
Received: 19 March 2019 Accepted: 13 April 2020

DOI: 10.1111/biom.13286

B I O M E T R I C P R A C T I C E

A penalized structural equation modeling method accounting for
secondary phenotypes for variable selection on genetically
regulated expression from PrediXcan for Alzheimer’s disease

Ting-Huei Chen1,2 Hanaa Boughal3

1Département de mathématiques et de
statistique, Université Laval, Québec, Canada
2Cervo Brain Research Centre, Québec,
Canada
3École d’Actuariat, Université Laval, Québec,
Canada

Correspondence
Ting-Huei Chen, Département de mathé-
matiques et de statistique, Université Laval,
Québec, Canada; and Cervo Brain Research
Centre, Québec, Canada.
Email: ting-huei.chen@mat.ulaval.ca

Funding information
Natural Sciences and Engineering Research
Council of Canada, Grant/Award Number:
Discovery Grants

Abstract
As the global burden of mental illness is estimated to become a severe issue in the

near future, it demands the development of more effective treatments. Most psychi-

atric diseases are moderately to highly heritable and believed to involve many genes.

Development of new treatment options demands more knowledge on the molecular

basis of psychiatric diseases. Toward this end, we propose to develop new statistical

methods with improved sensitivity and accuracy to identify disease-related genes spe-

cialized for psychiatric diseases. The qualitative psychiatric diagnoses such as case

control often suffer from high rates of misdiagnosis and oversimplify the disease

phenotypes. Our proposed method utilizes endophenotypes, the quantitative traits

hypothesized to underlie disease syndromes, to better characterize the heterogeneous

phenotypes of psychiatric diseases. We employ the structural equation modeling

using the liability-index model to link multiple genetically regulated expressions from

PrediXcan and the manifest variables including endophenotypes and case-control sta-

tus. The proposed method can be considered as a general method for multivariate

regression, which is particularly helpful for psychiatric diseases. We derive penalized

retrospective likelihood estimators to deal with the typical small sample size issue.

Simulation results demonstrate the advantages of the proposed method and the real

data analysis of Alzheimer’s disease illustrates the practical utility of the techniques.

Data used in preparation of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative database.
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Alzheimer’s disease, Alzheimer’s Disease Neuroimaging Initiative, penalized estimation, structural equa-

tion model

1 INTRODUCTION

Late-onset Alzheimer’s disease (LOAD) is the most common
cause of age-related dementia. Despite the significant invest-
ments in therapeutic drug discovery, no effective drugs are
available to cure Alzheimer’s disease (AD). Apparently, iden-
tifying the molecular mechanisms fundamentally involved in

AD’s pathogenesis is the primary step for the discovery of
drug targets. However, due to ethical reasons, it is nearly
impossible to conduct experiments on human subjects to eval-
uate causation. Therefore, we normally rely on human epi-
demiological studies to compare the molecular profiles in
cases versus controls such as genome-wide association stud-
ies (GWAS) and differential expression analysis to identify
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disease-associated variants and genes. However, qualitative
diagnosis such as AD patients (cases) and non-AD individu-
als (controls) often suffers from high rates of misdiagnosis and
oversimplifies the disease phenotypes due to the complex and
highly heterogeneous psychiatric syndromes. Unlike physical
diseases that are diagnosed mainly by medical tests, the diag-
nosis of psychiatric diseases is majorly symptom-based using
the criteria in a diagnosis manual (Diagnostic and Statistical
Manual of Mental Disorders). In other words, the AD or non-
AD diagnosis is an aggregate variable of various cognitive and
physical measurements. This oversimplification of the disease
phenotypes causes a loss of information and then a loss of sta-
tistical power to identify important variables associated with
the disease.

Endophenotypes, introduced into the behavioral sciences
by Dr. Irv Gottesman (Gottesman and Shields, 1982),
are the quantitative traits hypothesized to underlie disease
syndromes. They are believed to better capture the human
behavioral abnormalities than the imprecise categorical psy-
chiatric diagnoses (Almasy and Blangero, 2001). Allen et al.
(2009) provided a review of literatures on endophenotypes for
schizophrenia and Reitz and Mayeux (2009) summarized sev-
eral endophenotypes genetic studies for AD. However, there
has been no statistical framework available to model a group
of endophenotypes (Kendler and Neale, 2010) and the disease
status (case-control) appropriately. Furthermore, the sampling
design of genetic studies causes another potential issue on
endophenotypes analysis. In practice, most genetic studies
employ the case-control design for a particular disease, which
consists of a sample of cases (ie, diseased individuals) and
a sample of controls (ie, disease-free individuals). Under the
sampling design based on the dichotomic classification on a
particular disease, the case-control status is defined as the pri-
mary phenotype and the measurements of endophenotypes
are considered as secondary phenotypes. Most publications
associate endophenotypes with genetic variables by a linear
regression analysis. This approach may lead to bias estima-
tion for the genetic effect because the population association
between genetic variables and endophenotypes can be dis-
torted in the case-control sample. Therefore, similar to the
work of Lin and Zeng (2009), we use a retrospective likeli-
hood method to address this issue.

AD has a relatively high heritability, estimated in a range
of 58-79% (Gatz et al., 2006), suggesting that the genetic
components highly involve in AD’s pathogenesis. However,
those identified genetic variants (single nucleotide polymor-
phism [SNP]) from large-scale GWAS on LOAD are very
difficult to evaluate their functional mechanisms. The
methodology PrediXcan (Gamazon et al., 2015) makes it pos-
sible to estimate the tissue-dependent gene expression profiles
driven by SNP variations, ie, genetically regulated expression
(GReX). It also evaluates the association between the dis-
ease and GReX to provide more insights on the functional

mechanism of the disease-associated variants. Moreover, the
disease-associated GReX, if exist, are more informative than
those from the traditional differential gene expression analy-
sis since they do not suffer from the issue of reverse causation,
ie, expression level is altered by disease status. Our method
exploits the advantages of gene-based analysis. Unlike the
method of Gamazon et al. (2015) using a univariate analysis
for each gene individually, our proposed method has a better
statistical power through the modeling of correlations among
GReXs and utilizes a penalized estimation approach to deal
with the issue of small sample size relative to the number
of genes.

