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Abstract

Ideal biomarkers of Alzheimer’s disease (AD) should correlate with accepted measures of pathology in the cerebrospinal fluid (CSF); they
should also correlate with, or predict, future clinical decline, and should be readily measured in hundreds to thousands of subjects. Here we
explored the utility of automated 3D maps of the lateral ventricles as a possible biomarker of AD. We used our multi-atlas fluid image
alignment (MAFIA) method, to compute ventricular models automatically, without user intervention, from 804 brain MRI scans with 184
AD, 391 mild cognitive impairment (MCI), and 229 healthy elderly controls (446 men, 338 women; age: 75.50 � 6.81 [SD] years). Radial
expansion of the ventricles, computed pointwise, was strongly correlated with current cognition, depression ratings, Hachinski Ischemic
scores, language scores, and with future clinical decline after controlling for any effects of age, gender, and educational level. In statistical
maps ranked by effect sizes, ventricular differences were highly correlated with CSF measures of A�1-42, and correlated with ApoE4
genotype. These statistical maps are highly automated, and offer a promising biomarker of AD for large-scale studies.
© 2010 Elsevier Inc. All rights reserved.

Keywords: Lateral ventricles; Alzheimer’s disease; Magnetic resonance imaging; Biomarkers; Neuroimaging

Alzheimer’s disease (AD) is a degenerative brain disor-
der leading to irreversible neuronal loss and progressive
cognitive decline, spreading from memory to all other cog-
nitive domains, and eventually causing death (Selkoe et al.,
2001). To test disease modifying drugs that may delay or
resist disease progression, accurate measures of disease bur-

den in the brain are vital, and multiple neuroimaging and
cerebrospinal fluid (CSF)-based measures are being inves-
tigated. Cognitive assessments are notoriously variable over
time, and there is increasing evidence that neuroimaging
may provide accurate, reproducible measures of brain atro-
phy that correlate with the underlying pathology (Whitwell
et al., 2008), and with declining cognition (Jack et al.,
2009), and that predict future decline (Risacher et al., 2009).
The additional ability to map disease effects in 3D using
imaging has provided insights into the trajectory of the
earlier phases of the disease, even before symptoms are
detectable (Braskie et al., 2008). Magnetic resonance imag-
ing (MRI)-based volume measurements offer surrogate
markers of disease progression even in preclinical AD (Jack
et al., 2010; Frisoni et al., 2010).
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Several methods have been used to quantify structural
brain changes in MRI, including region-of-interest mea-
sures, such as hippocampal volumes or maps (Morra et al.,
2008; Morra et al., 2009), the “boundary shift integral” – a
technique that quantifies differences between 2 successive
co-registered 3D MRIs (Fox et al., 2001), and maps that
localize atrophy, such as voxel-based morphometry (Whit-
well et al., 2008), tensor-based morphometry (Ho et al.,
2010c; Hua et al., 2009; Hua et al., 2010; Stein et al., 2010),
and cortical thickness or gray matter density analyses
(Thompson et al., 2003; Frisoni et al., 2007; Frisoni et al.,
2009; Walhovd et al., 2010).

As noted in Weiner (2008), ventricular expansion corre-
lates more strongly with changes on cognitive tests than
medial temporal lobe (MTL) atrophy rates (Jack et al.,
2004). Measuring ventricular geometry may seem like an
unnecessarily indirect approach for assessing disease bur-
den, when the pathology and atrophy are focused elsewhere.
Even so, ventricular volume measures are relatively easy to
measure and provide excellent sensitivity to disease effects
and preclinical brain changes (Weiner, 2008). In addition,
the ventricles can be measured more reliably than hip-
pocampal or cortical structures, whose boundaries are dif-
ficult for experts to agree on. In 79 healthy elderly subjects
examined annually for up to 15 consecutive years, ventric-
ular volume expansion accelerated on average 2.3 years
before the diagnosis of mild cognitive impairment (MCI)
(Carlson et al., 2008). In addition, abnormally fast ventric-
ular dilation over time has been linked to the accumulation
of AD pathology, including cortical neurofibrillary tangles
and amyloid plaques (Silbert et al., 2003), and to rates of
cognitive decline in AD patients and controls (Adak et al.,
2004).

There is great interest in determining which MRI-based
measures link best with standard cognitive assessments
(Jack et al., 2004) and which sets of measures can optimally
predict future clinical decline (Kohannim et al., 2010; Wal-
hovd et al., 2010), often defined as conversion to AD over
a specific follow-up interval (Fleisher et al., 2008). Ventric-
ular measures have been proposed as a useful biomarker of
disease progression as they distinguish disease from nor-
mality with a high effect size (Carmichael et al., 2007). Here
we used a high-throughput method, known as multi-atlas
fluid image alignment (MAFIA; Chou et al., 2008), to create
detailed surface-based maps of ventricular anatomy in 804
subjects, comparing groups of AD and MCI subjects to
controls. Our goal was to determine, and rank, the clinical
and pathologic correlates of ventricular expansion, using
detailed maps rather than simple volumetric summaries.
Pinpointing where changes occur more precisely can give us
a much better picture of the changes, while simultaneously
increasing the chance that subtle, localized or nonuniform
patterns of differences will be detected. Using maps of
surface-based statistics, we created cumulative distribution
function (CDF) plots to rank correlates in order of their

effect size. We hypothesized that the correlates of ventric-
ular expansion would be in the following order (from stron-
gest to weakest): clinical scores, language deficits, CSF
biomarkers, and then known risk factors, such as ApoE
genotype. To test this rank order, we investigated, at a
pointwise level, how regional ventricular expansion corre-
lated with baseline measures and future (1-year) changes in
scores on the Mini-Mental State Exam (MMSE), global and
sum-of-boxes Clinical Dementia Rating (CDR), Geriatric
Depression Score (i.e., more severe depression), delayed
logical memory test, and Hachinski Ischemic scores. We
hypothesized that the more general measures of cognition
(MMSE, CDR) would correlate best with ventricular differ-
ences, but correlations would be lower for more specific
measures (depression, delayed recall, Hachinski Ischemic),
after statistically controlling for any effects of age, gender,
and education. Second, we correlated ventricular differ-
ences with CSF-derived biomarkers of AD pathology, in-
cluding levels of tau protein (Tau), 181-phosphorylated tau
protein (pTau181p), beta amyloid (A�1-42), Tau/A�1-42 and
the pTau181p/A�1-42 ratio. Our goal was to establish a rank
order to see which CSF biomarkers correlated best with
ventricular differences detectable on MRI. Finally, we stud-
ied correlations between our ventricular maps and ApoE;
we expected that ApoE risk gene carriers in all diagnostic
groups, would show greater ventricular expansion.

