
Original Paper

Hum Hered 2019;84:59–72

The Contribution Plot: Decomposition and 
Graphical Display of the RV Coefficient, with 
Application to Genetic and Brain Imaging 
Biomarkers of Alzheimer’s Disease

JinCheol Choi 

a    Donghuan Lu 

b    Mirza Faisal Beg 

b    Jinko Graham 

a    

Brad McNeney 

a     for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)    
a

 Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada; b School of 
Engineering Science, Simon Fraser University, Burnaby, BC, Canada

Received: September 30, 2018
Accepted: June 5, 2019
Published online: August 20, 2019

Brad McNeney
Department of Statistics and Actuarial Science
Simon Fraser University
Burnaby, BC V5A 1S6 (Canada)
E-Mail mcneney @ sfu.ca

© 2019 S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/hhe

DOI: 10.1159/000501334

Keywords
RV coefficient · Multivariate correlation · Alzheimer’s 
disease · Shrinkage estimation · Graphical display

Abstract
Background/Aims: Alzheimer’s disease (AD) is a chronic 
neurodegenerative disease that causes memory loss and a 
decline in cognitive abilities. AD is the sixth leading cause of 
death in the USA, affecting an estimated 5 million Ameri-
cans. To assess the association between multiple genetic 
variants and multiple measurements of structural changes in 
the brain, a recent study of AD used a multivariate measure 
of linear dependence, the RV coefficient. The authors de-
composed the RV coefficient into contributions from indi-
vidual variants and displayed these contributions graphical-
ly. Methods: We investigate the properties of such a “contri-
bution plot” in terms of an underlying linear model, and 
discuss shrinkage estimation of the components of the plot 
when the correlation signal may be sparse. Results: The con-
tribution plot is applied to simulated data and to genomic 
and brain imaging data from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI). Conclusions: The contribution 
plot with shrinkage estimation can reveal truly associated 
explanatory variables. © 2019 S. Karger AG, Basel

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative dis-
order. As a type of dementia, it is a neurological dysfunc-
tion that is irreversible, neurodegenerative, and progres-
sive, causing memory loss and a decline in cognitive func-
tion. AD usually occurs in older people and is considered 
to be a complex disease driven by a combination of ge-
netic and environmental factors. More than 5 million 
Americans suffer from AD, and it is ranked as the sixth 
leading cause of death in the USA [1].

The Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) is a longitudinal multisite study that started in 
2004 to understand the onset, progression, and etiology 
of AD. One of the ADNI objectives is to identify associa-

The data used in preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). As such, the investigators within the ADNI contributed 
to the design and implementation of the ADNI and/or provided data 
but did not participate in the analysis or writing of this report. A com-
plete listing of ADNI investigators can be found at http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledge-
ment_List.pdf.
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tions between genetic and brain imaging biomarkers of 
AD [2]. Neuroimaging studies such as the ADNI feature 
multivariate data sets, typically composed of large num-
bers of genotypes and phenotypes. For example, the data 
set in the study by Szefer et al. [3] consisted of 75,181 
single nucleotide polymorphism (SNP) genotypes and 56 
brain phenotypes derived from MRI scans.

To measure the association between multivariate 
data sets, many different correlation coefficients have 
been introduced. One of the most popular is the RV co-
efficient, which measures the linear association between 
two data sets by estimating the population vector cor-
relation coefficient ρV [4]. When both data sets consist 
of a single variable, RV is the squared Pearson correla-
tion coefficient and ρV is the squared population correla-
tion coefficient.

In the study by Szefer et al. [3], the RV coefficient is 
used to summarize the multivariate association between 
brain phenotypes and SNPs in AD linkage regions. The 
authors performed a test of the null hypothesis ρV = 0 ver-
sus the alternative hypothesis ρV > 0, and they rejected the 
null hypothesis. In a post hoc investigation, they decom-
posed the RV coefficient into contributions from each 
SNP and plotted the result [3; Fig. 5]. A sample contribu-
tion plot using the methods described in section 2.1 of 
this paper is given in Figure 1. The plot suggests that the 
association between the multivariate data matrices of ex-
planatory and response variables is driven by the 30th and 
70th explanatory variables.

In this report we investigate the properties of the con-
tribution plot in terms of an underlying linear model, and 
discuss estimation of the components of the plot when 

the correlation signal may be sparse. The contribution 
plot is applied to simulated data sets and to genetic and 
brain imaging data from the ADNI study.

2 Materials and Methods

2.1 The Contribution Plot
In this section, we define the RV coefficient and its population 

counterpart, the multivariate correlation coefficient ρV, following 
Josse and Holmes [4]. Our intended use of the RV coefficient is to 
investigate correlations between matrices of genetic marker geno-
types and brain phenotypes, and our descriptions will be in those 
terms, though the methods apply in any multivariate setting. We 
decompose ρV into contributions from each genetic marker, and 
study the form of such contributions under a multivariate linear 
model for brain phenotypes given genomic data. Finally, we dis-
cuss shrinkage estimation of the contributions that may be useful 
when the correlation signal is sparse. By sparse we mean few non-
zero pairwise correlations between genotypes and phenotypes.

Let X = (X1, … , Xp) denote a random vector of p explanatory 
variables and Y = (Y1, … , Yq) denote a random vector of q response 
variables. A measure of population correlation between X and Y 
[5] is

(1)( )
( )

( ) ( )

p q

k l
k l
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k l k l
k l k l

X Y
X Y

X X Y Y
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where cov() denotes population covariance. The coefficient ρV 
may be viewed as an extension of the squared population correla-
tion to the multivariate setting.