Kendler and Neale (2010) provided two types of mod-
els to relate an endophenotype and a psychiatric disease to
genetic components as mediational and liability-index mod-
els. A liability-index model specifies that both the disease
and endophenotype share some genetic components, while a
mediational model specifies that the effect of genetic compo-
nents on the disease pass through the endophenotype. In prac-
tice, it is difficult to design experimental studies on humans to
distinguish them validly. However, as argued by Kendler and
Neale (2010), the mediational model poses a stronger assump-
tion than the liability-index one in that the former assumes that
the genetic effects on a psychiatric disease are exclusively via
the endophenotype. Therefore, we choose to model the rela-
tionship among multiple endophenotypes and a psychiatric
disease based on the liability-index model.

In Section 2, we introduce our proposed methods and their
implementation. In Section 3, simulation studies are presented
to demonstrate that the information loss resulting from the
dichotomization of quantitative disease liability reduces sta-
tistical power considerably. The proposed methods show sig-
nificantly improved performances over conventional meth-
ods. Finally, the proposed methods are illustrated in a real
data analysis using the datasets from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) in Section 4 and conclude in
Section 5 with a discussion.

2 METHODS

2.1 Model specification

For 𝑁 independent samples, let 𝒀 𝑖 = (𝑌𝑖1,… , 𝑌𝑖𝐽 ) denote a
vector of 𝐽 observed quantitative endophenotypes for individ-
ual 𝑖, where 1 ≤ 𝑖 ≤ 𝑁 , and each of the endophenotype vari-
ables is assumed to be standardized with mean 0 and variance
equal to 1. Let 𝐷𝑖 and 𝜉𝑖 denote the disease status (𝐷𝑖 = 1
for case and 𝐷𝑖 = 0 for control) and the latent disease genetic
liability, respectively, for each sample 𝑖. For gene expression
(GReX) data, let 𝑿𝑖 = (𝑋𝑖1,… , 𝑋𝑖𝑃 ) denote the GReXs for
individual 𝑖, where𝑃 is the number of genes; they are assumed
to be normalized and jointly follow a multivariate normal
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distribution with mean 0 and variance-covariance matrix Σ𝑋 .
Without loss of generality, we assume that the first 𝑆 vari-
ables of 𝑿𝑖 are important (ie, they have nonzero effects on
the response variable) and denote this by 𝑿𝑖1 and let the
remaining 𝑃 − 𝑆 variables be𝑿𝑖2, such that𝑿𝑖 = (𝑿𝑖1,𝑿𝑖2).
Let 𝜷 = (𝜷T

1 ,𝜷T
2 = 𝟎T) be the associated coefficients vec-

tor for 𝑿𝑖. In addition, let 𝒁 𝑖 = (𝑍𝑖1,… , 𝑍𝑖𝑄) denote the 𝑄

nongenetic variables. It is assumed that the number of non-
genetic variables 𝑄, the number of disease-related GReX 𝑆,
and the number of manifest variables 𝐽 are much smaller than
𝑁 , while the number of genetic variables 𝑃 is usually larger
than 𝑁 .

As mentioned in Section 1, we extend the liability-index
model in Kendler and Neale (2010) to relate the manifest
variables including multiple endophenotypes and the disease
status to a latent disease genetic liability. We use a linear
regression model, which specifies that the conditional dis-
tribution of 𝒀 𝑖 given (𝜉𝑖,𝒁 𝑖) is a multivariate normal with
mean 𝝁𝒀 𝑖

= 𝚲𝜉𝑖 +
∑𝑄

𝑙=1 𝚪𝑙𝑧𝑖𝑙, where 𝚲 = (𝜆1,… , 𝜆𝐽 )T is a

factor loading vector and 𝚪𝑙 = (𝛾𝑙1,… , 𝛾𝑙𝐽 )T is a vector of
regression coefficients for 𝑙th variable of 𝒁, and the matrix of
variance-covariance Σ𝑌 = diag(𝜎2

𝑌1
,… , 𝜎2

𝑌𝐽
). In other words,

the endophenotypes (𝑌𝑖1,… , 𝑌𝑖𝐽 ) are conditionally indepen-
dent given the latent disease genetic liability 𝜉𝑖 and the non-
genetic covariates 𝒁 𝑖. The latent disease genetic liability is
further modeled as a normal variable with mean as a linear
combination of GReXs 𝜇𝜉𝑖 = 𝑿𝑖𝜷 and with variance fixed to
be one to ensure the identifiability, a typical strategy in fac-
tor analysis. In addition, we use a logistic regression model for

𝐷𝑖:𝑃 (𝐷𝑖 = 1|𝒁 𝑖, 𝜉𝑖) =
exp{𝛼0+

∑𝑄

𝑙=1 𝑍𝑖𝑙𝛼𝑙+𝛼𝜉𝜉𝑖}

1+exp{𝛼0+
∑𝑄

𝑙=1 𝑍𝑖𝑙𝛼𝑙+𝛼𝜉𝜉𝑖}
, where 𝛼0 is the

intercept, (𝛼1,… , 𝛼𝑄) are the regression coefficients of vari-
able 𝒁 and 𝛼𝜉 is the regression coefficient of 𝜉. A graphi-
cal representation of this structural equation model is given in
Figure 1.

