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Abstract Background: In the framework of the clinical validation of research tools, this investigation presents
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a validation study of an automatic medial temporal lobe atrophy measure that is applied to a natural-
istic population sampled from memory clinic patients across Europe.
Methods: The procedure was developed on 1.5-T magnetic resonance images from the Alzheimer’s
Disease Neuroimaging Initiative database, and it was validated on an independent data set coming
from the DESCRIPA study. All images underwent an automatic processing procedure to assess tissue
atrophy that was targeted at the hippocampal region. For each subject, the procedure returns a classi-
fication index. Once provided with the clinical assessment at baseline and follow-up, subjects were
grouped into cohorts to assess classification performance. Each cohort was divided into converters
(co) and nonconverters (nc) depending on the clinical outcome at follow-up visit.
Results: We found the area under the receiver operating characteristic curve (AUC) was 0.81 for all
co versus nc subjects, and AUCwas 0.90 for subjective memory complaint (SMCnc) versus all co sub-
jects. Furthermore, when training on mild cognitive impairment (MCI-nc/MCI-co), the classification
performance generally exceeds that found when training on controls versus Alzheimer’s disease
(CTRL/AD).
Conclusions: Automatic magnetic resonance imaging analysis may assist clinical classification of
subjects in amemory clinic setting even when images are not specifically acquired for automatic anal-
ysis.
� 2014 The Alzheimer’s Association. All rights reserved.
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1. Introduction

Between 2007 and 2011, new research and operational cri-
teria for Alzheimer’s disease (AD) were published by an ex-
pert dementia panel [1,2] and the U.S. National Institute of
eserved.
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Table 1

Demographics and clinical findings for the training data set from ADNI

Cohort Sample size Age (years) M/F MMSE

Training set A

CTRL 189 76.6 (5.1) 95/94 29.1 (0.9)

AD 144 75.5 (7.5) 78/66 22.3 (3.3)

Training set B

MCI–nc 166 75.7 (7.3) 106/60 27.2 (2.4)

MCI–co 136 75.1 (7.1) 80/56 25.2 (2.7)

Abbreviations: CTRL, controls; AD, Alzheimer’s disease; MCI–nc, MCI

nonconverters;MCI–co, MCI converters; M, male; F, female;MMSE,Mini-

Mental State Examination score.
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Aging (NIA)-Alzheimer Association (AA) [3–5]. To be
transferred to clinical practice, the criteria need to be
validated in large patient groups, although scientific
evidence is rather convincing and promising. Tools showing
amyloidosis and neurodegeneration (i.e., the biomarkers)
must be applied in naturalistic series of subjects presenting
with cognitive complaints but without dementia. In this
framework, they should be able to identify patients in the
predementia stage of AD from all of the other patients who
may manifest mild cognitive impairment (MCI) due to
other neurological or systemic diseases or to drug abuse.

A typical paradigm involves the computation of bio-
markers from several data sources (such as structural and
functional imaging, proteomics, genetic profile), sometimes
combining more than one to boost the classification power.
The main goal is to find a tool (or a combination of tools)
that is useful for diagnostic purposes by means of quick,
low-cost, and widely available procedures. Magnetic reso-
nance imaging (MRI) is probably the most available tool
in this framework.

By disclosing atrophy as the last step of neurodegenera-
tion, MRI is, in principle, less sensitive than tools showing
signs of neurodegeneration at the synaptic level before mas-
sive cell death occurs, such as [18F]-fluorodeoxyglucose pos-
itron emission tomography (FDG-PET) and phospho-tau
protein in cerebrospinal fluid (CSF) [6]. A notable counter-
example is provided by Bateman and colleagues [7], who
suggest that atrophy may be an even earlier indicator of neu-
rodegeneration than hypometabolism in familial AD.
Although a discussion on this study applicability to sporadic
AD is outside of the scope of this work, it is worth noting that
neurodegeneration markers were taken on different brain
areas (i.e., hippocampal volume on MRI and glucose metab-
olism in the precuneus on FDG-PET), which may well ex-
hibit a nontrivial time mismatch in showing a measurable
neurodegeneration signature. On regional FDG-PET studies
on the hippocampus, the reader is referred to Mosconi and
colleagues [8] and Clerici and colleagues [9]. With that
said improved acquisition sequences, higher magnetic fields,
and quicker and more reliable analysis tools make structural
MRI still competitive at an earlier stage.

Automatic analysis tools often rely on a homogeneous
database for their training and for their validation. Database
homogeneity typically involves subject inclusion criteria,
image acquisition protocols, and neuropsychological tests.
In addition, automatic analysis tools are usually developed
and trained on “research-grade” images (i.e., images for
which the characteristics are uniform across the study and ar-
tifact presence is limited or filtered out at the source).

In the last years, there has been a strong development of
automatic tools to detect atrophy; for instance, see Kl€oppel
et al. [10], Klauschen et al. [11], Calvini et al. [12], Hecke-
mann et al. [13], Aksu et al. [14], Matsuda et al. [15], Cui
et al. [16], Plant et al. [17], and the review paper of Cuingnet
et al. [18]. Literature works on analysis tools developed and
tested on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI; http://www.adni.loni.ucla.edu) data set are ample,
but there are, to our knowledge, very few works on the val-
idation of these tools and their related biomarkers on an in-
dependent data set of memory clinics origin.