We hypothesized that more general measures of cogni-
tion would correlate best with ventricular differences, and
that tests of more specific cognitive subdomains would
correlate more weakly. The reason for this hypothesis is that
ventricular changes are a general indicator of atrophy oc-
curring anywhere in the brain; patients with different pat-
terns of strengths and weaknesses across several different
cognitive domains may be experiencing somewhat different
profiles of atrophy, although generally consistent with the
expected pattern of early temporal atrophy in MCI and AD.
As such we considered that no single cognitive domain
would monitor all the systems where atrophy leads to ven-
tricular expansion, but more general clinical assessments
(such as MMSE and CDR) might better reflect the overall
level of impairment. This hypothesis is supported by our
recent studies of atrophic rates over time in ADNI (Leow et
al., 2009), where more general clinical measures (MMSE,
CDR) correlated more strongly with atrophic rates, and
more specific measures (memory tests or delayed recall
subscales) correlated more weakly.

1. Subjects and methods

1.1. Subjects

Images were obtained from the ADNI dataset (Mueller et
al., 2005; Jack et al., 2008; http://www.loni.ucla.edu/
ADNI/). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB), the Food and
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Drug Administration (FDA), private pharmaceutical com-
panies and nonprofit organizations, as a 5-year public-pri-
vate partnership. The primary goal of ADNI has been to test
whether serial MRI, PET, other biologic markers, and clin-
ical and neuropsychological assessments acquired in a
multi-site manner mirroring enrollment methods used in
clinical trials, can replicate results from smaller single site
studies measuring the progression of MCI and early AD.
Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their ef-
fectiveness, as well as lessen the time and cost of clinical
trials. The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University of
California, San Francisco.

In this study, we used the 804 available baseline MRI
scans, including 184 AD patients (age: 76.1 � 7.6 years),
391 amnestic MCI subjects (75.0 � 7.3 years), and 229
healthy elderly controls (76.0 � 5.0 years). All subjects
underwent thorough clinical and cognitive assessment at the
time of scan acquisition. As part of a thorough clinical/
cognitive evaluation, each subject’s mini-mental state ex-
amination (MMSE) score, and global and “sum-of-boxes”
clinical dementia ratings (Morris et al., 1993), and Alzhei-
mer’s Disease Assessment Scale-cognitive subscale
(ADAS-Cog) were assessed. Global CDR scores are dis-
crete values of 0, 0.5, 1, 2, and 3, indicating no dementia,
very mild, mild, moderate, and severe dementia. The sum-
of-boxes CDR scores run from 0 to 18 in 0.5 intervals, (0 is
no dementia, 18 is severe dementia). All AD patients met

NINCDS/ADRDA criteria for probable AD (McKhann et
al., 1984) with an MMSE score between 20 and 26, a global
CDR of 0.5 or 1, and a sum-of-boxes CDR of 1.0–9.0. As
such, these subjects would be considered as having mild,
but not severe, AD. Hachinski ischemic scores were used in
screening to differentiate vascular dementia from dementia
of the Alzheimer type. Patients with a score of 7 or higher
are more likely to have a vascular dementia. Detailed ex-
clusion criteria, e.g. regarding concurrent use of psychoac-
tive medications, may be found in the ADNI protocol
(Mueller et al., 2005). Briefly, subjects were excluded if
they had any serious neurological disease other than incip-
ient AD, any history of brain lesions or head trauma, or
psychoactive medication use (including antidepressants,
neuroleptics, chronic anxiolytics, sedative hypnotics, etc.).
Participants with a Geriatric Depression Scale score of 6 or
higher were excluded from the study. We were nevertheless
interested in any effects of mild depressive symptoms.
Many reports link depression with subcortical atrophy, es-
pecially in the hippocampus, so subclinical effects may be
related to anatomical changes. Table 1 summarizes demo-
graphic and clinical measures for all covariates tested here,
including diagnosis (normal, MCI, AD), education level, the
mini-mental state exam (MMSE) (Folstein et al., 1975),
global CDR (Morris, 1993), and sum-of-boxes CDR,
change (over 1 year) in MMSE, change in global CDR,
change in “sum-of-boxes” CDR, depression severity mea-
sured using the Geriatric Depression Scale (GDS; Yesavage
et al., 1982), delayed logical change (in years), Hachinski
Ischemic scores, and ADAS-Cog Tests.

Table 1
Demographic and clinical scores are shown for all covariates examined. In columns 2–4, the first number shown is the mean score, and the number
following it, in parentheses, is the standard deviation (SD)