Since the sampling is conditional on the categorical
diagnoses (case-control), the likelihood function for com-
plete data (𝒀 𝑖,𝒁 𝑖,𝑿𝑖, 𝐷𝑖, 𝜉𝑖) will have a retrospective form:∏𝑁

𝑖=1 𝑃 (𝒀 𝑖,𝒁 𝑖,𝑿𝑖, 𝜉𝑖|𝐷𝑖), which is

𝑁∏
𝑖=1

{
𝑃 (𝐷𝑖 = 1, 𝒀 𝑖|𝒁 𝑖,𝑿𝑖, 𝜉𝑖)𝑃 (𝜉𝑖|𝒁 𝑖,𝑿𝑖)𝑃 (𝒁 𝑖,𝑿𝑖)

𝑃 (𝐷𝑖 = 1)

}𝐷𝑖

×
{

𝑃 (𝐷𝑖 = 0, 𝒀 𝑖|𝒁 𝑖,𝑿𝑖, 𝜉𝑖)𝑃 (𝜉𝑖|𝒁 𝑖,𝑿𝑖)𝑃 (𝒁 𝑖,𝑿𝑖)
𝑃 (𝐷𝑖 = 0)

}1−𝐷𝑖

,

where 𝑃 (𝐷𝑖, 𝒀 𝑖|𝒁 𝑖,𝑿𝑖, 𝜉𝑖) = 𝑃 (𝐷𝑖|𝒁 𝑖,𝑿𝑖, 𝜉𝑖)𝑃 (𝒀 𝑖|𝒁 𝑖,𝑿𝑖,

𝜉𝑖) and 𝑃 (𝒁 𝑖,𝑿𝑖) = 𝑃 (𝒁 𝑖)𝑃 (𝑿𝑖) by the specified liability-

F I G U R E 1 The specified structural equation model for the
relationship among the manifest variables 𝒀 and 𝑫 and genetic
variables 𝑿 and nongenetic covariates 𝒁. The latent genetic disease
liability is drawn as circle, while the manifest or measured variables are
shown as squares. In addition, the arrows represent the regression
relationship, and for simplicity, the symbols for regression coefficients
are omitted

index model assumptions. In addition,

𝑃 (𝐷𝑖 = 1) =

∭ 𝑃 (𝐷𝑖 = 1|𝒁 𝑖,𝑿𝑖, 𝜉𝑖)𝑃 (𝜉𝑖|𝒁 𝑖,𝑿𝑖)𝑃 (𝒁 𝑖,𝑿𝑖) 𝑑𝒁 𝑖 𝑑𝑿𝑖 𝑑𝜉𝑖.

2.2 EM algorithm for parameters estimation

For parameters estimation, let 𝚪 denote (𝚪1,… ,𝚪𝑄), and
let 𝜽 denote the vector of parameters (𝚲,Σ𝑌 ,𝚪,𝜶,𝜷, 𝛼𝜉)
and let (𝑫, 𝒀 ,𝒁,𝑿, 𝝃) denote the data for 𝑁 individu-
als. The penalized log likelihood function for complete data
𝑝𝑙(𝜽|𝑫, 𝒀 ,𝒁,𝑿, 𝝃) is defined as

log
𝑁∏
𝑖=1

𝑃 (𝒀 𝑖,𝒁 𝑖,𝑿𝑖, 𝜉𝑖|𝐷𝑖) − 𝑃𝜗(𝜷),

where 𝑃𝜗(𝜷) denotes a penalty function imposed on 𝜷,
and 𝜗 denotes the tuning parameter(s) of the penalty
function.

When the disease is rare, 𝑃 (𝐷𝑖 = 0|𝒁 𝑖, 𝜉𝑖) ≈ 𝑃 (𝐷𝑖 = 0) ≈
1 and 𝑃 (𝐷𝑖 = 1|𝒁 𝑖, 𝜉𝑖) ≈ exp{𝛼0+

∑𝑄

𝑙=1 𝑍𝑖𝑙𝛼𝑙+𝛼𝜉𝜉𝑖}. This condi-
tion applies to our motivating example since the prevalence
of AD is less than 2%. In addition, the simulation study in
Section 3 is based on the prevalence as 5% and the pro-
posed methods show good performances. Thus, the following
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estimation procedures are based on the rare disease assump-
tion using a penalized log likelihood function as

𝑝𝑙(𝜽|𝑫, 𝒀 ,𝒁,𝑿, 𝝃) =

log
𝑁∏
𝑖=1

{
𝑃 (𝒀 𝑖|𝒁 𝑖,𝑿𝑖, 𝜉𝑖)𝑃 (𝜉𝑖|𝒁 𝑖,𝑿𝑖)𝑃 (𝒁 𝑖,𝑿𝑖)

}

+ log
𝑁∏
𝑖=1

{
exp{𝛼0+

∑𝑄

𝑙=1 𝑍𝑖𝑙𝛼𝑙+𝛼𝜉𝜉𝑖}

𝑃 (𝐷𝑖 = 1)

}𝐷𝑖

− 𝑃𝜗(𝜷),

where

𝑃 (𝐷𝑖 = 1) =
{
𝑒
𝛼0+

1
2 𝛼

2
𝜉 𝑒

1
2 (𝛼𝜉𝛽)

TΣ𝑋 (𝛼𝜉𝛽)
}
𝑀𝒁 (𝜶),

and𝑀𝒁 (𝜶) is the moment-generating function for𝒁, and𝜶 =
(𝛼1,… , 𝛼𝑄)T.

Since the parameter 𝛼0 cancels in the numera-
tor and denominator of the likelihood function, it is
unidentifiable. For the remaining parameters, we use
a expectation-maximization with a combination of the
coordinate descent algorithm (Friedman et al., 2010a)
for parameters estimation. Define the 𝑄 function as
𝑄(𝜽|𝜽(𝑡)) = 𝐸𝝃|(𝜽(𝑡),𝒀 ,𝒁,𝑿)(𝑝𝑙(𝜽|𝑫, 𝒀 ,𝒁,𝑿, 𝝃)). For simplic-
ity, we use 𝐸𝝃 to denote 𝐸𝝃|(𝜽(𝑡),𝒀 ,𝒁,𝑿) for the following pre-
sentations.

Initialization:
To initialize 𝚲 and Σ𝑌 , one latent factor model is applied to

𝒀 to obtain (𝜆̂(0)1 ,… , 𝜆̂
(0)
𝐽
) and (𝜎̂2(0)

𝑌1
,… , 𝜎̂

2(0)
𝑌𝐽

). The remain-
ing parameters are initialized as zero.