In the present investigation, we tested the performance of
a recent analysis method from Chincarini and colleagues
[19] that was trained on 1.5-T MRI data from the ADNI da-
tabase. The method was applied to a set of images coming
from the DESCRIPA study (www.descripa.eu), a European
effort sponsored by the European Alzheimer’s Disease Con-
sortium (EADC) and funded by the European Community.

2. Materials and methods

At the time of analysis, we were blind to the clinical as-
sessment and to the subjects’ metadata, except for their
age. The first step was testing the procedure on a blind, “clin-
ical-grade” image set and comparing the results to those
achieved on the ADNI data set. We then tested the hypothe-
sis that the MCI cohort could include a subgroup of subjects
with neuroimaging characteristics of early AD mixed with
subjects without morphological signs of neurodegeneration.
To this end, we trained our procedure onto two different data
sets: one consisting of control (CTRL) and AD subjects and
one consisting of MCI subjects.

2.1. Subjects used for training

Data used in the preparation of this article were obtained
from the ADNI database. The ADNI was launched in 2003
by the NIA, the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the U.S. Food and Drug Ad-
ministration (FDA), private pharmaceutical companies,
and nonprofit organizations. For up-to-date information,
see www.adni-info.org.

Statistical data of the included subjects are summarized in
Table 1. All subjects were required to have baseline and at
least 2 years of clinical information available. Healthy
CTRL and AD subjects were selected only if they had the
same diagnosis at follow-up.

Images for the MCI cohorts were taken at baseline, and
they were divided into “MCI converters” (MCI-co) and
“MCI nonconverters” (MCI-nc) according to the 2 years of
clinical follow-up.

http://www.adni.loni.ucla.edu
http://www.descripa.eu
http://www.adni-info.org
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Training subjects were divided into two sets: a training set
(A) composed of 333 age- and sex-matched subjects
(namely 189 CTRL and 144 AD) and a training set (B) con-
sisting of 302 MCI subjects, 136 of which converted to AD
within 2 years. Sample sizes and demographics used in the
training are the same as in Chincarini et al. [19].
2.2. Subjects used for validation

Subjects for validation were selected from the DE-
SCRIPA study. The DESCRIPA study aims at developing
clinical criteria and screening guidelines for AD in the pre-
dementia stage. Recruiting centers were selected from
EADC members in 11 European countries and included 20
memory clinics specialized in the diagnosis and treatment
of memory disorders.

The inclusion criteria basically consisted of outpatients
aged 55 years or older that were newly referred for cognitive
complaints to a European center dedicated to the evaluation
of cognitive disorders. All referrals were considered, includ-
ing self- or relative-referral, referral from a general practi-
tioner, and referral from first-level neurological or geriatric
clinics. Cognitive complaints mainly includedmemory com-
plaints, but they could also include difficulties in other cog-
nitive domains, such as attention and orientation.

Exclusion criteria were dementia or any somatic, meta-
bolic (e.g., vitamin deficiency; endocrine untreated disor-
ders; and kidney, liver, or heart failure), psychiatric, or
neurological disorder that may cause cognitive impairment
(e.g., cerebrovascular accidents, neurodegenerative diseases
such as Parkinson’s disease, severe head trauma, brain tu-
mor, history of alcohol abuse, severe depression). In more
detail, dementia was excluded by the clinical interviews
with patients and caregivers and by means of formal ques-
tionnaires assessing the basic and instrumental activities of
daily living as outlined in the National Institute of Neurolog-
ical and Communicative Disorders and Stroke (NINCDS)-
Alzheimer’s Disease and Related Disorders Association
(ADRDA) and Diagnostic and Statistical Manual of Mental
Disorders, 4th edition (DSM-IV) criteria [20,21].

The DESCRIPA study was designed to reflect routine
clinical practice such that findings should allow for easy im-
plementation into a clinical routine. Centers agreed on the
collection of a minimal data set whereas other tests were op-
tional depending on local clinical practice and local funding
possibilities for data collection. For that reason, certain var-
iability among centers in cognitive tests, clinical rating
scales and neuroimaging tools was allowed. Further infor-
mation on clinical tests in the DESCRIPA study can be found
in Visser et al. [22].

DESCRIPA centers recruited subjects between January
2003 and June 2005. Subjects were classified as having sub-
jective memory complaints (SMC), nonamnestic MCI
(naMCI), and amnestic MCI (aMCI), with the MCI subjects
also comprising the deficit profile (single- and multido-
main). Magnetic resonance images [23,24], CSF [25],
single-photon emission computed tomography (SPECT)
[26,27], and electroencephalography [28] data in the DE-
SCRIPA population have already been published.

The MRI reader was blind to the diagnosis so that, within
the framework of a nondemented naturalistic population, we
were blind to the baseline and the follow-up clinical assess-
ment.
2.3. Neuropsychology and subgroup definition

Digital MRI was available at baseline in 245 subjects
with cognitive complaints (including aMCI, naMCI, and
SMC). All subjects underwent a standard battery of exami-
nations, including clinical history, medical and neurological
examinations, laboratory tests, functional evaluation using
the Clinical Dementia Rating (CDR) scale, rating scales
for depression and neuropsychiatric symptoms, a neuropsy-
chological test battery, and structural neuroimaging.