Suppose we have n independent and identically distributed re-
alizations of X and Y, arranged row-wise as data matrices X(n × p) 
and Y(n × q), respectively. Let X.k denote the k-th column of X, i.e., 
the vector of genotypes for genetic marker k. Similarly, let Y.l de-
note the l-th column of Y, i.e., the vector of measurements for phe-
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Fig. 1. Sample contribution plot for data 
simulated as described in section 2.2 (sam-
ple data set 3) using the methods of section 
2.1. The vertical axis is the contribution of 
each explanatory variable to a modified RV 
coefficient designed to identify sparse cor-
relation signals (section 2.1). The horizon-
tal axis is the index of the explanatory vari-
ables. The horizontal line is the estimated 
95th percentile of the distribution of the 
maximum contributions under no associa-
tion, where the maximum is over all ex-
planatory variables. The estimate is based 
on an empirical null distribution from 
5,000 data sets in which the rows of the ma-
trix of explanatory variables are permuted. 
Individual contributions that exceed the 
95% threshold are considered noteworthy.
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notype l. The multivariate correlation coefficient in equation 1 can 
be estimated by the RV coefficient, obtained by replacing popula-
tion covariances such as cov(Xk, Yl) with their sample counterparts 
cov(X.k, Y.l):

(2)( )
( )

( ) ( )

p q

k l
k l

p p q q

k l k l
k l k l
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X Y

2
. .

=1 =1

2 2
. . . .

=1 =1 =1 =1

cov ,
, = .

cov , cov ,

åå

åå åå

Josse and Holmes [4] and Appendix A in Choi’s thesis [6] give al-
ternate forms of the RV coefficient.

From equation 2, the contribution of the k-th genetic marker 
to the RV coefficient is proportional to 

(3)( )
q

k k l
l

ˆ X Y2
. .

=1
= cov , .å

The notation Ĉk reflects the fact that the contribution of genetic 
marker k to the RV coefficient is an estimate of a corresponding 
contribution to ρV(X, Y):

(4)( )
q

k k l
l

X Y2

=1
= cov , .å

The covariances that compose Ck can be derived under a linear 
model for the association between X and Y. Such a model is con-
sistent with the RV coefficient measuring the linear relationship 
between two multidimensional data sets. In fact,
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where βkl is the coefficient of Xk in the regression of Yl on X [6]. 
Equation 5 shows that Ck depends on not only the regression coef-
ficients, but also the variance of Xk and the covariances between Xk 
and the other components of X. Some simplification of the contri-
butions is obtained by scaling each Xk by its standard deviation, so 
that the variance terms become one and covariances become cor-
relations. Letting X* and Y* denote the standardized variables, the 
contribution of genetic marker k to ρV(X*, Y*) is

(6)( )
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k kl kk l k
l k k
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2
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where β*kl is the coefficient of the standardized X*k in the regression 
of the standardized Y*l on X*. Thus, genetic marker k makes a non-
zero contribution to ρV(X*, Y*) if it is directly associated with one 
or more Yl (i.e., βkl ≠ 0 for one or more l) or if it is correlated with 
one or more Xk′ that is/are directly associated with one or more Yl 
(i.e., there is a k′ such that cor(Xk, Xk′) ≠ 0 and an l such that βk′l ≠ 
0). Interestingly, a genetic marker’s indirect associations with phe-
notypes do not play a role in determining its contribution; we re-
turn to this point in the analyses of the simulated data.

We now turn to estimation of the contributions to the RV coef-
ficient. The contribution from the k-th genetic marker is

(7)( )
q

k k l
l

ˆ X Y* 2 * *
. .

=1
= cor , ,å

a sum of squared sample correlations. Our studies of simulated data 
(section 3.1) suggest that when the correlation signal is sparse, in the 
sense that there are few truly non-zero correlations, and the sample 
size is modest compared to the number of phenotypes, sampling er-

ror in estimates of truly zero correlations can obscure the signal of 
the truly non-zero correlations. A solution is to raise the squared 
correlations to a power, α; i.e., we consider the contributions

(8)( )
q

k k l
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ˆ X Y* 2 * *
. .

=1
( ) = cor , ,å 

to a modified RV coefficient
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for α ≥ 1. Raising correlations to powers larger than 2 has the effect 
of differentially shrinking all estimates toward zero, with estimates 
near zero shrunken more than those near 1. Independently, Xu et 
al. [7] arrived at the same modified RV coefficient in the context 
of testing the null hypothesis H0: ρV(X*, Y*) = 0 versus the alterna-
tive hypothesis H1: ρV(X*, Y*) > 0. In their sum-of-powered-cor-
relations test, SPC(α), they employed RV(X*, Y*|α) as a test statis-
tic and assessed its significance with a Monte Carlo permutation 
test. They also suggested an adaptive test (aSPC), in which the test 
statistic is a minimum p value for the SPC(α) test over a grid of 
powers. Though testing is not the focus of this project, we make 
use of their minimum-p-value idea to select a power α for the con-
tribution plot. In particular, our contribution plot is of contribu-
tions Ĉ*k(αm) for the power αm that minimizes the p value of the test 
based on RV(X*, Y*|α), for values of α on a grid. In our study, we 
chose the grid α = 1, 2, 3, or 4. The R code [8] to implement the 
contribution plot is given in the Appendix.

2.2 Simulated Data Settings
We applied the contribution plot to simulated multivariate 

data sets consisting of a matrix of explanatory variables X and a 
matrix of response variables Y. Here we summarize the results 
from three data sets simulated to represent no or a sparse associa-
tion. To investigate the effect of correlation among explanatory 
variables and correlation among response variables on the proper-
ties of the contribution plot, we simulated data with and without 
these correlations, as described next.