E-step:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐸
(𝑡)
𝝃
(𝜉𝑖) =

⎛⎜⎜⎝
∑𝐽

𝑗=1 𝑦𝑖𝑗
𝜆̂
(𝑡)
𝑗

𝜎̂
2(𝑡)
𝑌𝑗

+𝑋T
𝑖

𝜷̂
(𝑡)
⎞⎟⎟⎠⎛⎜⎜⎝

∑𝐽
𝑗=1

𝜆̂
2(𝑡)
𝑗

𝜎̂
2(𝑡)
𝑌𝑗

+1
⎞⎟⎟⎠

if 𝐷𝑖 = 0

𝐸
(𝑡)
𝝃
(𝜉𝑖) =

⎛⎜⎜⎝𝛼̂(𝑡)𝜉 +
∑𝐽

𝑗=1 𝑦𝑖𝑗
𝜆̂
(𝑡)
𝑗

𝜎̂
2(𝑡)
𝑌𝑗

+𝑋T
𝑖

𝜷̂
(𝑡)
⎞⎟⎟⎠⎛⎜⎜⎝

∑𝐽
𝑗=1

𝜆̂
2(𝑡)
𝑗

𝜎̂
2(𝑡)
𝑌𝑗

+1
⎞⎟⎟⎠

if 𝐷𝑖 = 1

,

and 𝐸
(𝑡)
𝝃
(𝜉2

𝑖
) = (

∑𝐽

𝑗=1
𝜆̂
2(𝑡)
𝑗

𝜎̂
2(𝑡)
𝑌𝑗

+ 1)−1 + 𝐸
(𝑡)
𝝃
(𝜉𝑖)2.

M-step:
The maximum likelihood estimation (MLE) for 𝜆𝑗 is then

the solution of

𝜕𝑄(𝜽|𝜽(𝑡))
𝜕𝜆𝑗

=
𝑁∑
𝑖=1

{
−𝑌𝑖𝑗𝐸

(𝑡)
𝝃
(𝜉𝑖) + 𝜆𝑗𝐸

(𝑡)
𝝃

(
𝜉2
𝑖

)}
= 0,

that is, 𝜆̂𝑗 =
∑𝑁

𝑖=1 𝑌𝑖𝑗𝐸
(𝑡)
𝝃
(𝜉𝑖)∑𝑁

𝑖=1 𝐸
(𝑡)
𝝃
(𝜉2
𝑖
)

. The MLE for 𝜎2
𝑗

is 𝜎̂2
𝑗
=∑𝑁

𝑖=1{𝑌
2
𝑖𝑗
−2𝑌𝑖𝑗 𝜆̂𝑗𝐸

(𝑡)
𝝃
(𝜉𝑖)+𝜆̂2𝑗 𝐸

(𝑡)
𝝃
(𝜉2
𝑖
)}

𝑁
and the MLE of 𝛼𝜉 is 𝛼̂𝜉 =∑𝑛

𝑖=1 𝐷𝑖𝐸𝝃 (𝜉𝑖)

𝑁1(1+𝜷̂
𝑇 Σ̂𝑋 𝜷̂)

.

To estimate 𝜷, the coordinate descent algorithm is used to
update each 𝛽𝑚 sequentially. We provide two different esti-
mators for 𝜷 using the penalty functions Lasso (Tibshirani,
1996) and Log (Sun et al., 2010; Friedman, 2012) respec-
tively. Lasso is one of the most popular penalty functions
for variable selection in high-dimensional variables problem.
We first present the Lasso estimator 𝛽Lasso

𝑚
using the Lasso

penalty function 𝑃𝜗(𝜷) = 𝑃(𝜆)(𝜷) =
∑𝑃

𝑚=1 𝜆|𝛽𝑚|, where 𝜆 >

0 is a tuning parameter. Letting 𝜕𝑄(𝜽|𝜽(𝑡))∕𝜕𝛽𝑚 = 0, the esti-
mate of 𝛽Lasso

𝑚
is

⎧⎪⎨⎪⎩
𝛽𝑚 = 0 if |||𝜔(𝑡)

𝑚
||| ≤ 𝜆

𝛽𝑚 = sgn
(
𝛽
(𝑡)
𝑚

)[|||𝜔(𝑡)
𝑚
||| − 𝜆

]
if |||𝜔(𝑡)

𝑚
||| > 𝜆,

where 𝜔
(𝑡)
𝑚 =

∑𝑁
𝑖=1 𝐸

(𝑡)
𝝃
(𝜉𝑖)𝑋𝑖𝑚−

∑
𝑚′≠𝑚 𝛽

(𝑡)
𝑚′
𝜎̂2
𝑚𝑚′

(𝑁+𝑁1𝛼̂
2(𝑡)
𝜉

)

𝜎̂2
𝑚𝑚

(𝑁+𝑁1𝛼̂
2(𝑡)
𝜉

)
, where

𝑁1 =
∑𝑁

𝑖=1𝐷𝑖.
Although Lasso has demonstrated its utility in various

applications, the variable selection consistency of Lasso
requires the irrepresentable condition (Zhao and Yu, 2006)
that there is no strong correlation between the “important
covariates,” which have nonzero effects and the “unimpor-
tant covariates,” which have zero effects. Since some of the
gene expressions are highly correlated, this condition may
not be satisfied in our study. Therefore, we introduce another
estimator for 𝜷 using the Log penalty. Compared to some
existing penalty functions, the Log penalty has shown its
advantages in variable selection in genetic studies, where the
variables are highly correlated (Sun et al., 2010; Chen et al.,
2016). The Log estimator 𝛽Log

𝑚 using the Log penalty function
𝑃𝜗(𝜷) = 𝑃(𝛼,𝜏)(𝜷) =

∑𝑃

𝑚=1 𝛼 log(|𝛽𝑚| + 𝜏), where 𝛼 > 0 and
𝜏 > 0 are tuning parameters. Since the Log penalty is noncon-
cave, a local linear approximation (LLA) (Zou and Li, 2008)
is applied to it: 𝑝(𝛼,𝜏)(|𝛽𝑚|) ≈ 𝛼|𝛽𝑚||𝛽𝑚|+𝜏 , where 𝛽𝑚 is the estimate

in the previous iteration. Letting 𝜕𝑄(𝜽|𝜽(𝑡))∕𝜕𝛽𝑚 = 0, the
estimate of 𝛽𝐿𝑜𝑔𝑚 is

⎧⎪⎪⎨⎪⎪⎩
𝛽𝑚 = 0 if |||𝜔(𝑡)

𝑚
||| ≤ 𝛼|||𝛽(𝑡)𝑚 |||+𝜏

𝛽𝑚 = sgn
(
𝛽
(𝑡)
𝑚

)[|||𝜔(𝑡)
𝑚
||| − 𝛼|||𝛽(𝑡)𝑚 |||+𝜏

]
if |||𝜔(𝑡)

𝑚
||| >

𝛼|||𝛽(𝑡)𝑚 |||+𝜏
.