General cognition was assessed using the Mini-Mental
State Examination (MMSE). Depression was assessed by
the 15-item Geriatric Depression Scale or the Center for Ep-
idemiologic Symptoms of Depression (CES-D) scale [29]. A
depressive trait was defined according to the standard cutoff
of each scale.

In each center, a battery of neuropsychological tests was
performed to assess cognitive performance in the domains of
memory, language, executive function and attention, and vi-
suoconstruction. Raw scores were converted to age, educa-
tion, and gender corrected z scores according to locally
collected or published normative data. At baseline, patients
were classified into three groups on the basis of test perfor-
mances in these cognitive domains. Impairment was defined
as a z score of 21.5 or lower.

Subjects without impairment in any domain were classi-
fied as SMC. Subjects with impairment in the memory do-
main only or with impairment in the memory domain plus
impairment in nonmemory domains were defined as aMCI.
Subjects with impairment in one or more nonmemory do-
mains were defined as naMCI.

The aMCI and naMCI subgroups could include subjects
with either single or multiple domain deficit. Because of var-
iability among the neuropsychological protocols, the tests
used to defineMCI subtypes varied between centers. The tests
for memory were the learning measure and delayed recall
measure of the Rey Auditory Verbal Learning test, the Selec-
tive Reminding test [30], or the Grober-Buschke test [31].

The tests for language were 1-minute verbal fluency for
animals; 2-minute verbal fluency for animals; or 1-minute
verbal fluency for fruits, animals, and car trades. Executive
function and attention were assessed with the Trail Making
Test part A and B (TMT A and B) in all centers. The tests
for visuoconstruction were the copy subtest of the Rey-
Osterrieth complex figure and the copy of figures from the
Mental Deterioration Battery [32].

These subjects were followed up with the same clinical
and neuropsychological assessments for 1–3 years. At



Table 2

Demographics and clinical findings for the validation data set from the DESCRIPA study

Cohort

description

Sample

size Age (years) M/F MMSE NC/CO

Time to AD*

(years)

Deficit profile

sd/mdy

APOE 1

ε4 ε2 APOE 2 n.t.

SMC 53 70.2 (7.6) 21/32 27.1 (2.3) 51/2 1.7 (0.5) – 15 7 22 9

naMCI 56 69.9 (7.7) 16/40 26.9 (2.4) 48/8 1.6 (0.9) 36/20 14 8 31 3

aMCI 85 70.2 (8.3) 44/41 27.3 (2.2) 55/30 1.6 (1.1) 37/48 29 3 30 23

Total 194 70.1 (7.9) 81/113 27.1 (2.3) 154/40 1.6 (1.0) 73/68 58 18 83 35

Abbreviations: M, male; F, female, MMSE, Mini-Mental State Examination score; AD, Alzheimer’s disease; SMC, subjective memory complaints;

naMCI, nonamnestic MCI; aMCI 5 amnestic MCI; sd, single domain; md, multidomain; APOE1, APOE positive on allele ε2/4; APOE2, APOE without

ε2 or ε4 alleles; n.t., APOE not tested; MRI, magnetic resonance imaging; NC, nonconverters; CO, converters.

NOTE. Subjects described here are those for which their MRI did pass inclusion criteria for automatic analysis. Column NC/CO shows the number of con-

verter/nonconverter subjects for each cohort.

*Average time to conversion after baseline examination refers to converted subjects only.
yDeficit profile class is based on neuropsychological tests and is divided into sd/ md, where sd refers to memory deficit only. Deficit profile numbers in the last

row (total) refer to naMCI and aMCI only.
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follow-up visit, the onset of dementia of the Alzheimer type
was diagnosed according to the NINCDS-ADRDA and
DSM-IV criteria. Those patients fulfilling the diagnostic cri-
teria for MCI were labeled as MCI-nc whereas subjects with
no objective cognitive deficit were termed SMC, thus fol-
lowing the same rules as for baseline classification.

2.4. Image inclusion criteria

ADNI selected a magnetization-prepared rapid acquisi-
tion with gradient echo (MPRAGE) sequence, which was
defined across selected systems from GE Healthcare, Philips
Medical Systems, and Siemens Medical Solutions with
the objective of minimizing cross-platform differences.
Platform-specific protocols were distributed through the
MRI vendors to minimize inconsistencies expected to arise
from building the protocol manually on individual scanners.
In addition, the ADNI protocol involved a specific scanner
calibration procedure, subject positioning, and intensity
postprocessing to correct for various image nonuniformities.

UnlikeADNI, theDESCRIPA study did not include a spe-
cific protocol for structural MRI scans. Structural images in
Table 3

Exclusion criteria used to filter raw scans in input

Property Value (sample size)

Number of discarded

images

MRI scan Available (221), not available (24) 24

Scan type Volumetric (215), 2D (6) 6

Voxel size ,1.6 mm (197), .1.6 mm (18) 18

Image Subject misplacement (1) 1

Image Sizable artifacts (2) 2

Abbreviation: MRI, magnetic resonance imaging.