Normal MCI AD

N 229 391 184
Men/women 118/111 255/136 93/91
Age (years) 75.99 (5.03) 74.96 (7.28) 76.05 (7.61)
Volume (L/R; mm3) 29,830 (6235)/ 27,307 (5603) 31,971 (7085)/ 29,091 (6513) 34,322 (6602)/ 32,018 (6549)
MMSE 29.11 (1.00) 26.99 (1.77) 23.2 (2.0)
Global CDR 0 (0) 0.50 (0.03) 0.74 (0.25)
Sum-of-boxes CDR 0.03 (0.12) 1.60 (0.87) 4.33 (1.60)
Geriatric depression score 0.83 (1.15) 1.57 (1.37) 1.65 (1.44)
Delayed logical memory 12.98 (3.59) 3.76 (2.69) 1.22 (1.84)
Hachinski Ischemic Scale 0.61 (0.68) 0.59 (0.66) 0.64 (0.72)
MMSE Change 0 (1.36) �0.68 (2.59) �2.44 (4.14)
Global CDR Change 0.01 (0.20) 0.03 (0.20) 0.23 (0.54)
Sum-of-boxes CDR Change �0.08 (0.98) 0.69 (1.28) 1.41 (2.55)
Geriatric depression Change 0.21 (1.21) 0.42 (1.76) 0.12 (1.85)
Delayed logical memory Change 0.35 (3.68) 0.54 (3.47) �0.29 (2.50)
Tau (pg/ml) 69.66 (31.31) 104.09 (61.24) 118.96 (52.02)
A�1-42 (pg/ml) 206.27 (54.07) 161.63 (52.89) 143.55 (40.49)
pTau181p (pg/ml) 25.05 (14.72) 35.71 (18.11) 41.19 (19.34)
Tau/ A�1-42 0.39 (0.27) 0.76 (0.60) 0.89 (0.44)
pTau181p/A�1-42 0.14 (0.13) 0.26 (0.18) 0.32 (0.18)
Education (years) 16.02 (2.86) 15.69 (3.04) 14.55 (3.15)
ADAS-cog: word recognition 2.55 (2.30) 4.62 (2.71) 6.62 (2.97)
ADAS-cog: spoken language 0.02 (0.15) 0.09 (0.34) 0.33 (0.79)
ADAS-cog: word finding 0.10 (0.32) 0.27 (0.58) 0.56 (0.95)
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In addition, several biomarkers obtained from CSF were
also included for assessing correlations, including beta amy-
loid 1–42 (A�1-42), tau protein (Tau), phosphorylated-tau
protein 181 (pTau181p), the tau and A�1-42 ratio (Tau/A�1-

42), and p-tau A�1-42 ratio (pTau181p/A�1-42). Biomarker
measurements were performed by Drs Leslie Shaw and
John Trojanowski of the ADNI Biomarker Core at the
University of Pennsylvania School of Medicine (using the
Luminex platform and AlzBio3 immunoassay research use
only reagents, Innogenetics, Ghent, Belgium as described in
Shaw et al., 2009) which collects and banks biological
samples (blood, urine, and CSF) from all participating sites,
and conducts studies of selected AD biomarkers, including
apolipoprotein E (ApoE) genotype, isoprostanes, tau, Abeta,
and homocysteine levels (Shaw et al., 2009). Table 1 shows
summary statistics for the biomarker profiles of the AD,
MCI and Normal study groups.

CSF is in direct contact with the brain and thus may
reflect brain-associated biochemical events better than any
other biologic fluid. CSF A�1-42, Tau, and pTau181p are
linked to AD-associated neuropathological changes, and
they have been the most widely studied potential biomark-
ers for AD. CSF A�1-42 levels are consistently lower in AD
(Motter et al. 1995), and can distinguish patients with mild
AD from healthy controls with reasonable accuracy (Blen-
now and Hampel, 2003).

The ADAS-Cog is a structured scale that evaluates mem-
ory (word recall, word recognition), reasoning (following
commands), language (naming, comprehension), orienta-
tion, ideational praxis (placing a letter in an envelope), and
constructional praxis (copying geometrical designs). Rat-
ings of spoken language, language comprehension, word
finding difficulty, and ability to remember test instructions
are also obtained (Rosen et al., 1984).

1.2. Image acquisition and preprocessing

High-resolution T1-weighted scans were acquired on 1.5
Tesla MRI scanners from Siemens, Phillips, and General
Electric Healthcare with the standard ADNI MRI protocol
(Jack et al., 2008). Each subject was scanned with a sagittal
3D MP-RAGE sequence, with acquisition parameters: in-
version time (TI)/ repetition time (TR): 1000/2400 ms; flip
angle: 8°; 24 cm field of view; 192 x 192 x 166 acquisition
matrix, and a voxel size of 1.25 x 1.25 x 1.2 mm3. In plane,
zero-filled reconstruction yielded a 256 x 256 matrix for a
reconstructed voxel size of 0.9375 x 0.9375 x 1.2 mm3.
Images were calibrated with phantom-based geometrical
corrections to ensure consistency among scans acquired at
different sites (Gunter et al., 2006). Additional image cor-
rections were also applied, to adjust for scanner- and ses-
sion-specific calibration errors (detailed in Jack et al., 2008).
In addition to the original uncorrected image files, images
with all of these corrections already applied (GradWarp, B1,
phantom scaling, and N3) are available to the general sci-
entific community (at http://www.loni.ucla.edu/ADNI).

To adjust for global differences in brain positioning and
scale, we spatially normalized all images to the ICBM-53
average brain template with a 9-parameter linear transfor-
mation using the Minctracc algorithm (Collins et al., 1994).
Aligned images were resampled in an isotropic space of
2203 voxels with a final voxel size of 1 mm3. To equalize
image intensities across subjects, registered scans were his-
togram-matched.

1.3. Automated lateral ventricle segmentation and shape
modeling

Lateral ventricular volumes were automatically esti-
mated for all scans using the multi-atlas fluid image align-
ment (MAFIA) method that we recently validated (Chou et
al., 2008; Chou et al., 2009), summarized in Figure 1.
Briefly, a small subgroup of 6 images (2 AD, 2 MCI, and 2
normal) were randomly chosen and the lateral ventricles
were manually traced in contiguous coronal brain sections,
following previously described criteria with established in-
ter- and intra-rater reliability (Narr et al., 2001). Lateral
ventricular surface models were converted into parametric
meshes (we refer to these labeled images as “atlases”;
Thompson et al., 1996). We fluidly registered each atlas and
the embedded mesh models to all other subjects (Fig. 1a),
treating the deforming image as a Navier-Stokes viscous
fluid, guaranteeing a diffeomorphic mapping (i.e. a smooth
one-to-one 3D deformation with no folds or holes). Fluid
transforms were applied to the manually traced ventricular
boundary using tri-linear interpolation, generating a propa-
gated contour on the unlabeled images (Fig. 1b). Sets of
points representing the tissue boundaries were resampled
and made spatially uniform by stretching a regular rectan-
gular grid (100 x 150 surface points) over each surface (Fig
1c). This scheme provides a means to convert dense systems
of points, sampled during outlining, into fully parametric
surfaces and allows homologous points from the ventricular
surfaces could be matched between subjects. The scheme
we used (detailed in Thompson et al., 2004a, 2004b) in-
volves cutting the ventricles into 3 pieces (superior, tempo-
ral, and occipital horns), as the branching structure of the
ventricles makes it difficult to map the entire structure onto
a single 2D domain. As such, the first coronal section in
which the superior and temporal horns appear is used as a
boundary between the 3 parts of the structure. Grid-points
from corresponding surfaces were then matched across sub-
jects to obtain group average parametric meshes (Fig. 1d).
For each surface model, a medial curve was defined as the
line traced out by the centroid of the ventricular boundary
(illustrated in Fig. 1e; Thompson et al., 2000; Thompson et
al., 2004a, 2004b; see Styner et al., 2005; Cootes et al.,
1994; and Yushkevich, 2009 for related work on M-reps,
Active Shape Models, and continuous medial models, re-
spectively). The medial curve was defined separately in
each individual, before averaging the surfaces. The opera-
tions of averaging surfaces and defining the medial curve
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from a surface are not commutative, in the sense that a
medial curve derived from an average surface would not be
the same as the average of the medial curves derived from
each individual. Because we were interested in measuring
radial ventricular expansion in each individual, we com-
puted these measures in each subject with reference to their
own medial curve, but plotted the resulting statistics on the
average surface for the groups being compared. The local
radial size was defined as the radial distance between a
boundary point and its associated medial curve (Fig. 1f).
This allows statistical comparisons of local surface contrac-
tions and expansions at equivalent surface locations be-
tween groups in 3D.