The simulated data sets consisted of p = 130 explanatory vari-
ables and q = 25 response variables on n = 100 subjects. We simu-
lated from a multivariate multiple-regression model

Y = XB + E,

in which Yn×q is a matrix of response variables, Xn×p is a matrix of 
explanatory variables generated from MVN(0, ∑X), Bp×q is a co-
efficient matrix, and En×q is an error matrix generated from 
MVN(0, ∑E).

In our simulation model, we vary the parameters ∑X, ∑E, and B. 
Let Ip and Iq denote the p × p and q × q identity matrices. We sum-
marize the results from three data sets simulated under the follow-
ing parameter values:
• Data set 1: No associations

• ∑X = Ip
• ∑E = Iq
• Bij = 0 for all i and j

• Data set 2: Sparse association; correlated explanatory variables 
X25, … , X35
• ∑X

i,j = 0.9 for 25 ≤ i, j ≤ 35, and i ≠ j, with all diagonal entries 
equal to 1 and all other entries equal to 0

• ∑E = Iq
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• B30,1 = B70,10 = 1, so that X30 and X70 are causally associated 
with Y1 and Y10, respectively

• Data set 3: Sparse association; correlated errors E1, … , E15, and 
hence correlated responses
• ∑X = Ip
• ∑E

i,j = 0.9 for 1 ≤ i, j ≤ 15, and i ≠ j, with all diagonal entries 
of ∑E equal to 1 and all other entries equal to 0

• B30,1 = B70,10 = 1, so that X30 and X70 are causally associated 
with Y1 and Y10, respectively

Further simulation settings were considered in the thesis by 
Choi [6] (chapter 4), but we do not present them here.

2.3 ADNI Data Description
In this section we describe the ADNI data used to illustrate the 

contribution plot.

2.3.1 Subjects
Both the SNP and the brain imaging data considered in this 

analysis were from the ADNI Phase 1 (ADNI-1) study, which was 
run in the years 2004 through 2009. Our interest was in genetic 
variation that predicts structural differences in the brain before 
subjects experience memory loss. Hence, we considered data from 
the 200 cognitively normal (CN) subjects only. Further details 
about the ADNI-1 study design are available on the ADNI website 
(http://adni.loni.usc.edu/study-design/).

2.3.2 Genotype Data
Genotyping was performed as described by Saykin et al. [9]. 

Genotypes were processed according to standard quality control 
and imputation procedures to fill in missing values as described by 
Szefer [10]. SNPs were chosen from the top 40 AD candidate genes 
listed on the AlzGene database as of June 10, 2010. After data pro-
cessing, 179 subjects with data on 493 SNPs in 33 genes remained 
for analysis. Table 1 gives a summary of gene names and the num-
bers of SNPs from each gene. The SNP names are given in Appen-
dix C of Choi’s thesis [6].

2.3.3 Imaging Phenotype Data
The phenotypes, as defined by Wang et al. [11], were derived 

from baseline MRI scans taken for the ADNI-1 study. The MRI 
measurements were of volumes or cortical thicknesses of 56 brain 
regions (Table 2), adjusted for covariates such as age, gender, edu-
cation level, handedness, and baseline intracranial volume.

2.3.4 Adjustment for Potential Confounders
Following Szefer et al. [3], the phenotypes and genotypes were 

adjusted for ethnicity and APOE genotypes. Ethnicity was repre-
sented by the top 10 principal components of a genome-wide set 
of approximately independent genetic markers. Adjusted variables 
were taken to be the residuals from a linear regression on these 
principal components and APOE genotype categories.

2.3.5 Standardization
Data cleaning and adjustment for confounders led to a 179 × 

493 matrix of explanatory variables X and a 179 × 52 matrix of re-
sponse variables Y. Each column of X and of Y is a residual and 
therefore has a sample mean of zero. The final step of data prepa-
ration was to standardize each column of X and Y by division by 
their standard deviation.

3 Results

3.1 Simulated Data Results
We applied the contribution plot to each of the data 

sets simulated as described in section 2.2. For each data 
set, we report the p value for the aSPC test and show the 
contribution plot. Recall that the contribution plot is of 
the contributions to RV(X*, Y* | αm) for the value αm that 

Table 1. Summary of the number of single nucleotide polymor-
phisms (SNPs) in the analyzed genes

Chromosome Gene SNPs, n

1 CHRNB2 1
1 CR1 15
1 ECE1 39
1 MTHFR 10
1 TF 3

2 BIN1 12
2 IL1A 2
2 IL1B 1

6 NEDD9 69
6 PGBD1 6
6 TNF 1

8 CLU 2

9 DAPK1 82
9 IL33 14

10 CALHM1 3
10 CH25H 1
10 ENTPD7 4
10 SORCS1 94
10 TFAM 6

11 GAB2 19
11 PICALM 23
11 SORL1 33

15 ADAM10 19

17 ACE 7
17 GRN 1
17 THRA 3
17 TNK1 3

19 APOE 1
19 EXOC3L2 2
19 GAPDHS 3
19 LDLR 9

20 CST3 1
20 PRNP 4

Total 493
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minimizes the p value of the SPC(α) test over the grid of 
values α = 1, 2, 3, 4. For comparison, we also plot the con-
tributions to RV(X*, Y* | 1).

3.1.1 Data Set 1: No Association
The p value for the aSPC test on this simulated data set 

is 0.5055, correctly suggesting no association. Figure 2 
displays the RV(X*, Y* | α) contributions for α = 1 (top 
panel) and αm = 4 (bottom panel). The significance 
threshold for the top panel is 0.5498, and the threshold 
for the bottom panel is 0.0059; both are outside the range 
of the vertical axes on the plots. In both panels there are 
no contributions that meet or exceed the significance 

thresholds. Thus, all contributions are considered true 
negatives.