CHEN AND BOUGHAL 5

Since 𝚪 is not the parameter of interest, they can be elimi-
nated through the residualization of 𝒀 using the variables of
𝒁 to simplify the estimation procedure.

The estimation of (𝛼1,… , 𝛼𝑄) depends on the character-
istics of the variables that are included in the model. For
instance, in the section of real data analysis, the model
includes two variables for 𝒁: age for 𝒁1 and gender for
𝒁2. For a continuous variable like 𝒁1, it is assumed to be
standardized and follow a standard normal distribution; the

MLE of 𝛼1 is 𝛼̂1 =
∑𝑁

𝑖=1 𝐷𝑖𝑍𝑖1
𝑁1

. For the categorical variable

that has only two categories like 𝒁2, it is assumed to follow a
Bernoulli distribution with probability 𝑃𝛼2

; the MLE of 𝛼2 is

𝛼̂2 = log{
∑𝑁

𝑖=1 𝐷𝑖𝑍𝑖2(1−𝑃𝛼2 )

𝑃𝛼2 (𝑁1−
∑𝑁

𝑖=1 𝐷𝑖𝑍𝑖2)
}.

We then iteratively apply the estimation procedure until
convergence is reached. Empirically, we consider that conver-
gence is achieved if the maximum difference in the coefficient
estimates between consecutive iterations is less than a prede-
fined threshold, eg, 10−4.

2.3 Tuning parameters and model selection

The estimator of parameters of interest 𝜽 depends on the
values of tuning parameters 𝜗. In practice, a set of numerical
tuning values are provided for model fitting. Then a model
selection criterion is applied to select the optimal model. To
ensure a good performance of a penalization method, proper
numerical tuning values have to be provided to cover the
optimal one that can penalize the estimates of the coeffi-
cients of the unimportant variables to zero, and keep those
of the important variables to be nonzero. With failure to
do so, the penalization method would perform poorly, either
having too strong a penalization threshold so that too few
important variables are being selected, or having too weak a
threshold so that too many unimportant variables are being
selected.

Generally, the scales of the tuning values depend on the
scales of the estimates of the parameters to be penalized, that
is, 𝜷̂ in this study. However, since the parameter 𝜷 is asso-
ciated with the latent unobserved factor 𝝃, to identify a vec-
tor of proper tuning values is less straightforward than the
usual regression analysis on observed variables. We propose
to fit a model without any penalty on a set of genes whose
number is much smaller than the sample size to identify the
scales of the estimates of the parameters. To choose such set
of genes, we use the marginal association analysis on each
of the genes and each of the observed variables including
the endophenotypes and the disease case-control status. Each
gene 𝑚 is associated with a vector of (𝐽 + 1) P-values from
the 𝐽 marginal linear regression analyses on 𝐽 endopheno-

types and from the logistic regression analysis on the case-
control status. Then the genes are ordered based on the
minimum P-value across the (𝐽 + 1) marginal P-values from
the most significant to the least. Let 𝑎 denote the number
of the smallest integer value that is greater than or equal to
20% of the sample size 𝑁 , and the first 𝑎 gene based on the
ordering by the minimum P-values is used for model fitting
without penalty. Finally, the maximum of the obtained unpe-
nalized estimates of the regression coefficients in absolute
value can be used to generate the tuning values. Specifically,
let 𝑏̂max denote this maximum value. For the Lasso penalty, a
vector of tuning values for 𝜆 is generated as a sequence of
a particular length, say 100, from 𝑏̂max × 0.1 to 𝑏̂max × 1.5.
For the Log penalty, a vector of the tuning values for 𝜏 is
set as (1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001) ×
𝑏̂max. For each value of 𝜏, a vector of the tuning values for
𝛼 is generated as a sequence of a particular length, say 100,
from (𝜏 × 𝑏̂max × 0.005) to (𝜏 × 𝑏̂max × 1.5).

For model selection, according to the empirical results from
the simulation studies, where the number of variables is com-
parable to the sample size, the regular Bayesian information
criterion (BIC) (Schwarz et al., 1978) performs well. When
the number of variables is much larger than the sample size,
the extended BIC (Chen and Chen, 2008) can be used for
model selection.

3 SIMULATIONS

3.1 Procedure for data simulation and
methods for comparison

The motivating application is to select important GReXs asso-
ciated with AD using the datasets from ADNI. Apparently,
the influential factors on the empirical performances are sam-
ple size, the numbers of candidate genes (𝑃 ) and truly asso-
ciated ones (𝑆), the magnitude of effect sizes, and the corre-
lation structure of GReXs. To evaluate the performances of
our proposed methods subject to these factors, the number of
genes and sample sizes considered in this simulation study
is based on the datasets of ADNI. In addition, to faithfully
reproduce the correlation structure of GReXs, we simulate
datasets based on the estimates of the correlation matrix of
GReX obtained in the real data analysis.

For data simulation, the variable 𝑿 (gene expression) is
simulated from a multivariate normal distribution with mean
𝟎 and a correlation matrix using the estimates of the cor-
relation matrix of GReXs. Then the latent disease liability
𝜉 is simulated from a linear model: 𝝃 = 𝑿𝜷 + 𝝐,where 𝝐 ∼
𝑁(𝟎, 𝐼𝑁×𝑁 ) and 𝐼𝑁×𝑁 is an identity matrix. The sample size
𝑁 is specified as 600 or 1200, and the numbers of genes 𝑃

are specified as 2498 or 5980, the smallest and the largest
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number of GReXs generated by PrediXcan from a brain tis-
sue. To specify the nonzero components in 𝜷, we consider 𝑆
as 20 or 40, and the effect sizes for these variables to be the
replication of a vector of b = (0.35, 0.40, 0.45, 0.50, 0.55,
−0.35, −0.40, −0.45, −0.50, −0.55).

