testing set. In all the simulations here, we used
cross-validation to choose parameter ρ in fitting the long term
random effects kernel introduced in Section 2.3 by grid search.
It takes about 60 minutes to run one simulation round of the
multiple kernel SVM (a sample size of 500, 4 visit time points
and 6 kernels for different data sources) with fivefold CV to se-
lect from 4 candidate values for a parameter on a workstation
(Intel Xeon 2.30 Ghz CPU). We present the results in Fig-
ure 1. In the top panel we compared a total of six methods,
a logistic regression, a generalized mixed effects regression,
and four different SVMs, including a fixed-effects single ra-
dial kernel SVM (concatenate all feature variables in a single
radial kernel; “fixed-effects” refers to ignoring random effects
in both model fitting and prediction), a fixed-effects multiple
radial kernel SVM (one separate radial kernel for each group
of variables from one source), a fixed-effects multiple oracle
kernel SVM, and a mixed-effects multiple oracle kernel SVM
(“mixed effects” refers to including kernels for random effects
in both model fitting and prediction). In this case, the lo-
gistic regression and the generalized mixed effects regression
perform substantially worse than the SVM based methods
in terms of all fit indices: accuracy (1-misclassification rate),
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). In addition, the variability
of the former two approaches are much larger than the latter,
indicating that the SVM based methods provide more stable
predictions.

When comparing the four SVM-based approaches, the
single radial kernel SVM performs the worst (results for the
single linear or polynomial kernel are even worse than using

radial kernel, so they are not shown here), indicating the
advantage for using separate kernels for fixed effects when
data are heterogenous. Using multiple oracle kernels greatly
improves the performance comparing to using multiple radial
kernels (same type of kernels), which confirms the impor-
tance of using appropriate kernels for data from different
sources. When comparing the performance of fixed-effects
versus mixed-effects multiple oracle kernel SVM, we see that
including kernels for random effects reduces variability for all
the fit indices and improves or maintains their mean values.
A paired t-test comparing fixed-effects versus mixed-effects
multiple oracle kernel SVM shows a significant decrease in
misclassification rate (p < 0.001).

In type B prediction we generated samples with a size of
n = 500 subjects, each having 6 visits. The first 3 visits of
each subject are used as the training set and the rest 3 visits
as the testing set. We predicted the subject-specific outcomes
for the last 3 visits for each subject. The bottom panel of
Figure 1 compares the performance of multiple oracle ker-
nel SVM with or without random effects to logistic regres-
sion and generalized mixed effects regression. A paired t-test
comparing fixed-effects versus mixed-effects multiple oracle
kernel SVM shows a significant decrease in misclassification
rate (p < 0.001). The magnitude of improvement is greater
than that in type A prediction, suggesting that the developed
method is more powerful when predicting subject-specific out-
comes when some outcomes on the prior visits of the same
subject are available.

In order to examine the effect of kernel function misspeci-
fication, we conducted two sensitivity analyses with mild and
moderate misspecification of Kb. For these sensitivity anal-
yses, to save computational burden, we adopted a practical
approach where we used cross-validation to select ρ in Ka in
the first few replications and fixed their values at the cho-
sen ones for other replications. Based on our experience for
simulations in Figure 1, the results do no differ substantially
between the practical approach (results not shown) and full
scale cross-validation (identical up to 2 decimal places). Sim-
ulations with full scale cross-validation are expected to be
similar or better. The short-term time-invariant random ef-
fects were generated to follow an AR-1 structure

Kbi
=

⎛
⎜⎜⎝

1 ρb . . . ρ
ni−1
b

ρb 1 . . . ρ
ni−2
b

...
...

. . .
...