3.1.2 Data Set 2: Sparse Association, Correlated 
Explanatory Variables
These data were simulated with equicorrelated explan-

atory variables X25, … , X35. The sample correlations be-
tween these explanatory variables ranged between 0.77 
and 0.97 (median 0.91).

The p value for the aSPC test on this simulated data set 
is 0.0006, reflecting the true association between the 30th 
explanatory variable, X30, and the first response variable, 
Y1, and between the 70th explanatory variable, X70, and 

Table 2. Phenotype IDs and descriptions of 28 brain regions from a hemisphere, from Table 2.1 of Szefer [10]

Phenotype ID Measurement Cerebral region

AmygVol Volume Amygdala
CerebCtx Volume Cerebral cortex
CerebWM Volume Cerebral white matter
HippVol Volume Hippocampus
InfLatVent Volume Inferior lateral ventricle
LatVent Volume Lateral ventricle
EntCtx Thickness Entorhinal cortex
Fusiform Thickness Fusiform gyrus
InfParietal Thickness Inferior parietal gyrus
InfTemporal Thickness Inferior temporal gyrus
MidTemporal Thickness Middle temporal gyrus
Parahipp Thickness Parahippocampal gyrus
PostCing Thickness Posterior cingulate
Postcentral Thickness Postcentral gyrus
Precentral Thickness Precentral gyrus
Precuneus Thickness Precuneus
SupFrontal Thickness Superior frontal gyrus
SupParietal Thickness Superior parietal gyrus
SupTemporal Thickness Superior temporal gyrus
Supramarg Thickness Supramarginal gyrus
TemporalPole Thickness Temporal pole
MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate, posterior cingulate, 

and rostral anterior cingulate
MeanFront Mean thickness Caudal midfrontal, rostral midfrontal, superior frontal, lateral 

orbitofrontal, and medial orbitofrontal gyri and frontal pole
MeanLatTemp Mean thickness Inferior temporal, middle temporal, and superior temporal gyri
MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri, temporal pole, and 

transverse temporal pole
MeanPar Mean thickness Inferior and superior parietal gyri, supramarginal gyrus, and 

precuneus
MeanSensMotor Mean thickness Precentral and postcentral gyri
MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal, fusiform, 

parahippocampal, and lingual gyri, temporal pole, and transverse 
temporal pole

Baseline structural MRI measurements of a total of 56 (= 28 × 2) regions from the left and the right hemisphere 
were estimated.
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the 10th response variable, Y10. The RV(X*, Y* | α) con-
tributions for α = 1 and αm = 2 are shown in Figure 3. The 
broad peak of the signal toward the left end of the hori-
zontal axes of the plots reflects the truly associated X30. In 
addition to a signal at X30, other explanatory variables 
that are correlated with X30 have comparably sized con-
tributions, as predicted by equation 6. In particular, com-
bining the data-generating model with the equation for 
the contributions (equation 6) we obtain:

( ){ }i il ik l kl k i
X X

225* * * * *
=1 =

= cor , .¢ ¢¢+å å   

From the equation above, one can argue that C *30 = 1 and 
C*i = 0.81 for i = 25, … , 29, 31 … , 35. Thus we expect the 
observed peak of contributions at the 30th variable, sur-
rounded by subpeaks of about 80% peak height from indi-
ces 25–35. The narrow peak near the middle of the horizon-
tal axes in Figure 3 reflects the truly associated X70, which is 
not correlated with any of the other explanatory variables.

3.1.3 Data Set 3: Sparse Association, Correlated 
Response Variables
For this data set, the response variables Y1, … , Y15 are 

constructed from equicorrelated errors E1, … , E15. Re-
sponse variable Y1 is linearly related to explanatory vari-
able X30, but Y2, … , Y15 are not related to any of the ex-
planatory variables. The linear trend in Y1 reduces its cor-
relation with Y2, … , Y15: sample correlations between Y1 
and responses Y2, … , Y15 ranged from 0.50 to 0.71 (me-
dian 0.68), while sample correlations among Y2, … , Y15 
ranged from 0.71 to 0.95 (median 0.92).

The p value for the aSPC test on this simulated data set 
is 0.0008, reflecting the true association between X30 and 
Y1 and between X70 and Y10. The RV(X*, Y* | α) contribu-
tions for α = 1 and αm = 3 are shown in Figure 4. For con-
tributions to RV(X*, Y* | 1), the significance threshold is 
1.7055. In the top panel, we see that none of the contribu-
tions exceed this threshold. The increased threshold in 
data set 3 compared to data set 2 is a consequence of the 
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Fig. 2. Simulation results for data set 1 (null 
hypothesis). The top panel shows contribu-
tions to RV(X*, Y* | 1) and the bottom pan-
el shows the contribution plot (contribu-
tions to RV(X*, Y* | αm) with αm = 4).
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increased variance in the contributions Ĉ*k(α) = ∑ q
l=1cor2α

(X*.k, Y*.l) resulting from positive dependence between re-
sponse variables. In the top panel of Figure 4, the peak 
signal is at X100, which is not truly associated with any of 
the response variables. By contrast, in the contribution 
plot of the bottom panel, the contributions of the two tru-
ly associated variables do exceed the threshold.

The top panel in Figure 5 breaks down the signal at 
X100 into its squared sample correlation components, 
cor2(X*.100, Y*.l). The variable X100 appears to be modestly 
associated with the correlated responses Y2, … , Y15, with 
the highest pairwise correlation being between X100 and 
Y11, even though the true population correlations be-
tween X100 and these Yi’s are zero. Essentially, we have 
one modest sample correlation, by chance, repeated 14 
times due to the correlation between the 14 variables 
Y2, …  , Y15. The accumulation of these modest sample 
correlations leads to the relatively large contribution for 
X100 in the top panel of Figure 4. The bottom panel of Fig-
ure 5 shows the squared sample correlations cor2(X*.30, Y*.l), 

where cor2(X*.30, Y*.1) reflects a true association. As pre-
dicted by equation 6, the indirect associations between 
X30 and Y2, … , Y15 (due to the modest correlation be-
tween Y1 and Y2, … , Y15) do not play a role in determin-
ing the contribution of these response variables.