NOTE. Of the 215 available volumetric images, we had to discard 21 be-

cause of various nonidealities that could have severely compromised the

analysis result of the subject. “Voxel size” refers to the maximum value

of the MRI voxel size in either direction. “Subject misplacement” refers

to images that may contain anatomical parts other than the subject head

(subject shoulders) or omit part of the subject head. “Sizeable artifacts” re-

fers to artifacts for which the extent and severity may compromise intensity

and texture measures.
the study are rather heterogeneous and range from separate
slices (two-dimensional scans) to fully volumetric
MPRAGE-like scans. The MPRAGE-like scan type was ex-
plicitly stated in only 47% of the files, and images were ac-
quired with four scanners: Siemens Magnetom Expert
(36%), Siemens Sonata Vision (13%), Phylips Gyroscan
NT (43%), and Phylips Intera (8%); these are scanner
models not included in the ADNI-1 MRI protocols. Further-
more, voxel sizes are more heterogeneous than those found
in ADNI images. Voxel volume for the ADNI images used in
the training phase of this work ranges from 1.0 to 1.8 mm3

with a mean of 1.4 mm3, whereas in the DESCRIPA images
we find 0.9–2.9 mm3 with a mean of 1.3 mm3.

By design, our method works on volumetric scans, from
which it selects small, salient regions where intensity and
texture features are computed. For this reason, we had to de-
fine image inclusion criteria.

Of the Ntot 5 245 subjects with complete clinical
follow-up, only Nbaseline 5 215 baseline scans were found
to be volumetric MRI potentially suitable for automatic
analysis. In addition, Ndisc 5 21 had to be discarded be-
cause they exhibited abnormal characteristics, such as size-
able artifacts or excessive voxel-size anisotropy, which
rendered them unsuitable for automatic processing and
measurement.

We established the criteria for image inclusion as follows:
MRI was volumetric, the maximum voxel dimension was
�1.6 mm, and there was an absence of sizeable artifacts.

With these criteria, we were left with Na5 194 images to
analyze. Table 2 details the demographics and clinical find-
ings for theNa subjects and Table 3 details the number of dis-
carded images and the grounds on which they were
excluded. We checked that the statistical properties of the
subjects’ ensemble were not significantly altered by the im-
age selection; therefore, the image inclusion criteria cannot
be considered as a population enrichment filter.

Except for the scan type (volumetric or two dimensional)
and the selection on the maximum voxel size, analysis pro-
gressed without human intervention.



Table 4

Main gray matter structures captured in the VOIs and the size of the box

used to encapsulate them

VOI Main anatomical structure Size (mm)

1 Hippocampus, entorhinal 30! 70! 30

cortex (right)

2 Hippocampus, entorhinal 30! 70! 30

cortex (left)

3 Amygdala (right) 34! 34! 34

* 4 Amygdala (left) 34! 34! 34

5 Middle and inferior 30! 50! 30

temporal gyrus (right)

6 Middle and inferior 30! 50! 30

temporal gyrus (left)

7 Insula, superior 30! 60! 30

temporal gyrus (left)
y 8 Rolandic (right) 36! 36! 36

9 Rolandic (left) 36! 36! 36

Abbreviation: VOI, volume of interest.

*Potentially significant regions.
yControl regions.
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2.5. Image processing

Image processing closely follows the method detailed in
Chincarini et al. [19]. We summarize here the procedure ap-
plied to each magnetic resonance (MR) image up to the ex-
traction of its feature data set, which was used for
classification purposes.

MR images underwent a series of filters designed for
noise reduction, volume normalization, anatomical structure
registration, and gray-level intensity equalization. No
cohort-specific template was used for the Montreal Neuro-
logical Institute (MNI) spatial normalization. As a result of
the preprocessing steps, images were aligned to theMNI ref-
erence, were volume corrected, and the mean gray-level in-
tensities of the three major brain constituents (CSF, gray
matter [GM] and white matter [WM]) were matched to ref-
erence values.

Once preprocessed, each image was sampled with nine
volumes of interest (VOIs; see Table 4), seven of which
were placed in brain areas relevant to the AD and two of
which were placed in the Rolandic area and served as control
regions. Intensity and texture information from these nine
VOIs constitutes the feature set used in the classification
step.

To preserve accurate anatomical alignment, the VOIs
were extracted from each subject by means of a further
rigid registration using templates (i.e., a registration of sev-
eral reference VOIs onto the subject MNI-normalized
brain). There are typically five to nine templates per
VOI. They are design to capture the structural differences
among subjects with varying degrees of neurodegeneration,
ranging from healthy elderly to severe AD. Details on the
generation of VOI templates can be found in reference Cal-
vini et al. [12].

Although overall volume normalization is calculated us-
ing a single MNI reference, with VOI templates we can com-
pensate for anatomical differences among individuals and,
once the WM/GM/CSF intensity mapping is performed,
we can directly compare the VOI content.

During the training phase, the random forest (RF) classi-
fier computed “variable importance measures” [33,34],
which are a byproduct of the RF classification procedure.
This quantity was used for selecting the most probable
predictors; therefore, it was useful to prune irrelevant or
confounding variables [35].

Variable importance measures were then combined to
give the important features map (IFM), which assigned
a weight to each feature, measuring how relevant it was
to the cohort separation. The application of a thresholded
IFM on the raw feature set gave a reduced feature set,
which amounted to approximately to 104 for each MRI.
It is this reduced data set that was finally fed to a set of
support vector machine (SVM) classifiers, the output of
which was the classification index (CI). The CI is a number
ranging from 21 (AD) to 1 (CTRL), and it was assigned to
each subject.
2.6. Experiment

Two experiments were performed, differing only in the
training set choice. Classifiers were trained either on data
set A (i.e., a training set consisting of confirmed CTRL
and AD subjects) or B (training set consisting of baseline
MCI subjects, some of who were found to be converted to
AD after a follow-up of 2 years; see Table 1). All training
subjects came from the ADNI population.