⎞
⎟⎟⎠

ni×ni

,

while when fitting the model we misspecify the kernel matrix
as the exponential structure for Kb in Section 2.3. When the
autocorrelation parameter for AR-1 structure ρb = 0.85, Kb

is more similar to that under exponential structure for the
model fitting, which we considered as a mild misspecification.
When ρb = 0.5, the difference in Kb between AR-1 and
exponential structure is larger, which we considered as a
moderate misspecification. We compared 4 SVM models for
type A prediction: a fixed-effects multiple radial kernel SVM,
a fixed-effects multiple fused kernel SVM (“fused” means all
the kernels in the model were correctly specified except for
Kb, if random-effects included), a population-mean level mul-
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Figure 1. Simulation setting 2 (multiple data sources). Top panel presents type A prediction of new subjects (left to right):
1-logistic regression, 2-generalized mixed effects regression, 3-single radial kernel SVM (fixed-effects), 4-multiple radial kernel
SVM (fixed-effects), 5-multiple oracle kernel SVM (fixed-effects), 6-multiple oracle kernel SVM (mixed-effects). Bottom panel
presents type B prediction of outcomes at future visits on the same subjects (left to right): 1-logistic regression, 2-generalized
mixed effects regression, 3-multiple oracle kernel SVM (fixed-effects), 4-multiple oracle kernel SVM (mixed-effects).

tiple fused kernel SVM (“population-mean level” where we
included kernels for random effects in only model fitting but
not the prediction), and a mixed-effects multiple fused kernel
SVM. We compared 2 SVM models for type B prediction (a
fixed-effects and a mixed-effects multiple fused kernel SVM).
The results are shown in Figures 2 and 3. We can see that the
results under both mild and moderate misspecification are
pretty similar to those without misspecification, indicating
that the performance (especially type A prediction) is not

sensitive to the choice of kernel function as long as the tuning
parameters are chosen in a data-driven way.

4. Application to ADNI Data

Data used in the preparation of this article were obtained
from the Alzheimer’s disease neuroimaging initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
by the National Institute on Aging , the National Institute
of Biomedical Imaging and Bioengineering, the Food and
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Figure 2. Sensitivity analysis (multiple data sources): mild misspecification for random effects. Top panel presents type A
prediction of new subjects (left to right): 1-multiple radial kernel SVM (fixed-effects), 2-multiple fused kernel SVM (fixed-
effects), 3-multiple fused kernel SVM (pop. mean), 4-multiple fused kernel SVM (mixed-effects). Bottom panel presents type
B prediction of outcomes at future visits on the same subjects (left to right): 1-multiple fused kernel SVM (fixed-effects),
2-multiple fused kernel SVM (mixed-effects).

Drug Administration (FDA), private pharmaceutical compa-
nies and non-profit organizations. The primary goal of ADNI
has been to test whether serial magnetic resonance imag-
ing, positron emission tomography, other biological markers,
and clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD).

In 2009, efforts to integrate genetic research related to
ADNI biomarkers were planned and carried out to assess
genes beyond ApoE, the largest known genetic risk factor for
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Figure 3. Sensitivity analysis (multiple data sources): moderate misspecification for random effects. Top panel presents
type A prediction of new subjects (left to right): 1-multiple radial kernel SVM (fixed-effects), 2-multiple fused kernel SVM
(fixed-effects), 3-multiple fused kernel SVM (pop. mean), 4-multiple fused kernel SVM (mixed-effects). Bottom panel presents
type B prediction of outcomes at future visits on the same subjects (left to right): 1-multiple fused kernel SVM (fixed-effects),
2-multiple fused kernel SVM (mixed-effects).

AD (Ashford, 2004). Since then, genetic and imaging data
are available to contribute to the understanding of biological
etiology of AD and MCI. The proposed multiple kernel frame-
work exploits this unique opportunity to combine imaging and
genetic data to predict the progression of MCI and early AD.

Previous studies showed that some imaging biomarkers are
important in predicting conversion from MCI to AD and early
AD progression (Devanand et al., 2008; Hampel et al., 2008).
It is conceivable that imaging variables are more correlated
with each other than with genetic markers. If both types of



Multiple Kernel Learning with Random Effects for Predicting Longitudinal Outcomes and Data Integration 9

data are concatenated in a single kernel, for instance, a poly-
nomial kernel, unnecessary polynomial correlation will be im-
posed between imaging and genetic markers. In a multiple
kernel learning with separate kernels, however, such correla-
tion is reduced, avoiding overfitting and unwanted complexity.
In our framework, one could use existing kernels designed for
imaging data and genetic data separately. Such analyses has
not been reported in ADNI literature before.