To simulate manifest variable 𝑌 (endophenotypes), we
consider two scenarios: Ideal and Realistic ones. For
Ideal scenario, 𝑌 are simulated based on the specified
model in Figure 1: 𝒀 𝑁×𝐽 = 𝝃𝑁×1Λ1×𝐽 + 𝑬𝑁×𝐽 , where 𝑬 ∼
𝑀𝑉𝑁(𝟎, 𝐼𝑁×𝑁 ). On the other hand, for Realistic scenario,
𝑌 are allowed to have their own unique set of associated
genes that are not involved with the studied disease. 𝒀 =
(𝑦𝑖𝑗) are simulated from: 𝑦𝑖𝑗 = 𝜉𝑖𝜆𝑗 +𝑿(𝑠𝑗 )𝑖𝒃𝑗 + 𝑒𝑖𝑗 , where
𝑿(𝑠𝑗 )𝑖 denotes the unique set of associated genes for man-
ifest variable, 𝑗, 𝒃𝑗 are the corresponding coefficients, and
𝑒𝑖𝑗 is a standard normal variable. For both scenarios, we set
Λ = (0.30, 0.35, 0.40) for 𝐽 = 3. For the Realistic scenario,
the number of genes that are uniquely associated with each of
the manifest variables is set as 10% of 𝑆 and the coefficient
for each of them is set as 0.35.

The case-control status 𝐷 is simulated from a logistic

regression model: 𝑃 (𝐷𝑖 = 1|𝜉𝑖) = exp{𝛼0+𝛼𝜉𝜉𝑖}

1+exp{𝛼0+𝛼𝜉𝜉𝑖}
, where 𝛼𝜉 is

set as .5, and 𝛼0 is the set for each setting, respectively, to
make the prevalence about 5%. To generate random samples
using the case-control sampling scheme, we first simulate a
large population based on the aforementioned model struc-
ture. Then a random case-control sample is generated from a
random selection of 𝑁∕2 cases from the sample units with
𝐷𝑖 = 1 and 𝑁∕2 controls from the sample units with 𝐷𝑖 = 0
in the simulated population.

We evaluate our methods in addition to several other
approaches for variable selection. As described in Section 1,
the conventional way to identify the disease-associated genes
is differential expression analysis to run association analysis
for each gene separately, denoted by DEA. Another approach
is univariate regression analysis using the Lasso penalty on
the case-control status to select disease-associated genes. It
has been implemented in the R/GLMNET package (Friedman
et al., 2010b), denoted by ULasso. For studies with endophe-
notypes, the conventional approach is to use marginal linear
regression on each of the endophenotypes or to use marginal
logistic regression on the disease case-control status to iden-
tify the associated genes. Since there are (𝐽 + 1) marginal P-
values corresponding to the 𝐽 endophenotypes and the disease
case-control status, respectively, the Fisher’s combined prob-
ability test (Fisher, 2006) is used to compute the combined
P-value for each gene, denoted by Fisher. Another consid-
ered method is based on a group-wise penalized estimation.
Under the model in Figure 1, all observed responses 𝒀 share
the same genetic components, and thus, one can use a mul-
tivariate regression model to identify the disease-associated
genes. When the number of variables is larger than the sample

size, the group-wise penalized estimation is a natural choice,
which, by borrowing information from multiple response vari-
ables, can discover genes that are weakly associated with mul-
tiple response variables. Group Lasso (Yuan and Lin, 2006) is
used for methods comparison. The R package R/GLMNET also
implements the Group Lasso penalty for multivariate Gaus-
sian responses, denoted by GLasso.

3.2 Simulation results

We use the false discoveries rate (FDR) and true positive rate
(TPR) to evaluate the performance of the methods, where
FDR and TPR are calculated as FD/D and TD/𝑆, respectively
(D, TD, and FD are the numbers of discoveries, true discov-
eries, and false discoveries). Our proposed methods (LLasso
and LLog), ULasso, and GLasso employ tuning parameters
for model fitting, and 1000 tuning values are given for each
of the methods to obtain 1000 models, respectively. The R
package implemented for ULasso and GLasso by GLMNET

uses cross-validation (CV) for model selection. Therefore, we
present the results for ULasso and GLasso using CV for model
selection in the main text and present the results using BIC in
the Supporting Information. For the methods Fisher and DEA,
we use several q-value cutoffs for variable selection and the
model with relatively similar values of TPR to other methods
is presented in the main text and the results for all q-value
cutoffs are presented in the Supporting Information.

Table 1 shows the results for the eight settings varying the
parameters of 𝑆, 𝑃 , and 𝑁 in the Ideal scenario. As the sig-
nals contained in simulated data are relatively complicated,
that is, the number of variables (𝑃 ) is large or the number
of true associated variables (𝑆) is large, LLog performs bet-
ter than LLasso. The performances of our proposed meth-
ods are in general better than the alternative methods. For
instance, for the setting with 𝑁 = 1200, 𝑃 = 2498, and 𝑆 =
40, LLog and LLasso have TPR higher than 98%, which is
higher than the alternative methods, and they also have much
lower false discovery rates. DEA has a lower power and a
higher false discovery rate compared to the proposed methods.
With endophenotypes data, the combined Fisher method can
improve the power to detect the disease-related genes com-
pared to DEA. However, it has a much higher false discovery
rate than the proposed methods due to the failure of not taking
into account the correlation among the genes and the fact that
the observed endophenotypes come from a conditional sam-
pling on case-control status. ULasso and GLasso have similar
issues to DEA and Fisher.