The purpose was to test the discrimination ability of the
information coming from the MCI population, which may
contain late converter subjects within the nc cohort, and
compare it with that coming from a clinically robust set.
For each experiment, we calculated the related IFM and
hence the feature subset used to train the SVM classifier.
On the basis of the SVM classifier algorithm from training
sets A and B, we calculated a CI for each subject in the DE-
SCRIPA study.

DESCRIPA subjects’ data were never included in the
training phase. At the time of analysis, we were blind to
all clinical data except for the subjects’ ages, which were
used only to check that the average training group age
was not significantly different from that of the validation
group.

Therefore, each subject from the DESCRIPA study was
labeled with two CI indexes: the first coming from the clas-
sifiers trained on data set A and the second coming from the
classifiers trained on data set B.

We tested the performance of our approach on five differ-
ent groupings of the DESCRIPA subjects. We tested con-
verters versus nonconverters within a single cohort, and
we merged cohorts together. Groupings have different sam-
ple sizes and may contain mixed cohorts. They are detailed
in Table 5.



Table 5

Classification performance for the different cohort grouping and training set

Test Cohorts Sample size

AUC(s) Sp/Sn AUCBsAUCA

Training set A Training set B Training set A Training set B (P value)

i naMCInc/naMCIco 48/8 0.60 (0.10) 0.76 (0.08) 0.62/0.62 0.75/0.69 .03

ii aMCInc/aMCIco 55/30 0.73 (0.05) 0.72 (0.06) 0.80/0.64 0.70/0.71 .69

iii MCInc/MCIco 103/38 0.74 (0.04) 0.76 (0.04) 0.68/0.76 0.66/0.75 .34

iv SMCnc/Allco 51/40 0.84 (0.04) 0.90 (0.03) 0.82/0.78 0.93/0.74 .01

v Allnc/Allco 154/40 0.77 (0.04) 0.81 (0.03) 0.72/0.75 0.68/0.81 .08

Abbreviations: AUC, area under the receiver operating characteristic curve; Sp, specificity; Sn, sensitivity; naMCI, nonamnestic MCI; aMCI, amnestic MCI;

MCI, mild cognitive impairment; SMC, subjective memory complaints; All, all cohorts (SMC 1 aMCI 1 naMCI).

NOTE. Sn and Sp values are given for both curves with a balanced cutoff. nc and co subscripts indicate the nonconverter and converter fraction of the cohort.

The last column indicates whether it is statistically significant that the AUC values obtained when training on set B differ from those obtained when training

on set A.

A. Chincarini et al. / Alzheimer’s & Dementia 10 (2014) 456–467 461
3. Results

3.1. Classification

The descriptive statistics of the CI according to MCI sub-
group at baseline is shown in Figure 1. Subjects with more
severe neuropsychological impairment show more MTL at-
rophy.

Using the CI statistics, we find SMC and naMCI single-
domain populations indistinguishable at the 95% confidence
level for both experiments. The same test performed on SMC
and naMCI multidomain populations rejects the null hypoth-
esis only in experiment B (P , .006).
Fig. 1. Descriptive statistics of the CI for the DESCRIPA subjects detailed in Tab

CTRL/AD cohorts and on MCI–nc/MCI–co cohorts, respectively. ACI value close

an AD-like condition. The central mark is the median, and the edges of the thicker

62.7s if the data were normally distributed. Most extreme data points are plotte

index; SMC, subjective memory complaints; naMCI-sd, nonamnestic MCI, single

MCI, single domain; aMCI-md, amnestic MCI, multidomain; MCI-nc, mild cognit
Without subdivision in single/multiple domains, CI data
coming from experiment B show that SMC, aMCI, and
naMCI cohorts are all significantly different (P , .02 for
SMC and naMCI, P, 1024 for aMCI vs.SMC and naMCI).
The same test performed on experiment A only rejects the
null hypothesis for aMCI against SMC and naMCI.

The overall accuracy of the CI for predicting AD-type de-
mentia after 2 years in each subgroup and in the total sample
is shown in Table 5.

Classifiers seem to perform better when obtained
from training set B, although this difference is only sig-
nificant in the comparison i and iv (i.e., when SMC and
le 2. The left and right plots refer to data coming from classifiers trained on

to 1 represents a normalcy condition whereas a value close to21 represents

line are the 25th and 75th percentiles. Whiskers extend up to approximately

d individually. CNTL, control; AD, Alzheimer’s disease; CI, classification

domain; naMCI-md, nonamnestic MCI, multidomain; aMCI-sd, amnestic

ive impairment nonconverter; MCI-co, mild cognitive impairment converter.



Fig. 2. ROC curves for test i and iv with training set A and B (see Table 5):

(a) test i with training set A (solid line) and B (dashed line); (b) test iv with

training set A (solid line) and B (dashed line). ROC, receiver operating char-

acteristic.
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naMCI are included in the test). For these tests, receiver
operating characteristics (ROC) curves are shown in
Figure 2.