Our analysis goal is to distinguish the subjects who have
MCI and the subjects who have dementia using demographic,
clinical, imaging, and genetic markers. Our further inclusion
criteria of samples were: subject’s disease status being MCI
or dementia, having 4 or more follow-up records, and having
complete imaging and genetic data. The sample used in our
analysis contains 213 participants from all 3 phases with 1055
longitudinal follow-up records. The key data were merged
from various case report forms and biomarker lab measures
across the ADNI protocols (http://www.adni-info.org/).

The feature variables we used include demographic vari-
ables (age, gender, and education level), clinical variables
(clinical dementia rating sum of boxes scores, the Alzheimer’s
Disease Assessment Scale (11 and 13), mini-mental state ex-
amination, Rey Auditory Verbal Learning Test and func-
tional assessment questionnaire), imaging markers (volume
measures of ventricles, hippocampus, entorhinal cortex, and
intra-cranial volume), and genetic markers (ApoE4 and 16
SNPs on the PICALM gene). The PICALM gene was reported
to be a causal gene for AD (Harold et al., 2009), and therefore
the SNPs in this gene were included in our analyses. We used
four separate kernels for each source of variables in the mul-
tiple fused kernel SVM: a polynomial kernel with degree two
for age at each visit, a radial kernel for demographic variables
and clinical variables, a linear kernel for imaging variables,
and an identity-by-state (IBS) kernel for genetic markers. The
IBS kernel is specially designed to measure the similarity be-
tween two subjects’ SNPs based on their identity by state
information and has been proven to be useful in genome-wide
association studies (Wu et al., 2010). The other kernel types
were selected by small scale cross-validation. The kernels for
the short-term and long-term latent effects were specified as
in Section 2.3, where α and ρ were selected by small scale
cross-validation.

The top panel of Figure 4 summarized the results of a logis-
tic regression, a fixed-effects single radial kernel SVM, a fixed-
effects multiple fused kernel SVM, and a mixed-effects multi-
ple fused kernel SVM for type A prediction. All the feature
variables and the pairwise interaction terms for demographic
and clinical variables were included in logistic regression. The
performance of multiple kernel SVMs improves upon the logis-
tic regression in terms of all the fit indices, and upon the single
radial kernel SVM in terms of accuracy, specificity, and PPV.
Sensitivity of the single kernel SVM is slightly better than
multiple kernel SVMs. The inclusion of latent random effects
to a multiple fused kernel SVM makes little difference in terms
of type A prediction. The bottom panel of Figure 4 compares
the fixed-effects and mixed-effects multiple fused kernel SVM
for type B prediction. In this case, accounting for random
effects in the multiple fused kernel SVM leads to a substan-
tial gain in accuracy, sensitivity and NPV, which reflects the
ability of using the latent random effects kernel matrix to ex-

tract correlated similarity information of the outcomes on the
same subject (within-subject outcomes are often similar to
some extent). In this example, the fixed-effects feature vari-
ables explained some proportion of variability while the latent
effects improve prediction by extracting information from the
unexplained variability in type B prediction. Specificity and
PPV for the mixed-effects SVM is slightly lower, however, to
a much lesser extent.

Another real data example based on PREDICT-HD study
(Paulsen et al., 2008) can be found in Supplementary Mate-
rials Section A.2.