By integrating multiple propagated labels, random digi-
tization errors from each hand-traced segmentation are sig-
nificantly reduced. The resulting average model is also
robust to inaccuracies in individual registrations that may
occur when nonglobal minima of the intensity-based cost
function are reached. In addition, increasing the number of
labeled atlases, N, resulted in an asymptotic decrease in both
the average symmetric Hausdorff error and mean 2-norm
between manually and automatically extracted models. To
determine the optimal value of N, we performed 2-tailed
t-tests to see by how much Hausdorff errors fell when
adding an additional atlas. By comparing composite seg-
mentations from N�1 and N atlases, we picked N such that

N � 1 gave no additional improvement—values of N � 4
did not detectably increase the power. Even so, in this study,
we picked 6 atlases rather than 4 (2 from AD, 2 from MCI,
and 2 from normals) to balance the groups—avoiding bias
towards segmenting AD, MCI, or normals.

1.4. Statistical maps and analysis

At each surface point, a correlation was run to compare
diagnostic groups and determine the association of diagno-
sis or clinical scores with atrophy, as measured by differ-
ences in radial distance. In all maps shown, we used a
multiple regression model to adjust for age, gender, and
educational level. p-values describing the uncorrected sig-
nificance of these statistics were plotted onto the average
surface model, as a color-coded map. This step provides a
3-D visualization of the point-wise significance level. All
correlation maps were corrected for multiple comparisons
using the widely used false discovery rate method false
discovery rate (FDR). The FDR method decides whether a
threshold can be assigned to the statistical map (of correla-
tions) that keeps the expected false discovery rate below 5%
(i.e. no more than 5% of the voxels are false positive
findings). This threshold is based on the expected propor-
tion of voxels with statistics exceeding any given threshold
under the null hypothesis.

Fig. 1. Mapping surface meshes into new subjects’ scans via fluid registration. (a) N image volumes (subsequently called atlases) are randomly selected from
the sample and the lateral ventricles are manually traced and converted into surface mesh models. (b) N new ventricular models are then produced by fluid
registration of each image volume to a different atlas. (c) Surface points are converted into 3D parametric surface meshes composed of spatially uniform
triangular tiles. (d) The N surface meshes are integrated by simple mesh averaging for each individual subject. (e) Medial curves (red) are extracted, and the
radial distance of each ventricular boundary point to a medial curve may be interpreted as a local thickness. (f) These distance measures are then averaged
across subjects at each boundary point and plotted in color to produce a regional measure of radial expansion or contraction of the ventricles.
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To rank which clinical measures and CSF biomarkers
were most strongly associated with ventricular morphology,
we created CDF plots of the resulting uncorrected p values
(as in a conventional false discovery rate analysis). The x
value at which the CDF plot intersects the y � 20x line
represents the highest statistical threshold that can be ap-
plied to the data, for which at most 5% false positives are
expected in the map. The use of the y � 20x line is related
to the fact that significance is declared when the volume of
suprathreshold statistics is more than 20 times that expected
under the null hypothesis. If there is no such intersection
point (other than the origin), there is no evidence to reject
the null hypothesis. Our empirical CDFs of p values are the
flip of the more common FDR PP plot; steeper CDFs show
stronger effect sizes. We have used this procedure to study
statistical maps in several prior papers (Morra et al., 2009;
Hua et al., 2008a).

2. Results

2.1. Linking ventricular morphology and clinical
characteristics

At each surface point, correlations were assessed for
each group between the radial distances (local ventricular

expansion) and several clinical measures at baseline. The
resulting statistical maps (Fig. 2) show widespread expan-
sion of ventricular spaces in AD compared with controls
(p � 0.0492, FDR corrected), and a more restricted pattern
of expansion in MCI (p � 0.0367, FDR corrected). Figure
2 shows that all clinical measures were significantly asso-
ciated with ventricular expansion, including lower MMSE
(p � 0.0488, FDR corrected), higher Global CDR (p �
0.0489, FDR corrected), higher sum-of-boxes CDR (p �
0.0494, FDR corrected), higher Geriatric Depression Scores
(p � 0.0220, FDR corrected), lower delayed logical mem-
ory scores (p � 0.0480, FDR corrected) and higher Hachin-
ski Ischemic scores (p � 0.0007, FDR corrected). When
these measures were ranked by how strongly each corre-
lated with ventricular expansion, the global clinical scores
(MMSE, CDR) and delayed recall memory scores were
significantly correlated over 96–99% of the ventricular sur-
face (n � 781). The partial correlation coefficients (r-maps)
were shown in Figure 3. Figure 6 shows CDFs for the
significance maps, and the proportion of the surface is
shown where associations are detected with each clinical
scores. Depression ratings and Hachinski Ischemic scores
were more weakly correlated, with significant correlations
detected over 44% and 1%, respectively, of the ventricular

Fig. 2. Significance maps for correlations between local ventricular enlargement and (1) diagnosis (MCI vs. normal, AD vs. normal and AD vs. MCI); (2)
cognitive scores (MMSE, Global CDR, and Sum of Boxes CDR); (3) Geriatric Depression scores; (4) Logical Memory Delayed Recall scores (LogMemDel)
and (5) Hachinski Ischemic scores, adjusting for age, gender, and educational level. The bottom panel shows the FDR-corrected p values for each map; these
are all highly significant, partly due to the very large sample sizes. Depression scores are linked with ventricular differences in several regions affected in
MCI.
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surface (n � 781). With enough subjects, correlations with
all measures would most likely be detectable over the entire
surface.