3.2. Relevant regions

A significant difference when the procedure is trained
with set A or B comes from the IFM, which weights those
image features that are passed to the SVM classifier.
Figure 3 shows the thresholded IFM superimposed on the
MNI reference image.
Figure 3a shows that the IFM trained on set A is localized
in the head of the hippocampus and amygdala (axial section)
and in the tail of the hippocampus (parahippocampal gyrus),
close to the fornix (sagittal section). On the other hand,
Figure 3b shows that the IFM trained on set B is much
more sparse within the temporal lobe, including some small
clusters in the middle and inferior temporal gyri (Brodmann
areas 21 and 22), in the body of the hippocampus and in the
fusiform gyrus in both hemispheres, beside the head of hip-
pocampus, and in a small part of the amygdala mainly in the
left hemisphere.

Differences between IFM(A) and IFM(B) can be more
readily appreciated when looking at a single VOI. Figure 4
shows a series of sagittal, axial, and coronal sections of
a sample right hippocampus (VOI 1) together with the nor-
malized, unthresholded IFM(A) and IFM(B) intensities.
IFM(B) is clearly much sparser and involves many more
voxels than its counterpart.
3.3. Statistics

On the CI distribution plotted in Figure 1, we tested
group discrimination by means of a two-sample Kolmo-
gorov-Smirnov test [36], which has the advantage of mak-
ing no assumption about the distribution of data. In fact,
CI distribution is bounded by definition on the interval
[21, 1], which makes the distributions unsuitable to be
tested with the more common t test. Tests on SMC and
naMCI single-domain populations found them indistin-
guishable at the 95% confidence level for both experi-
ments. The same test performed on the SMC and naMCI
multidomain only rejects the null hypothesis in experiment
B (P , .006).

As far as converter/nonconverter discrimination is con-
cerned, as summarized in Table 5, the cutoff point used to
compute specificity and sensitivity values was chosen to
minimize the distance

d5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12SnÞ21ð12SpÞ2

q

thus achieving a balance between sensitivity (Sn) and spec-
ificity (Sp). For easier comparison to literature works, we re-
port the results using another widely accepted cutoff rule
(Youden index) in Table 7.

We also checked whether there was any performance dif-
ference when considering images coming from a single
scanner, and we did not find any. Given the relatively few im-
ages involved, the check was only performed on test iii and v,
in which we singled out images coming from the Phylips
Gyroscan NT scanner, which accounts for approximately
43% of all scans.

Image processing was performed on a dedicated com-
putational farm running the LONI pipeline software
(www.loni.ucla.edu) using MATLAB (www.mathworks.
com) and ITK (www.itk.org) as algorithm libraries. All

http://www.loni.ucla.edu
http://www.mathworks.com
http://www.mathworks.com
http://www.itk.org


Fig. 3. Thresholded IFM when classifiers are trained on (a) set A and (b) set B. Axial (bottom left), coronal (top left), and sagittal (top right) sections show the

IFM superimposed on the MNI reference image. Color scale is proportional to the normalized IFM value after thresholding. For displaying purposes, normal-

ization was performed separately for IFM (A) and (B). IFM, important features map; MNI, Montreal Neurological Institute.
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statistical analyses were performed within the MATLAB
environment. Error estimation and P value statistics for
the area under the ROC curve (AUC) values in
Table 5 are computed according to Hanley and McNeil
[37,38].
Fig. 4. From left to right: sagittal, axial, and coronal sections of a sample hippocam

bottom 5 right-to-left; axial view top-to-bottom 5 top-to-bottom; coronal view to

each image are, respectively, MRI sections, IFM based on CTRL/AD subjects (tr

Intensity scale in IFM images is proportional to the feature relevance and was separ

map; CNTL, control; AD, Alzheimer’s disease; MCI-nc, mild cognitive impairmen

of interest.
4. Discussion

The present study shows that automatic analysis of
atrophy on structural MRI can help identifying those with
underlying AD pathology with satisfactory accuracy in
pal area (VOI 1) together with the unthresholded IFM. Sagittal view top-to-

p-to-bottom5 anterior-to-posterior. The left, central, and right columns of

aining set A), and IFM based on MCI-nc/MCI-co subjects (training set B).

ately normalized on a scale (0–1) for easier reading. IFM, important features

t nonconverter; MCI-co, mild cognitive impairment converter; VOI, volume



Table 6

Performance comparison among available MRI measures and our procedure (experiment B) computed on a common DESCRIPA data set

Test Cohorts Common sample sizey AUCB(s) Best matching measure* AUC* (s) AUCBsAUC* (P value)

i naMCInc/naMCIco 42/6 0.73 (0.09) Lat. Ventr. 0.80 (0.08) .29

ii aMCInc/aMCIco 54/30 0.72 (0.06) LEAP (ivc) 0.71 (0.06) .88

iii MCInc/MCIco 100/37 0.76 (0.04) LEAP (ivc) 0.72 (0.05) .26

iv SMCnc/Allco 49/40 0.90 (0.03) MTA 0.81 (0.05) ,1023

v Allnc/Allco 140/39 0.80 (0.04) Hip. man. 0.71 (0.04) .005

Abbreviations: LEAP (ivc), learning embeddings for atlas propagation with intracranial volume correction; Hip. man. (ivc), hippocampal volume, manual

tracing with intracranial volume correction; Lat. Ventr., lateral ventricle volume; MTA, global atrophy visual assessment (Sheltens’ visual rating scale); AUC,

area under the receiver operating characteristic curve; naMCI, nonamnestic MCI; aMCI, amnestic MCI; MCI, mild cognitive impairment; SMC, subjective

memory complaints; All, all cohorts (SMC 1 aMCI 1 naMCI).