The conclusions are similar for the Realistic scenario as
shown in Table 2, where the endophenotypes are associated
with some genes that are not involved with the genetic risk
for AD. The performances of our proposed methods are still
much better than the alternative methods. In summary, the
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T A B L E 1 Simulation results for Ideal scenario. The first column indicates the number of important covariates (𝑆), the number of candidate
covariates (𝑃 ), and the sample size (𝑁). For each method, we present the median of the true positive rate (TPR) × 100% and its standard error (in
parentheses), and the median of the false discovery rate (FDR) × 100% (in brackets) and its standard error (in parentheses) across 100 simulations

Setting LLog𝒂 LLasso𝒂 Fisher𝒃 DEA𝒃 ULasso𝒄 GLasso𝒄

𝑆 = 20; 𝑃 = 2498 88 (16) 90 (21) 70 (8.8) 0 (3.3) 45 (17) 100 (0.86)

𝑁 = 600 [0 (2.5)] [13.6 (7.7)] [38.1 (11)] [0 (36)] [82.1 (8.7)] [84.8 (3.8)]

𝑆 = 20; 𝑃 = 2498 100 (2.5) 100 (0) 95 (3.6) 30 (9.8) 85 (7.2) 100 (0)

𝑁 = 1200 [0 (1.1)] [9.09 (5.9)] [60.4 (5.8)] [20 (15)] [81.9 (4.4)] [83.9 (3.6)]

𝑆 = 20; 𝑃 = 5980 75 (19) 55 (31) 60 (8.7) 0 (3.6) 35 (14) 95 (4)

𝑁 = 600 [5.72 (10)] [11.1 (12)] [40 (8.7)] [0 (35)] [86.4 (11)] [87.7 (3.0)]

𝑆 = 20; 𝑃 = 5980 100 (4.1) 100 (2.4) 90 (4.2) 35 (11) 72.5 (8.7) 100 (0.98)

𝑁 = 1200 [0 (3.6)] [18.7 (7.7)] [75 (4.3)] [28.6 (16)] [85.9 (3.9)] [86.5 (2.9)]

𝑆 = 40; 𝑃 = 2498 65 (19) 5 (19) 62.5 (5.3) 12.5 (8.2) 52.5 (8.2) 100 (1.6)

𝑁 = 600 [3.18 (3.8)] [0 (5.5)] [58.1 (9.9)] [28.6 (21)] [79 (4.6)] [82.2 (2.8)]

𝑆 = 40; 𝑃 = 2498 98.8 (2.3) 100 (1.8) 88.8 (3.5) 50 (7.6) 80 (5.3) 100 (0.25)

𝑁 = 1200 [2.44 (1.8)] [20 (5.4)] [79.4 (3.2)] [53.7 (11)] [78.5 (3)] [80.9 (2.5)]

𝑆 = 40; 𝑃 = 5980 50 (22) 2.5 (9.4) 45 (5.8) 2.5 (3.1) 32.5 (8.1) 95 (2.9)

𝑁 = 600 [6.16 (19)] [0 (7.8)] [59.5 (8.7)] [0 (36)] [86.1 (5)] [87.2 (2.0)]

𝑆 = 40; 𝑃 = 5980 100 (3.3) 95 (17) 77.5 (4.7) 25 (7.8) 67.5 (6.9) 100 (0.25)

𝑁 = 1200 [0 (2)] [26.5 (8.9)] [80.7 (2.7)] [38.9 (14)] [83.5 (2.7)] [86.3 (1.7)]

aUsing BIC for the model selection criterion.
bUsing q-values for the model selection criterion.
cUsing cross-validation for the model selection criterion.

T A B L E 2 Simulation results for Realistic scenario. The first column indicates the number of important covariates (𝑆), the number of candidate
covariates (𝑃 ), and the sample size (𝑁). For each method, we present the median of the true positive rate (TPR) × 100% and its standard error (in
parentheses), and the median of the false discovery rate (FDR) × 100% (in brackets) and its standard error (in parentheses) across 100 simulations

Setting LLog𝒂 LLasso𝒂 Fisher𝒃 DEA𝒃 ULasso𝒄 GLasso𝒄

𝑆 = 20; 𝑃 = 2498 90 (16) 85 (34) 60 (9.8) 0 (4.2) 45 (16) 100 (1.4)

𝑁 = 600 [14.3 (17)] [26.1 (21)] [45 (8.4)] [0 (32)] [82.1 (8.9)] [87.9 (2.1)]

𝑆 = 20; 𝑃 = 2498 100 (7.3) 100 (0) 95 (5) 35 (12) 85 (7.6) 100 (0)

𝑁 = 1200 [13.6 (5.9)] [33.3 (6.7)] [64 (3.8)] [26.1 (16)] [81.5 (5)] [87.6 (2.3)]

𝑆 = 20; 𝑃 = 5980 75 (19) 65 (27) 60 (8) 0 (4.5) 40 (14) 95 (3.8)

𝑁 = 600 [10.3 (23)] [16.7 (25)] [51.9 (8)] [0 (29)] [86.8 (7.5)] [90.2 (1.9)]

𝑆 = 20; 𝑃 = 5980 95 (9.9) 95 (6.1) 85 (6) 30 (9.9) 70 (9) 100 (0.98)

𝑁 = 1200 [17.4 (8.6)] [37.3 (8.2)] [77.4 (4)] [30 (16)] [85 (5.2)] [90.0 (1.7)]

𝑆 = 40; 𝑃 = 2498 85 (22) 10 (33) 55 (6.5) 10 (6.6) 52.5 (7.7) 100 (1.9)

𝑁 = 600 [25 (33)] [0 (31)] [58.7 (7.9)] [20 (20)] [78.1 (5.1)] [86.2 (1.6)]

𝑆 = 40; 𝑃 = 2498 95 (7.5) 95 (5.8) 85 (4.2) 53.8 (7.9) 82.5 (5.3) 100 (0.49)

𝑁 = 1200 [15.9 (6.9)] [38.8 (10)] [82.8 (3)] [55.7 (12)] [77.1 (3.4)] [85.2 (1.6)]

𝑆 = 40; 𝑃 = 5980 50 (25) 5 (26) 37.5 (6.6) 2.5 (3.2) 35 (8) 95 (3.7)

𝑁 = 600 [30.3 (34)] [0 (31)] [55.9 (11)] [0 (26)] [85.2 (4.7)] [90.2 (1.10)]

𝑆 = 40; 𝑃 = 5980 97.5 (9.9) 55 (25) 70 (5.8) 25 (6.9) 62.5 (6.4) 100 (0.43)

𝑁 = 1200 [16.1 (5.9)] [21.6 (18)] [79.1 (3.3)] [44.7 (14)] [84.4 (3.2)] [89.8 (0.88)]

aUsing BIC for the model selection criterion.
bUsing q-values for the model selection criterion.
cUsing cross-validation for the model selection criterion.
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simulation analysis demonstrates that our proposed methods
have much more advantageous empirical performances than
the alternative ones. In addition, as described above, we also
include the simulation results using BIC for model selection
criterion for ULasso and GLasso, and conclusions are also
consistent to those using CV.