2.2. Correlations of ventricular morphology with
cerebrospinal fluid biomarkers

We also investigated whether these cross-sectional mea-
sures of lateral ventricular expansion were correlated with
CSF biomarker levels, to rank the biomarkers in order of
how strong these correlations are. In a pilot study with a
sample only one-third this size, we found correlations with
A�1-42 but not with measures of Tau, so we were keen to see
if expanding the sample 3-fold would allow us to pick up
correlations Tau. In the maps (Fig. 4a), correlations were
significant between ventricular expansion and lower A�1-42

protein levels in the pooled data (Fig. 5a; entire sample of
all AD, MCI, and normal subjects; p � 0.0361, FDR cor-
rected).

2.3. Predicting future cognitive Change

One goal of ADNI is to determine which brain imaging
measures predict future clinical decline, primarily for “en-
richment”, a statistical strategy to empower drug trials by
selecting those most likely to show imminent cognitive
decline (see, e.g., Kohannim et al., 2010). Subjects who
returned for 1-year follow-up were evaluated for any change
in clinical diagnosis. Figure 4b reveals regions where ven-

tricular expansion at baseline correlated with subsequent
clinical changes over 1 year; baseline maps were significant
overall, after correcting for multiple comparisons, for pre-
dicting future changes in MMSE (p � 0.0462, FDR cor-
rected), global CDR (p � 0.0294, FDR corrected) and
sum-of-boxes CDR scores (p � 0.0420, FDR corrected).
Again, the rank order of these maps is of interest. Baseline
ventricular anatomy was a very good predictor of changes in
the global clinical scores (MMSE, CDR). For delayed recall
memory scores, which correlated strongly with ventricular
anatomy at baseline, there was a detectable correlation only
on the right, suggesting a weaker (but significant) associa-
tion. For depression ratings, which correlated significantly
with ventricular anatomy at baseline (but less strongly than
delayed recall memory scores did), there was no association
between changes in these scores and baseline ventricular
anatomy, even in 698 subjects. Atrophy in more specialized
structures is more likely to be associated with changes in
these scores.

2.4. Influence of genetic variants

There is great interest in whether common variants of the
ApoE gene influence brain structure, as they are known to
affect the risk that a person will develop AD in the future
(Corder et al., 1993). Table 2 summarizes the genotype
frequencies for the ADNI subjects examined here. In the
AD group, approximately 64% of the subjects carried 1 or

Fig. 3. Partial correlation coefficients (r-maps) for the 3 diagnostic comparisons, showing the strength of association between radial ventricular size and
diagnosis, as well as with cognitive and clinical scores. The correlations in the MMSE and Delayed Logical Memory map are negative (red colors) because
a higher MMSE and Logical Memory Delayed Recall scores (LogMemDel) is associated with less degeneration (opposite to all the other ones). These maps
are visually in very strong agreement with the corresponding p-maps, and so they are not shown for the other covariates.
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2 copies of the ApoE4 gene (each copy confers increased
risk for AD). The frequency of ApoE4 was around 54% in
the MCI group, and only 27% in the normal group. In
contrast, carriers of the ApoE2 gene (with genotypes �2/�2
and �2/�3) were mainly found in the normal group. Around
15% of normal subjects carried a copy of the �2 allele, most
of whom are �2/�3 (�2/�2 and �2/�4 are rare, occurring in
only �2% of normal subjects). To investigate how ApoE
genotype affects the shape of lateral ventricles, we created

groups for each diagnosis, categorized by their different
combinations of ApoE alleles. Carriers of an ApoE2 gene
(which confers lower risk for AD than that of the general
population) or an ApoE4 gene (with greater risk for AD vs.
the general population) were compared with homozygous
ApoE3, the commonest genotype (Corder et al., 1993).

As shown in Figure 5a, ApoE4 carriers vs. non-carriers
showed weak but significant differences in ventricular anat-
omy. In healthy subjects, the presence of ApoE2 was asso-

Fig. 4. (a) Correlations between local ventricular enlargement and CSF biomarker levels, including A�1-42, pTau181p, Tau, and ratios of Tau/A�1-42

and pTau/ A�1-42 in the pooled data and within the AD group. The bottom panel shows the FDR corrected p values (critical p values) for these maps.
The critical p value is the highest threshold that can be applied to the statistical map while keeping the false discovery rate below 5%. Correlations
detected on one side only probably reflect limited power to detect a small effect size on both sides; it is unlikely that these maps show any true laterality
(other than the fact that the left occipital horn is about 5 mm longer, on average), as ventricular expansion on both sides is highly correlated. n.s. means
not significant. (b) Significance decline, over the following year, in 3 commonly used clinical scores with the control for age, gender, and educational
level. As hypothesized, maps show regions where differences in baseline ventricular anatomy are associated with subsequent, ventricular expansion
is a better index of future changes in global cognition function than changes in more specific cognitive domains, which likely depend on the integrity
of specific cortical and hippocampal regions (e.g. the cingulate for apathy, etc.). The bottom panel shows the FDR-corrected p values for these maps.
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ciated with reduced CSF volume on the anterior ventricular
horn, when compared with homozygous ApoE3 carriers. If
true, this may support the hypothesis that this genotype has
a protective effect.

2.5. Correlations of ventricular morphology with
language scores

As shown in Figure 5b, significant associations were
found for the linguistic aspects of the ADAS-Cog tests,
including word recognition, spoken language and word
finding performance, with FDR corrected p values 0.0479,
00169 and 0.0377, respectively. The correlations with ven-
tricular anatomy were strongest for word recognition, fol-
lowed by word finding, and weakest (but still detectable) for
spoken language.