NOTE. nc and co subscripts indicate the nonconverter and converter fraction of the cohort. For each test, i–v, we evaluated the performance of all available

measures and chose that with the highest AUC value to compare it to our results. Because each measure was available on a subset of all subjects, the y shows the
common number of subjects on which both statistics were available: these are the shared subjects between the best matching measure and our procedure. Com-

pared with Table 5, we get a smaller number of subjects as the result of the set intersection. The last column indicates whether the two AUC values are signif-

icantly different.

*Measure and AUC refers to the best matching outcome among the available analyses.
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a naturalistic population of subjects presenting with subtle or
mild cognitive complaints to a memory clinic.

The first remark is that these data were collected by
means of different equipment in several European countries
and that MRI scans were performed on clinical demand and
not for research purposes. As such, the results are even more
important. Moreover, the studied population received no
other screening procedure than having subjective or objec-
tiveMCI (i.e., it is not the overselected population of clinical
trials). In fact, the DESCRIPA design did not include the ac-
quisition of MRI images; therefore, no selection based on
image quality or availability was applied to the population.

The lack of a common protocol and of dedicated image
quality assessment can be used to test the performance
of an automatic analysis method when input images are
“clinical quality” rather than “research quality”. The paid
price is that not all images can be accepted, depending on
the tolerances of the analysis method. Nevertheless, this
study shows that consistent results can be achieved when
the analysis procedure is based on a sufficiently large num-
ber of images coming from different centers and scanners
(as is the case with ADNI images).

Confounding factors, such as mild-to-moderate cerebro-
vascular disease, depression, and drug use, may have influ-
enced brain atrophy to some extent. Nevertheless, the
automatic procedure is able to capture those atrophy pecu-
liarities in the temporal lobe, allowing group identification
with satisfying accuracy.

An issue deserving particular attention is that training the
classifiers on AD patients and healthy CNTL of the ADNI
population has a similar effect on accuracy as classifiers
trained on MCI–co/nc when aMCI converter patients are
compared with aMCI nonconverters (test ii). This finding
stresses that AD pathology features can be well identified
in aMCI if a memory deficit is identified first.

The same assumption is not confirmed when an objective
memory deficit cannot be demonstrated, as in naMCI pa-
tients and in SMC subjects (tests i and iv), in whom training
the classifier on a MCI population rather than on AD and
healthy CNTL led to a very significant increase in diagnostic
accuracy. Thus, the atrophy pattern may be different in pa-
tients converted to AD dementia if their clinical presentation
at baseline does not fit the ”classical” episodic memory def-
icit paradigm.
4.1. Comparison to other measures

DESCRIPA data include several data fields and imaging
types. Following the data usage policy, the DESCRIPA steer-
ing committee approved other analyses on the same MRI
data set, which were performed blind to the subjects’ clinical
assessment at baseline and follow-up.

Analyses included an application of the LEAP algorithm
to the hippocampus [39], hippocampal volume measured
with manual segmentation, global atrophy visual assessment
(medial temporal lobe atrophy [MTA]) [40], and volumetric
assessment in the lateral ventricle [41,42]. Some measures
were given with and without intracranial volume correction
(IVC). A thorough comparison of these methods can be
found in Clerx et al. [43].

We compared the performance of all analyses to the re-
sults of experiment B by means of the AUC. For each of
the tests in Table 5, we computed AUC values on the com-
mon data set between our procedure and any of the afore-
mentioned measures. The best matching measure (i.e.,
with the higher AUC) was taken for comparison. Results
are detailed in Table 6.

We see that for each test, there is an analysis method com-
petitive with ours (AUCB) but none of them is consistently
competitive in all tests. In addition, our procedure performs
significantly better on tests iv and v, suggesting that the in-
clusion of SMC subjects is best taken into consideration in
our training set.

Further qualitative comparisons on an equivalent DE-
SCRIPA data set but with radically different approaches
can be found in Babiloni et al. [28] and Nobili et al. [27].



Table 7

Sensitivity and specificity values with different cutoffs

Test

Balanced cutoff Youden index

CI value Sp/Sn PPV/NPV CI value Sp/Sn PPV/NPV

i 0.30 0.75/0.69 0.94/0.29 0.37 1.00/0.54 1.00/0.27

ii 0.11 0.70/0.71 0.81/0.57 0.11 0.70/0.71 0.81/0.57

iii 0.14 0.66/0.75 0.86/0.49 0.11 0.63/0.78 0.85/0.51

iv 0.36 0.93/0.74 0.93/0.74 0.37 0.95/0.72 0.95/0.73

v 0.14 0.68/0.81 0.91/0.47 0.36 0.93/0.56 0.97/0.36

Abbreviations: CI, classification index; Sp, specificity; Sn, sensitivity;

PPV, positive predictive value; NPV, negative predictive value.