3.1.4 Summary of Simulated Data Analyses
The contribution plot is intended as a post hoc investi-

gation of an association between multiple explanatory 
variables and multiple response variables, to identify par-
ticular explanatory variables that may be responsible for 
the linear association with response variables. Our simu-
lated data examples illustrate two main points about the 
contribution plot. First, correlation between explanatory 
variables can widen the peak of a signal, making it difficult 
to pinpoint the particular variable(s) driving an associa-
tion. Second, increasing the variance of the contributions, 
either through correlation between the responses or 
through increasing the number of responses (results not 
shown), can obscure the signal. However, raising squared 
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Fig. 3. Simulation results for data set 2 (cor-
related explanatory variables). The top 
panel shows contributions to RV(X*, 
Y* | 1) and the bottom panel shows the con-
tribution plot (contributions to RV(X*, 
Y* | αm) with αm = 2). The horizontal line 
indicates the 95th percentile of the maxi-
mum contributions under the permutation 
null distribution.
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correlations to a power can counteract this increase in 
variance and may allow us to identify the explanatory vari-
ables that are responsible for an association.

3.2 ADNI Data Results
The aSPC test of association between the genetic and 

phenotypic variables gives a p value of 0.0154. The contri-
bution plot may therefore be viewed as a post hoc investi-
gation of the significant overall association. To select the 
power αm for the contribution plot, we calculate p values 
for SPC(α) tests. The p values are 0.683, 0.323, 0.062, and 
0.008 for α = 1, 2, 3, and 4, respectively, leading to αm = 4.

Figure 6 shows the contribution plot (αm = 4). The 
SNPs on the x axis are sorted by chromosome number 
and base pair location. The spike above the permutation-
based threshold is a strong signal of a linear association 
that comes from SNP rs16871157 within the NEDD9 gene 
on chromosome 6.

We can further decompose the contribution of 
rs16871157 by brain region. The results are shown in Fig-

ure 7, where the y axis represents the individual sample 
correlation to the power of 8 between rs16871157 and the 
56 brain regions. Comparing the two panels of the figure, 
we see that the correlations in the right hemisphere are 
stronger than those in the left hemisphere, but that the 
patterns of association are very similar. Overall, it appears 
that rs16871157 is associated with measures of cortical 
thickness, particularly in the temporal lobe of the brain 
(phenotype MeanTemp).

Scatterplots of adjusted MeanTemp and MeanLat-
Temp thickness by rs16871157 genotypes are shown in 
Figure 8 for both the left and the right hemisphere. In 
both hemispheres, the distribution of adjusted cortical 
thickness in CN subjects with the variant allele at 
rs16871157 is shifted towards negative values compared 
to the distribution in CN subjects with two copies of the 
wild-type allele, which is centered at zero. Thus, the pres-
ence of the variant allele at rs16871157 is associated with 
reduced cortical thickness in CN subjects.
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Fig. 4. Simulation results for data set 3 (cor-
related response variables). The top panel 
shows contributions to RV(X*, Y* | 1) and 
the bottom panel shows the contribution 
plot (contributions to RV(X*, Y* | αm) with 
αm = 3). The horizontal line in the lower 
panel indicates the 95th percentile of the 
maximum contributions under the permu-
tation null distribution.
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4 Discussion

Measures of multivariate correlation are used in fields 
such as neurogenetics to find an association between a 

multivariate phenotype and a vector of explanatory vari-
ables. After an association is found, it may be of interest 
to identify the explanatory variables that are primarily re-
sponsible for the signal. In this report we have developed 
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Fig. 5. Squared correlations between X*.,100 
and Y*.l, l = 1,  …  , 25 (upper panel) and  
between X*.,30 and Y*.l, l = 1, … , 25 (lower 
panel).

Fig. 6. Contribution plot of standardized 
genomic data on 493 single nucleotide 
polymorphisms (SNPs) and 56 brain re-
gions with α = 4.
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such a post hoc procedure and applied it to data from the 
ADNI-1 study. The contribution plot decomposes the RV 
coefficient into contributions from each explanatory 
variable and displays them graphically. A significance 
threshold determined by a permutation procedure may 
be added to the plot. Explanatory variables with contribu-
tions above the threshold are considered noteworthy.

Analyses of simulated data sets demonstrated two 
main points about the contribution plot. First, localiza-
tion of the particular variables driving an association is 
more difficult when there is correlation between explana-
tory variables than when explanatory variables are uncor-
related. Second, shrinking contributions by raising the 
squared component correlations to a power reduces their 
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Fig. 7. Contributions of rs16871157 to brain regions in the left hemisphere (upper panel) and the right hemisphere 
(lower panel).
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variance and can reveal truly associated explanatory vari-
ables that would otherwise be hidden.

We applied the contribution plot to the data on CN 
subjects from the ADNI-1 study. The aSPC test for cor-
relation between SNP genotypes and phenotypes of 
brain regions of interest was significant (p = 0.0154). 
The contribution plot suggested a sparse signal, driven 
by a single SNP, rs16871157, within the NEDD9 (neural 
precursor cell expressed, developmentally down-regu-
lated 9) gene on chromosome 6. rs16871157 is in an in-
tron of the NEDD9 gene and has no known function. 
Our results suggest that the variant allele at rs16871157 

is associated with reduced cortical thickness in CN sub-
jects. Reduced cortical thickness is associated with 
symptom severity in mild cognitive impairment and 
early AD, and has been observed in CN patients with 
amyloid binding [12].