2.6. Ranking the effect size of different covariates of
interest

Cumulative distribution curves (Fig. 6) show the relative
effect sizes for associations between ventricular expansion
and different pathologic markers and clinical scores. Curves
that rise more sharply at the origin denote statistical maps
with greater effect sizes, and those curves that intersect the
line y � 20x at points other than the origin, pass the
conventional criterion for controlling the FDR at an ex-
pected rate of 5%, and are regarded, by convention, as
significant after multiple comparisons correction. This ap-
proach ranks the effect sizes of different covariates of in-
terest: FDR was controlled when showing 98% of the sur-
face for MMSE, 99% for the sum-of-boxes CDR score, 98%
for the global CDR score, 44% for the Geriatric Depression

Fig. 5. (a) Significance maps for correlations between local ventricular enlargement and ApoE genotype. The bottom panel shows FDR corrected p values
(critical p values) for these maps; n.s. means not significant. ApoE4 carriers versus non-carriers showed weak but significant differences. (b) Significance
maps show the strength of association between radial ventricular size and ADAS-Cog tests, including word recognition, spoken language and word finding.
The bottom panel shows the FDR corrected p values for these maps. Associations were detected for all 3 ADAS-Cog tests.
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Score, 96% for delayed logical memory scores, 72% for
A�1-42, 96% for word recognition, 75% for word finding
and 34% for spoken language but only 1% for Hachinski
Ischemic scores and 0.1% for ApoE4 carriers versus non-
carriers.

3. Discussion

In one of the largest MRI studies to date, we determined
the correlates of ventricular enlargement in AD and MCI

and ranked them in order of effect size. We found that
ventricular enlargement (1) correlates with cognitive im-
pairment (measured using MMSE, global and sum-of-boxes
Clinical Dementia Rating, Geriatric Depression, delayed
logical memory test and Hachinski Ischemic scores), (2)
correlates strongly with lower levels of CSF A�1-42 but not
with CSF Tau (after adjusting for age, gender, and educa-
tional level), (3) predicts future cognitive decline (in
MMSE, global and sum-of-boxes Clinical Dementia Rating),
in all the AD, MCI, and normal groups, (4) ApoE4 carriers
versus non-carriers, and (5) ADAS-Cog (tests, including word
recognition, spoken language, and word finding).

One notable aspect of this cohort is that ApoE4 carriers
are somewhat over-represented relative to other studies. As
noted in Table 2, approximately 64% the AD group, 54% in
the MCI group, and 27% of the normal group carried 1 or 2
copies of the ApoE4 gene (each copy confers increased risk
for AD). In a related study (Ho et al., 2010b), we compared
the level of brain atrophy in 587 ADNI subjects with that of
another cohort of 113 MCI and AD subjects from the
Cardiovascular Health Study-Cognition Study (CHS-CS;

Fig. 6. CDFs for significance maps associating ventricular enlargement with clinical measures and CSF biomarkers. Red values (right) show the percentage
of the maps with significant correlations, when a threshold is applied to control the false discovery rate at 5%. This threshold (the highest one that controls
the FDR at 5%) is sometimes called the critical p value. At that critical p value, the volume of suprathreshold statistics is more than 20 times that expected
under null-hypothesis, and can as high as 100% if every surface location shows correlations with the clinical or pathologic measure (Chou et al., 2009; Hua
et al., 2009; Hua et al., 2008a; Morra et al., 2009b). A-Beta shows strong correlations with ventricular size (72% of the surface shows correlations), while
correlations with other CSF biomarkers were not detectable. By contrast, all cognitive measures correlated very highly with ventricular expansion, with more
specific clinical ratings (such as depression and Hachinski Ischemic scores) showing slightly less effect sizes than more general clinical ratings (such as
MMSE and CDR, 98–99% of the ventricular surface was correlated with these measures). Also, ApoE4 genotype and the ADAS-Cog tests, including word
recognition, spoken language and word finding all correlated with ventricular expansion.

Table 2
Frequency of ApoE genotypes in the AD, MCI and Normal groups

AD
(n � 172)

MCI
(n � 383)

Normal
(n � 226)

n % n % n %

�2/ �2 0 0.0 0 0.0 2 0.9
�2/ �3 4 2.3 16 4.2 30 13.3
�2/ �4 3 1.7 9 2.3 3 1.3
�3/ �3 57 33.1 161 42 134 59.3
�3/ �4 77 44.8 151 39.4 52 23
�4/ �4 31 18 46 12 5 2.2
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see Lopez et al., 2003; Raji et al., 2010; and Ho et al., 2010b
for details of the CHS-CS study). The atrophic pattern in
MCI and AD was consistent in both ADNI and CHS pop-
ulations, but the percentage of patients carrying the ApoE4
genetic variant was much higher in ADNI compared with
CHS for both AD (ADNI � 67.0% vs. CHS � 23.3%; �2

1

� 18.8, p value � 1.5 x 10�5) and MCI subject groups
(ADNI � 54.6% vs. CHS � 27.5%; �2

1 � 16.0, p value �
6.5 x 10�5); these numbers differ very slightly from the
figures reported in this paper, as Ho et al. (Ho et al., 2010b)
examined only 587 of the full cohort of 804 ADNI subjects
assessed here. Differences in the prevalence of ApoE4 may
be because ADNI assesses a referral clinic-based population
rather than a population-based community cohort (as is the
case for the CHS study). There is some evidence that the
referral-based cohort, ADNI, may include subjects with
more severe symptoms of AD at an earlier age (Ho et al.,
2010b), suggesting that even larger studies comparing
ADNI data with other cohorts may be useful.

In a subsequent pilot ADNI study (n � 240; Chou et al.,
2009), we attempted to correlate ventricular morphology
with ApoE genotype and found no effects (in 115 carriers
vs. 122 non-carriers), supporting the argument above. How-
ever, we were concerned that the sample was too small to
detect subtle associations so here we used a sample size
almost 3 times greater, and still found no effect. Even so, the
expanded dataset allowed us to detect significant differences
between MCI and normal, and to rank a large range of
influential covariates according to their effect sizes.