NOTE. Cutoff value (CI threshold), Sp, Sn, PPV, and NPV for the tests are

detailed in Table 5 using two different cutoff rules on the receiver operating

characteristic curves. Statistics evaluated on values from experiment B.
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Babiloni et al. [28] show that electroencephalographic
(EEG) analysis can convey group discrimination among
SMC, naMCI, and aMCI. Their results suggest that along
the transition line between normal and pathological aging,
aMCI subjects present peculiar alterations of global neural
synchronization and that the classification of subjects into
MCI subtypes and SMC has a neurophysiological basis.

Our findings are in accordance with their conclusions be-
cause we readily see that aMCI is the most diverse group
among the three cohorts. In addition, the fact that classifiers
trained on MCI generally deliver better results could be ex-
plained by the differences in the IFM obtained on MCI sub-
jects when compared with the one computed on CTRL/AD.

IFM differences translate into feature selection (i.e., in-
formation captured in different regions and by different in-
tensity and texture filters). Therefore, it is reasonable to
assume that training onMCI subjects is better suited for cap-
turing transitional features that are either flattened out in the
more advanced stage of the pathology or are not significant
enough during the normal aging process.
4.2. Study limitation

From a methodological point of view, this work does not
present a novel analysis but follows the procedure published
in Chincarini et al. [19], except for the use of MCI subjects
for training and their comparison to CTRL/AD on the clini-
cally relevant regions (IFM).

The choice of the procedure was driven by its simplicity
and robustness while providing reasonable accuracy so that
it could be used to assist in the clinical classification of sub-
jects in a memory clinic setting. However, it could be argued
that more sophisticated approaches (i.e., using nonlinear
registration algorithms) could have improved the perfor-
mance. This issue was already addressed in Chincarini
et al. [19], although it is likely that complex procedures
are more susceptible to image quality issues.

In this study we had to limit the number of images to those
complying with certain quality requirements. With these con-
straints, the analysis procedure did prove satisfactory but the
presence of sizeable artifacts or the threshold on voxel anisot-
ropy was decided arbitrarily. However, these constraints de-
pend on the particular algorithm chosen to analyze the data;
for instance, a procedure looking for ventricular enlargement
could be more robust with respect to the image voxel size
and presence of artifacts than a procedure that looks for subtle
intensity and texture variances in a small set of voxels.

The present study could be extended in two directions.
From a clinical point of view, we would welcome a longer
follow-up timeframe, which could improve the prediction
ability on AD converters. Data from the ADNI-II phase
could well comply with such a requirement.

From a methodological point of view, different ap-
proaches could be used to improve on the simple MRI
data on the algorithm side and on the selection criteria.
Bearing in mind the applicability of the method in every-
day clinical practice, we envisage a prognostic improve-
ment by means of a multidomain approach, possibly with
CSF analysis.
5. Conclusion

We validated a fully automatic analysis and classification
method using only structural MR images on a set of clinical-
grade images coming from the DESCRIPA study. The
DESCRIPA enrolled SMC, aMCI, and naMCI subjects and
acquired a series of neuroimaging and clinical data with
a follow-up in the range of 1–3 years.

Each of the 215 baseline digital MRI from the DE-
SCRIPA study was checked against a minimal set of basic
quality parameters to determine its eligibility for automatic
analysis. A total of 194 images survived the inclusion crite-
ria and were analyzed.

For each subject, the analysis assigns a number (CI)
that correlates with the clinical assessment and probabil-
ity of converting to the AD state in a timeframe of 1–
2 years. The method was developed on 1.5-T MR images
coming from the ADNI database, and classifiers were
trained on two separate data sets: one consisting of
CTRL and AD subjects and one consisting of MCI sub-
jects. It was shown that the classification performance
on DESCRIPA subjects benefits from a dedicated training
on MCI subjects.

Further analysis of the relevant regions (IFM) when the
procedure was trained onMCI versus CTRL/AD subjects re-
vealed subtle differences in spatial and intensity distribution
that reflect on the classifiers ability to better distinguish be-
tween converters and nonconverters, particularly when SMC
subjects were included in the test.

Our findings suggest that, even from the structural point
of view, the cognitive impairment stage (be it SMC, naMCI,
or aMCI) cannot simply be regarded as a transitional phase
between normalcy and dementia. A dedicated training on
specific and well-selected populations significantly im-
proves the odds of correct classification and prediction.

Comparison to other analysis methods on the very same
subjects shows that our approach is competitive and has
the benefit of being completely automatic.
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RESEARCH IN CONTEXT

1. Systematic review: A workgroup commissioned by
the NIA-AA recently published research criteria for
preclinical AD. Literature works show that there is an
increasing need to validate these criteria and the
biomarkers outside of the research environment.
Most works on image-based biomarkers derive their
results on research-driven image databases, in which
data quality and consistency are guaranteed by
shared protocols and study criteria.

2. Interpretation: Validation on a clinical-grade data set
would provide information on the marker clinical
usefulness and on the procedure robustness. Our test
shows that the marker performance is satisfactory,
provided some minimal criteria are met. These
findings support a more widespread use of automatic
procedures in everyday clinical practice.

3. Future directions: We should address the potential
problems arising from less restrictive inclusion pro-
cedures on the general population and the relevancy
of biomarker outcome on clinical diagnosis and
prognosis.
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