Much of the research to date on NEDD9 has focused 
on the association between variation in the gene and dif-
ferent cancers [e.g., 13], but the protein product of NEDD9 
is also involved in brain development. For example, Vo-
gel et al. [14] found that the NEDD9 protein plays a role 
in neuronal differentiation. In AD research, the SNP 
rs760678 in NEDD9 was found to be associated with late-

Fig. 8. Upper panels: scatterplots of adjusted MeanTemp versus adjusted rs16871157 genotype. Lower panels: 
scatterplots of MeanLatTemp versus adjusted rs16871157 genotype. Adjustments are for ancestry and APOE 
genotype. The left and right panels are for the left and the right hemisphere, respectively.
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onset AD [15]. However, we note that the phenotypes as-
sociated with rs760678 and rs16871157 are quite different 
(late-onset AD vs. baseline cortical thickness) and the two 
SNPs are in linkage equilibrium in Caucasian populations 
(estimated R2 <  0.01 in Caucasian populations according 
to the online tool LDlink [16]).

A reviewer asked about the connection between the 
contribution plot and sparse canonical correlation analy-
sis [17, 18]. In canonical correlation analysis [19], the first 
k pairs of X- and Y-canonical variates are given by X*M 
and Y*L, where X* and Y* are column-standardized ver-
sions of X and Y, M is the p × k loading matrix for X*, and 
L is the q × k loading matrix for Y*. The matrices M and 
L are obtained by maximizing the RV coefficient RV(X*M, 
Y*L) [4]. Our work on the contribution plot suggests an 
alternative criterion function to maximize, namely, 
RV(X*M, Y*L | αm), where αm is the power that minimiz-
es the p value of the test based on the generalized RV co-
efficient RV(X*, Y*  |  α) in equation 9. In the resulting 
canonical pairs, X and Y variables with low-magnitude 
correlations are downweighted but not excluded. By con-
trast, in the canonical pairs from sparse canonical correla-
tion analysis, X and Y variables with low-magnitude cor-
relations tend to be excluded. Both approaches shrink the 
loadings in canonical correlation analysis but in different 
ways. Further investigation and comparison of these con-
trasting approaches to shrinking the loadings is a direc-
tion for future research.

The contribution plot can be extended to the case 
where study subjects are differentially weighted. The 
sample for our study was a population sample of CN 
subjects, and they were all equally weighted. If instead 
we had used the entire ADNI-1 sample, which is en-
riched with MCI and AD subjects, we would need to 
correct for the sampling bias by computing weighted co-
variances or correlations, where the weights are inverse-
ly proportional to the probability that each subject is in-
cluded in the sample [20]. The contribution plot in 
terms of weighted covariance would be of the same form 
(see Choi [6], Appendix A, for details). Differential 
weighting also allows one to combine data from differ-
ent studies whose sampling designs may differ. Note 
also that the contributions depend only on summary 
statistics (pairwise correlations), which makes meta-
analysis of summary statistics from multiple studies 
possible. Such a meta-analysis approach may be useful 
for data from consortia, such as the ENIGMA Consor-
tium [21]. Investigating the properties of the contribu-
tion plot for unequally weighted subjects and meta-anal-
ysis is an area for future work.

Appendix

R Code to Implement the Contribution Plot [7, 22]
 

The contribution plot is intended as a post hoc procedure that is applied after a significant adaptive 

sum of powered correlations (aSPC) test [7]. The aSPC test is implemented in the aSPC() function 

from the package of the same name [22]. aSPC ( ) takes two multivariate data frames and a grid of 

α values as input, and returns for each α the p-value for the hypothesis test based on the RV (X*, 

Y*α) statistic (equation 9). For the contribution plot, we choose the power with minimum p-value 

over the grid. 

For the chosen α we calculate the contributions of each explanatory variable to the RV (X*, Y*α) 

statistic and the significance threshold, respectively, with the EstContribution() and 

Threshold() functions given below. The contribution plot can then be created with the generic 

plot() function in R, as illustrated below. 

EstContribution=function(X, Y, alpha=1){ 

# Input: Data matrices X and Y, and the power alpha 

# Output: A vector of contribution of each explanatory variable 

# to the RV(X,Y| \alpha) statistic 

# 

# 1. Generate a matrix of powered covariances between columns of X 

and Y Cov=(cov(X,Y)^(2))^alpha 

# 2. For each explanatory variable, sum the powered correlations. 

Contr=apply(Cov, 1, sum) 

return(Contr) 

} 

 

Threshold=function(X, Y, alpha=1, level=0.95, nrep=100){ 

# Input: Data matrices X and Y, the power alpha and the number of 

# permutation replicates for the permutation test. 

# Output: The threshold. 

# 

# Initialize a vector to hold max contribution for each 

permutation 

maxs = rep(NA,nrep) 

for(i in 1:nrep){ 

# record all the maximum contributions based under the 

estimated 

# permutation distribution 

maxs[i]=max(EstContribution(X[sample(1:nrow(X)),], Y, 

alpha=alpha)) 

# print the process at every 25% 

if(i%%(0.25*nrep)==0){ 

print(paste0("<Obtaining Threshold> ", i/nrep*100, "% done)) 

} 

} 

# obtain the threshold value 

return(quantile(maxs, level)) 

} 

 

# Call to plot() to plot the contributions and threshold. 

plot(EstContribution(X, Y, alpha=1), type='l', main="X and Y 

(alpha=1)", 

xlab="Explanatory Variables", ylab="Contribution", 

cex=1.3, cex.lab=1.3, cex.axis=1.3, cex.main=2.5, cex.sub=1.3) 
abline(a=Threshold(X, Y, alpha=1),b=0,col="blue") 

D
ow

nl
oa

de
d 

by
: 

U
S

C
 L

ib
ra

rie
s 

T
ec

hn
ic

al
 S

er
vi

ce
s 

   
   

   
   

   
   

   
 

12
8.