When we correlated baseline ventricular morphology
with subsequent changes over 1 year, in MMSE, global
CDR and sum-of-boxes CDR scores, all maps were highly
significant. This is a useful observation, as it shows that all
regions of the ventricles, not just selective regions, have
characteristic expansion that predicts future decline. Even
so, this correlation is to be expected, as subjects who are
more impaired at baseline are more likely to have future
cognitive decline than subjects who are less impaired. In
other words, cognitive impairment measured by MMSE,
global CDR or sum-of-boxes CDR scores, predicts (or cor-
relates with) future decline in the same measures. Further-
more, the ApoE4 gene and increasing age are risk factors for
developing AD, so that in any sufficiently large group of
controls, MCI, or AD subjects, the ApoE4 gene (and age)
will also correlate with future cognitive decline.

The failure to detect a correlation between Tau measures
and ventricular morphology does not mean that there is no
such association, and the effects in the maps are borderline.
In Figure 4a, ventricular expansion correlates well with
A-beta levels in the CSF, and somewhat less well with Tau
effects after controlling for age sex and educational level,
but visual inspection of the maps in the full sample of 397
subjects shows that the A-beta effects are quite robust, and
the Tau effects are also formally significant but cover less of
the ventricular surface. This suggests that either the effects

are more anatomically selective for Tau, or, more likely,
they have weaker effect sizes across the entire surface and
so do not pass the significance threshold in so many places
on the surface. Due to a peculiarity of the false discovery
rate method, a map is only declared significant overall if
there is some statistical threshold (called the critical p value)
that can be applied to the map that successfully controls the
proportion of false positives in the map to be no more than
5%. This criterion is satisfied for Tau uncontrolled for age,
sex and educational level, but only just, as the critical p
value is very low (0.0029). In FDR, perhaps confusingly,
low critical p values denote weaker effects than higher
critical p values, as a low critical p value means that only
stringent statistical thresholds can control the false discov-
ery rate (if a high threshold controls the false discovery rate,
generally all lower ones do). When the Tau effects are
controlled for age, sex and educational level (Fig. 4a), the
map is not much different from the uncorrected map, but it
is marginally weaker and just falls below the threshold for
FDR, so is declared not significant. The most reasonable
interpretation is that Tau effects are not as robust as those of
A-beta, which pass the FDR threshold easily (the critical p
value is 0.0361 in Figure 4a, showing that much of the
surface shows a detectable effect). Most likely, if the sample
size were expanded, both effects would be robustly de-
tected. This scenario has been noted in other papers relating
CSF biomarkers to morphometry. Weak correlations are
detected in some studies but not others. Any null findings do
not necessarily imply that the biomarkers are not causally
related (as both are sensitive to the ongoing progression of
AD, but the CSF markers tend to fluctuate over time).

In this study, we chose to analyze a radial distance
measure (i.e., distance from a central curve threading down
the hippocampus) instead of a surface distance measure, i.e.,
the distance from one surface to another. In very early work
(Thompson et al., 1996; Thompson and Toga, 1997), we did
in fact quantify differences in anatomy using a distance
between the surface mesh points across subjects after align-
ing all the subjects’ brains to a standard coordinate system.
This can be useful, and a series of early computational
anatomy papers focused on modeling the mesh displace-
ments as �2 or Hotelling’s T-squared distributed random
fields (Thompson and Toga, 1997). Even so, a limitation of
the surface displacement measure is that the relative shifting
of the surfaces in stereotaxic space can be due to atrophy
occurring elsewhere in the brain. This means that effects
mapped on the surfaces may be disease-related but may not
be occurring in the structure modeled. Subsequently, we
switched to a method based on fitting a central line down the
medial axis of the structure (as in related work by Yush-
kevich, 2009; Styner et al., 2005; Gerig et al., 2001; Pizer et
al., 2003; Bansal et al., 2000 and many other authors). This
has the advantage that the distances to this central line do
reflect atrophy that is intrinsic to the structure – the resulting
atrophy measures would not be altered by a shifting of the
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structure in stereotaxic space. Alternatively, surface invari-
ants may be used (Gutman et al., 2009), although they do
not provide spatial detail on the pattern of effects. Radial
distance maps have been used in over 30 studies and occa-
sionally allow better group discrimination than simple vol-
umetric measures, although both measures are useful. Al-
ternatively, it is possible to analyze parcelled subvolumes,
but again they provide less spatial detail on the pattern of
effects. For a very detailed comparison of many different
surface metrics for disease discrimination, please see Wang
et al. (Wang et al., 2010).

Also, the computation of group anatomical differences
relies on a computed correspondence derived from a sur-
face-based parameterization method that stretches a grid
over the surfaces. Even so, stretching a grid over the surface
does not mean that the points match up either anatomically
or in the best possible geometrical way. Ongoing research in
computational anatomy is focusing on how to align features
within surfaces to provide higher order correspondences
between regions that may correspond across subjects. This
may lead to the reinforcement and better detection of sys-
tematic effects, especially when differentiated cellular fields
lie within surfaces (Zeineh et al., 2001). Current work on
surface reparameterization includes alignment of explicitly
identified internal landmarks that lie within the surfaces
(Thompson et al., 2004a, 2004b; Durrleman et al., 2008),
and alignment of curvature fields or other differential geo-
metrical features, such as Riemannian structures using flows
within surfaces (Lui et al., 2010). Active work is focusing
on which method boosts power the most for detecting sta-
tistical effects on brain structure (Wang et al., 2010).

The maps reported here assessed residual anatomical
differences after an initial 9-parameter global scaling of all
AD, MCI, and control subjects’ images to match an ana-
tomical template. This scaling was performed in the auto-
mated registration step, and, in our cohort, the degrees of
scaling (mean global expansion factors) for groups of con-
trols, MCI and AD patients were 1.020 (SD � 0.031), 1.019
(0.031), and 1.018 (0.026), respectively, and there was no
significant difference among the 3 groups (single factor
ANOVA p value � 0.773). As such, we did not adjust for
group differences in overall brain scaling in our analyses, as
no such differences were detected.

In general, our studies of ventricular differences show
bilateral statistical effects if they show effects at all, and
only occasionally, when effects are borderline, effects are
picked up on one side but not the other. There are some
natural asymmetries in the anatomy of the ventricles: the
occipital horn extends around 5 mm further back on the left
than the right. This asymmetry, which is present in most but
not all subjects, emerges early in embryonic development
due to the tendency for the perisylvian language areas, such
as the planum temporale, to expand more in the left hemi-
sphere. This expansion has a mild but systematic torquing
effect on subcortical anatomy. One limitation of this study

is that we did not test relationships between the degree of
ventricular asymmetry and cognitive decline; this is because
the primary biological process of atrophy is pervasive in
both hemispheres. As such, we do not expect there to be
strong hemispheric differences in the relation between ven-
tricular expansion and cognitive decline.