5. Discussion

In this work, we present new statistical learning methods for
longitudinal data. While we adopted a MKL algorithm sim-
ilar to Yu et al. (2010), one significant novelty of our ap-
proach is to construct kernel functions via latent random ef-
fects which can account for both long-term and short-term
dependence. Conventional approaches for analyzing longitu-
dinal data include generalized estimating equations which aim
at estimating population average effects, and generalized lin-
ear mixed effects model regression which aim at estimating
subject-specific effects. These regression-based methods focus
on estimating the association between the outcome and the
predictors, while the large margin-based statistical learning
approaches directly focus on classification and prediction. We
compared our methods to generalized mixed effects regression
since our goal is the subject-specific prediction of disease sta-
tus. Our proposed kernel-based learning method offers an ef-
fective alternative especially when the number of predictors is
large and it can be easily scaled up. A key feature is to embed
correlation of longitudinal observations into kernel matrices
and take advantage of multiple kernel learning methodolo-
gies. With a single data source and a relatively small amount
of predictors, the conventional approaches may perform ade-
quately. However, when there are multiple heterogeneous data
sources, the improvement of the proposed method is more ev-
ident. Making connections to multiple kernel learning allows
the proposed method to enjoy easy integration of heteroge-
neous data sources to boost information while accounting for
the longitudinal data structure. We have shown through our
simulation and real data analyses that when prior scientific
knowledge suggests distinct distribution of feature variables,
treating each component with a separate appropriate kernel
and then combining in an optimal way allows substantial in-
formation gain.

To account for the longitudinal feature of data, we discuss
two types of novel prediction procedures here (type A and
type B prediction) to utilize latent effects in the prediction.
We show that by extracting information on the distributions
of the random effects, we improve prediction both for future
subjects and for future outcomes on the same subject given
feature variables and past outcomes. However, for longitudinal
studies, the type B problems are more commonly encountered
in applications where the outcome at a follow-up visit for the
same subject is desirable, and our learning method is more
effective than ignoring correlation among observations. When
the interest is on predicting outcomes for a new subject at
the baseline time-point, conventional approaches may work

http://www.adni-info.org/
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Figure 4. ADNI study. Top panel presents type A prediction of new subjects (left to right): 1-logistic regression, 2-single
radial kernel SVM (fixed-effects), 3-multiple fused kernel SVM (fixed-effects), 4-multiple fused kernel SVM (mixed-effects).
Bottom panel presents type B prediction of outcomes at future visits on the same subjects (left to right): 1-multiple fused
kernel SVM (fixed-effects), 2-multiple fused kernel SVM (mixed-effects).

as well. The choice of covariance structure and the choice of
appropriate kernel functions is related to the choice of the
best representation of the kernel space. There is no consensus
on these issues in the current literature which warrants future
study on these matters.

We adopt the use of L2-norm kernel fusion which leads
to a non-sparse integration of multiple data sources, which
may be more appealing in biomedical applications where it is
believed there is no clear “winner” and each data modality
contributes partial information to the prediction. Besides the
L2-norm on weights θp, other regularization, such as L1-norm

and L∞-norm, can also be imposed in the kernel fusion. L1-
norm generates a sparse integration, which can be used for
data source selection when the number of data sources is large
and no prior information on which source is more predictive
is available. L∞-norm assigns the dominant weight parameter
to only one kernel, which can be used when there is the need
for a unique data source competition.

Daemen and Moor (2009) proposed a kernel function for
clinical variables which computes the rescaled similarity. Our
proposed algorithm is different from Daemen and Moor (2009)
in that their final kernel matrix is a simple average of individ-
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ual kernels, while our algorithm finds the optimal weight for
each kernel matrix in a data-driven way. The kernels for ran-
dom effects we proposed are based on subject-specific latent
effects so they capture the temporal similarity of the obser-
vations for the same subject, while Daemen and Moor (2009)
did not handle longitudinal data.

In our proposed method, the decision function takes an ad-
ditive structure of the feature variables and the latent effects.
A natural extension will be to include the interactions be-
tween them in the prediction rule. The proposed algorithm
can be easily modified to handle this issue through tensor
products of kernel matrices. Here we do not assume a distri-
bution for random effects, but uses kernel functions to capture
correlation. Although in practice the optimal kernel types to
use may be unknown, a pragmatic solution might be to con-
sider several different combinations of kernel types and choose
the one with the smallest misclassification rate. Lastly, the
kernel matrices for ai and bi may be misspecified so that it
will be interesting to further study the robustness of the pre-
diction rule to the specification of these matrices.

6. Supplementary Materials

Appendices referenced in Sections 3 and 4 with additional
simulation and real data analysis results as well as sample
Matlab code are available at the Biometrics website on Wiley
Online Library.
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