12
5.

18
1.

12
4 

- 
1/

29
/2

02
0 

1:
11

:1
7 

A
M



The Contribution Plot 71Hum Hered 2019;84:59–72
DOI: 10.1159/000501334

Acknowledgments

The authors would like to thank Elena Szefer for preparing the 
genetic data.

Statement of Ethics

The authors have no ethical conflicts to disclose.

Disclosure Statement

The authors have no conflicts of interest to declare.

Funding Sources

Data collection and sharing for this project was funded by the 
ADNI (National Institutes of Health Grant U01 AG024904) and 
DOD ADNI (Department of Defense award No. W81XWH- 
12-2-0012). The ADNI is funded by the National Institute on  
Aging, the National Institute of Biomedical Imaging and Bioengi-
neering, and through generous contributions from the following: 
AbbVie; Alzheimer’s Association; Alzheimer’s Drug Discovery 
Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai, Inc.; Elan 
Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. 
Hoffmann-La Roche Ltd and its affiliated company Genentech, 

Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer 
Immunotherapy Research & Development, LLC; Johnson & 
Johnson Pharmaceutical Research & Development LLC; Lumos-
ity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; 
NeuroRx Research; Neurotrack Technologies; Novartis Pharma-
ceuticals Corporation; Pfizer, Inc.; Piramal Imaging; Servier; 
Takeda Pharmaceutical Company; and Transition Therapeutics. 
The Canadian Institutes of Health Research are providing funds 
to support ADNI clinical sites in Canada. Private sector contribu-
tions are facilitated by the Foundation for the National Institutes 
of Health (www.fnih.org). The grantee organization is the North-
ern California Institute for Research and Education, and the study 
is coordinated by the Alzheimer’s Therapeutic Research Institute 
at the University of Southern California. ADNI data are dissemi-
nated by the Laboratory for Neuro Imaging at the University of 
Southern California.

This work is based on J.C.’s MSc thesis supervised by B.M. and 
was supported in part by the Natural Sciences and Engineering 
Research Council of Canada.

Author Contributions

J.C. developed and implemented the statistical methods and 
drafted the manuscript; D.L. prepared the phenotype data; M.F.B. 
supervised data acquisition and preparation of the phenotype data; 
J.G. developed the statistical methods, supervised preparation of 
the genotype data, and drafted the manuscript; B.M. developed the 
statistical methods and drafted the manuscript. All authors revised 
the manuscript and approved the final version.

References

 1 Alzheimer’s Association. 2017 Alzheimer’s 
disease facts and figures. Alzheimers Dement. 
2017; 13(4): 325–73.

 2 Weiner MW, Veitch DP, Aisen PS, Beckett 
LA, Cairns NJ, Green RC, et al.; Alzheimer’s 
Disease Neuroimaging Initiative. The Alz-
heimer’s Disease Neuroimaging Initiative: a 
review of papers published since its inception. 
Alzheimers Dement. 2013 Sep; 9(5):e111–94.

 3 Szefer E, Lu D, Nathoo F, Beg MF, Graham J; 
Alzheimer’s Disease Neuroimaging Initiative. 
Multivariate association between single-nu-
cleotide polymorphisms in AlzGene linkage 
regions and structural changes in the brain: 
discovery, refinement and validation. Stat 
Appl Genet Mol Biol. 2017 Nov; 16(5-6): 349–
65.

 4 Josse J, Holmes S. Measuring multivariate as-
sociation and beyond. Stat Surv. 2016; 10(0): 

132–67.
 5 Escoufier Y. Le traitement des variables vec-

torielles. Biometrics. 1973; 29(4): 751–60.
 6 Choi J. Decomposing the RV coefficient to 

identify genetic markers associated with 
changes in brain structure [Master’s thesis]. 
Burnaby, BC: Simon Fraser University; 2018.

 7 Xu Z, Xu G, Pan W; Alzheimer’s Disease Neu-
roimaging Initiative. Adaptive testing for as-
sociation between two random vectors in 
moderate to high dimensions. Genet Epide-
miol. 2017 Nov; 41(7): 599–609.

 8 R Core Team. R: A Language and Environ-
ment for Statistical Computing. Vienna, Aus-
tria: R Foundation for Statistical Computing; 
2017.

 9 Saykin AJ, Shen L, Foroud TM, Potkin SG, 
Swaminathan S, Kim S, et al.; Alzheimer’s 
Disease Neuroimaging Initiative. Alzheimer’s 
Disease Neuroimaging Initiative biomarkers 
as quantitative phenotypes: genetics core 
aims, progress, and plans. Alzheimers De-
ment. 2010 May; 6(3): 265–73.

10 Szefer EK. Joint analysis of imaging and ge-
nomic data to identify associations related to 
cognitive impairment [Master’s thesis]. Burn-
aby, BC: Simon Fraser University; 2014.

11 Wang H, Nie F, Huang H, Kim S, Nho K, Ri-
sacher SL, et al.; Alzheimer’s Disease Neuro-
imaging Initiative. Identifying quantitative 
trait loci via group-sparse multitask regres-
sion and feature selection: an imaging genet-
ics study of the ADNI cohort. Bioinformatics. 
2012 Jan; 28(2): 229–37.