4 REAL DATA ANALYSIS

Data used in preparation of this article were obtained from
the ADNI database (see Acknowledgements section for more
details). The list of secondary phenotypes in this analysis
is cognitive endophenotypes that have been used in several
AD genetic studies summarized by Reitz and Mayeux (2009).
They are not only highly correlated with the disease status
but also can further reveal the variation of subject’s cognitive
function within each disease-status. Most of studies employed
univariate regression analysis on each of the endophenotype
separately. As our proposed method makes it possible to
model multiple endophenotypes simultaneously to improve
statistical power, we selected the cognitive endophenotypes
that have been considered in the literature and were measured
for most of the subjects with percentages of missing value
less than 15% in ADNI dataset. This gave a list of clinical
attributes measured at baseline included in the model: Clin-
ical Dementia Rating Sum of Boxes, properties of the 11-
item ADAS-cog, properties of the 13-item ADAS-cog, Mini-
Mental State Examination, immediate score of Rey Auditory
Verbal Learning Test, learning score of Rey Auditory Ver-
bal Learning Test, and the percent forgetting score of Rey
Auditory Verbal Learning Test, where ADAS-cog refers to
Alzheimer’s Disease Assessment Schedule - Cognition. For
the imputation of missing values, we used the multiple impu-
tation method based on fully conditional specification imple-
mented in the R package MICE (van Buuren and Groothuis-
Oudshoorn, 2011).

To obtain the gene expression (GReX) in brain tissues, we
used the method PrediXcan. The number of generated GReXs
varies by brain tissue from 2002 to 5980. The number of
subjects with both the endophenotypes and GReX is 812. In
addition, since there are only 48 AD subjects in this dataset,
we group these subjects with 483 mild cognitive impairment
(MCI) subjects together as 531 AD-MCI subjects versus 281
normal control subjects. We applied all the methods men-
tioned in the simulation study to each set of GReXs from
the 13 brain regions to identify the genes associated with the
AD-MCI phenotypes while accounting for the effects of unpe-
nalized covariates, age, and gender. As the simulation results
show that LLog performs better than LLasso and outperforms
the rest methods, we describe its findings in the followings,
while the remaining results are shown in Tables S6-S14 in
Supporting Information. Among the 13 brain tissues, the num-

ber of identified GReXs by LLog ranges from 9 to 24. This
analysis may answer research questions such as “what are the
genes associated with the AD-MCI phenotype in a particu-
lar brain tissue?” or “what are the genes associated with the
AD-MCI phenotype across multiple brain tissues?” The list
of identified genes in any particular brain tissue can be found
in Table S9 in Supporting Information. Here, we report the
list of identified genes across brain tissues using the approach
of majority vote. In total, there are seven AD-MCI-associated
genes in more than three brain tissues. The identified gene in
most of the brain issues is VPS11, which plays an important
role in autophagy (Zhang et al., 2016) that has been shown
to involve extensively in AD (Nixon et al., 2005). Another
identified gene is NPHP3, which is involved with canonical
Wnt-signaling, and the activation of Wnt signaling has shown
to be able to protect against A𝛽 neurotoxicity and to improve
cognitive performance in AD patients (Vallée and Lecarpen-
tier, 2016). The gene LRRC37A3 has shown to be associated
with frontotemporal dementia and immune-mediated disease
in microglia (Broce et al., 2018). Another identified gene is
SP1, which regulates the expression of several AD-related
proteins and is considered to be one of the therapeutic targets
in AD (Citron et al., 2008). The remaining genes are NDE1,
BIN3, and NUDT14, where the first gene has an essential role
in the cerebral cortex neurogenesis (Bakircioglu et al., 2011),
but the rest have not shown to be related to AD.

5 DISCUSSION

In this work, we address several important issues mentioned in
Section 1 for genetic association analysis on psychiatric dis-
eases; the numerical analyses have demonstrated its advan-
tages compared to the conventional approaches. Our method
provides reliable results when the endophenotypes carry
similar genetic components for disease risk. In practice, this
condition can be obtained from subjective knowledge on the
properties of the endophenotypes. Even when the data devi-
ate from this ideal scenario such that each endophenotype
has its own associated genetic variables that are not disease-
related, our method still provides the most satisfactory results
compared to the conventional approaches as demonstrated by
the simulation analysis. As our method relates the effect of
genetic variables to the latent disease liability or phenotypes,
we cannot interpret their coefficients in the same way as in
the regular regression analysis on observed variables. How-
ever, since the objective is to select the disease-associated
genes for wet-lab validations, our method is able to provide
such information since it gives good TPR and low false dis-
covery rate. Note that in order to have an easier interpreta-
tion on the identified genetic expression to either increase or
decrease the disease risk with the increment of their expres-
sion levels, the measurements of endophenotypes will either
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keep their original values or be multiplied by −1 so that they
will be all positively correlated with the severity of the disease
syndromes. For future studies, it will be of interest to extend
the framework to a more complex model such as a two-factor
model to relate the gene expressions and the manifest vari-
ables and/or to model the nondisease-related gene expression
associated with each endophenotype explicitly to improve the
performances in variable selection.
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SUPPORTING INFORMATION
Web Appendices, Tables, and Figures referenced in Sec-
tions 3.2 and 4 are available with this paper at the Bio-
metrics website on Wiley Online Library. Our code is also
available at the Biometrics website on Wiley Online Library.
The R package for the proposed methods can be found in
https://github.com/THstat22/PENLatent.
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