12 Dickerson BC, Bakkour A, Salat DH, Feczko 
E, Pacheco J, Greve DN, et al. The cortical sig-
nature of Alzheimer’s disease: regionally spe-
cific cortical thinning relates to symptom se-
verity in very mild to mild AD dementia and 
is detectable in asymptomatic amyloid-posi-
tive individuals. Cereb Cortex. 2009 Mar; 

19(3): 497–510.
13 Izumchenko E, Singh MK, Plotnikova OV, 

Tikhmyanova N, Little JL, Serebriiskii IG, et 
al. NEDD9 promotes oncogenic signaling in 
mammary tumor development. Cancer Res. 
2009 Sep; 69(18): 7198–206.

14 Vogel T, Ahrens S, Büttner N, Krieglstein K. 
Transforming growth factor β promotes neu-
ronal cell fate of mouse cortical and hippo-
campal progenitors in vitro and in vivo: iden-
tification of Nedd9 as an essential signaling 
component. Cereb Cortex. 2010 Mar; 20(3): 

661–71.
15 Wang Y, Bi L, Wang H, Li Y, Di Q, Xu W, et 

al. NEDD9 rs760678 polymorphism and the 
risk of Alzheimer’s disease: a meta-analysis. 
Neurosci Lett. 2012 Oct; 527(2): 121–5.

D
ow

nl
oa

de
d 

by
: 

U
S

C
 L

ib
ra

rie
s 

T
ec

hn
ic

al
 S

er
vi

ce
s 

   
   

   
   

   
   

   
 

12
8.

12
5.

18
1.

12
4 

- 
1/

29
/2

02
0 

1:
11

:1
7 

A
M

https://www.karger.com/Article/FullText/501334?ref=1#ref1
https://www.karger.com/Article/FullText/501334?ref=2#ref2
https://www.karger.com/Article/FullText/501334?ref=3#ref3
https://www.karger.com/Article/FullText/501334?ref=3#ref3
https://www.karger.com/Article/FullText/501334?ref=4#ref4
https://www.karger.com/Article/FullText/501334?ref=5#ref5
https://www.karger.com/Article/FullText/501334?ref=6#ref6
https://www.karger.com/Article/FullText/501334?ref=6#ref6
https://www.karger.com/Article/FullText/501334?ref=6#ref6
https://www.karger.com/Article/FullText/501334?ref=7#ref7
https://www.karger.com/Article/FullText/501334?ref=7#ref7
https://www.karger.com/Article/FullText/501334?ref=8#ref8
https://www.karger.com/Article/FullText/501334?ref=8#ref8
https://www.karger.com/Article/FullText/501334?ref=9#ref9
https://www.karger.com/Article/FullText/501334?ref=9#ref9
https://www.karger.com/Article/FullText/501334?ref=10#ref10
https://www.karger.com/Article/FullText/501334?ref=10#ref10
https://www.karger.com/Article/FullText/501334?ref=10#ref10
https://www.karger.com/Article/FullText/501334?ref=11#ref11
https://www.karger.com/Article/FullText/501334?ref=12#ref12
https://www.karger.com/Article/FullText/501334?ref=13#ref13
https://www.karger.com/Article/FullText/501334?ref=14#ref14
https://www.karger.com/Article/FullText/501334?ref=15#ref15


Choi et al.Hum Hered 2019;84:59–7272
DOI: 10.1159/000501334

16 Machiela MJ, Chanock SJ. LDlink: a web-
based application for exploring population-
specific haplotype structure and linking cor-
related alleles of possible functional variants. 
Bioinformatics. 2015 Nov; 31(21): 3555–7.

17 Parkhomenko E, Tritchler D, Beyene J. Sparse 
canonical correlation analysis with applica-
tion to genomic data integration. Stat Appl 
Genet Mol Biol. 2009; 8(1): 1–34.

18 Witten DM, Tibshirani R, Hastie T. A penal-
ized matrix decomposition, with applications 
to sparse principal components and canonical 
correlation analysis. Biostatistics. 2009 Jul; 

10(3): 515–34.
19 Hotelling H. Relations between two sets of 

variates. Biometrika. 1936; 28(3-4): 321–77.
20 Horvitz DG, Thompson DJ. A generalization 

of sampling without replacement from a finite 
universe. J Am Stat Assoc. 1952; 47(260): 663–
85.

21 The ENIGMA Consortium [Internet] [ac-
cessed 2019 Jan 30]. 2019. Available from: 
http://enigma.ini.usc.edu/.

22 Xu Z, Pan W. aSPC: An Adaptive Sum of 
Powered Correlation Test (aSPC) for Global 
Association between Two Random Vectors 
[Internet]. 2017. R package version 0.1.2. 
Available from: https://rdrr.io/cran/aSPC/.

D
ow

nl
oa

de
d 

by
: 

U
S

C
 L

ib
ra

rie
s 

T
ec

hn
ic

al
 S

er
vi

ce
s 

   
   

   
   

   
   

   
 

12
8.

12
5.

18
1.

12
4 

- 
1/

29
/2

02
0 

1:
11

:1
7 

A
M

https://www.karger.com/Article/FullText/501334?ref=16#ref16
https://www.karger.com/Article/FullText/501334?ref=17#ref17
https://www.karger.com/Article/FullText/501334?ref=17#ref17
https://www.karger.com/Article/FullText/501334?ref=18#ref18
https://www.karger.com/Article/FullText/501334?ref=19#ref19
https://www.karger.com/Article/FullText/501334?ref=20#ref20
https://www.karger.com/Article/FullText/501334?ref=21#ref21
https://www.karger.com/Article/FullText/501334?ref=22#ref22
https://www.karger.com/Article/FullText/501334?ref=22#ref22
https://www.karger.com/Article/FullText/501334?ref=22#ref22

	TabellenTitel