It is interesting to determine the possible contribution of
vascular disease burden to the ventricular expansion noted
here, especially in the light of recent reports that the level of
atrophy in elderly normals is associated with cardiovascular
risk factors, such as high body mass index (Raji et al., 2010)
and carrying the obesity risk gene, FTO (Ho et al., 2010a).
Salerno et al. (1992) and others have argued that otherwise
healthy, but hypertensive elderly subjects have significantly
larger mean ventricular volumes. In our study, however, the
Hachinski ischemic scale showed no significant differences
among the 3 diagnostic groups (single factor ANOVA p
value � 0.717), suggesting that vascular burden is unlikely
to be the primary contributor to the effects. Even so, subtle
vascular insufficiencies may contribute to neuronal atrophy
and may not be readily detectable on T1- or T2-weighted
MRI. In a recent study of obesity and brain structure in an
independent sample (Raji et al., 2010), the effects of body
mass index on brain atrophy were quite strong, but could not
be explained by conventional measures of white matter
vascular burden, such as the volume of white matter hyper-
intensities on T2-weighted MRI. It is therefore possible that
the ventricular expansion seen here is somewhat indepen-
dent of vascular disease burden, or that microvascular dam-
age may contribute to it but occurs at a finer anatomical
scale than is readily detectable on T1- or T2-weighted MRI.

In this paper, we report correlations between atrophy and
cognitive or CSF-derived measures in the pooled ADNI
sample (combining patients with AD, MCI, and controls),
yet we also report other correlations within groups split by
diagnosis (“disaggregated” analyses). Both types of analysis
are complementary, and each has limitations. When analyz-
ing a mixed cohort of subjects with AD, MCI, and controls,
it is important to determine (1) the cognitive correlates of
atrophy in the entire study, and (2) whether the chosen
biomarker of disease burden is linked with decline across
the full spectrum of controls, MCI, and AD subjects. As the
whole cohort is arguably a continuum, it is vital to look
beyond the diagnostic categories and see if the level of
atrophy seen is related to function, and if so, which func-
tional scores it relates to. This same correlation may be
missed if it is assessed within 1 group only (e.g., MCI) due
to a “restricted range” effect. Similarly, true correlations
may be missed if the range of cognitive performance is
restricted to include only healthy normal subjects. Further-
more, it is a fallacy to preselect a diagnostic group based
partly on cognitive domains, and then later test if a corre-
lation is maintained with a cognitive subscale that is corre-
lated with tests used to select the group. By running split
analyses only, many important correlations will be missed.
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For instance, the level of brain atrophy correlates well with
CSF-derived measures of pathology across the continuum
from aging to MCI to AD. But if one sub-selects a group,
such as MCI, or a group of subjects with a very narrow
range of disease burden, it is possible that no such correla-
tion will be detected, due to the restricted range. If group-
ings are made based on the measure whose correlation is
being tested, results may be uninterpretable. If the selection
criterion for the group correlates with the variable of inter-
est, nearly all the maps would be false negatives due to the
truncated range.

Pooled analyses also have limitations. First, correlations
with cognitive scores in a pooled cohort will tend to show
similar patterns to a direct comparison of AD and healthy
controls, if the cognitive measures are correlated with diag-
nosis. Second, if correlation analyses are performed across
the full diagnostic continuum in a pooled cohort, such as
ADNI, then any correlations detected may depend some-
what on the proportion of subjects with each diagnosis � in
ADNI, this is approximately 1:2:1 for AD: MCI: controls.
In other words, part of the range of cognitive decline may be
over-sampled. In ADNI, the over-sampling of MCI is de-
liberate, but it may not reflect a representative sampling of
all subjects of a certain age. As such, any correlations with
the atrophy in ADNI may not be detected in the same degree
in other population studies with different proportions of
subjects, or within diagnostic subcategories. For that reason,
both pooled and split analyses have value for understanding
the cognitive and pathologic correlates of atrophy.

In summary, we examined the clinical and pathologic
correlates of ventricular expansion, in a very large sample of
AD, MCI and healthy subjects. Although the ventricles are
not the site of pathology deposition, and are at best an
indirect measure of brain atrophy, they are nevertheless
easier to measure than hippocampal and cortical structures,
due to their high contrast on standard MRI. The resulting
maps and measures show promise as a biomarker of AD,
and provide a useful measure for combination with other
more direct measures of pathology or neuronal loss.

Disclosure statement

The authors report no actual or potential financial or
personal conflicts of interest, including relationships with
other people or organizations within 3 years of beginning
the work submitted that could inappropriately influence
their work.

Acknowledgements

Data collection and sharing for this project was funded
by the ADNI (National Institutes of Health, Grant U01
AG024904). ADNI is funded by the National Institute on
Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from

the following: Abbott, AstraZeneca AB, Bayer Schering
Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical
Development, Elan Corporation, Genentech, GE Health-
care, GlaxoSmithKline, Innogenetics, Johnson and Johnson,
Eli Lilly, and Co, Medpace, Inc., Merck and Co., Inc.,
Novartis AG, Pfizer, Inc., F. Hoffman-La Roche, Schering-
Plough, Synarc, Inc., and Wyeth, as well as nonprofit part-
ners the Alzheimer’s Association and Alzheimer’s Drug
Discovery Foundation, with participation from the US Food
and Drug Administration. Private sector contributions to
ADNI are facilitated by the Foundation for the National
Institutes of Health (http://www.fnih.org). The grantee or-
ganization is the Northern California Institute for Research
and Education, and the study is coordinated by the Alzhei-
mer’s Disease Cooperative Study at the University of Cal-
ifornia, San Diego. ADNI data are disseminated by the
Laboratory of Neuro Imaging at the University of Califor-
nia, Los Angeles. This research was also supported by NIH
grants P30 AG010129, K01 AG030514, and the Dana
Foundation.

References

Adak, S., Illouz, K., Gorman, W., Tandon, R., Zimmerman, E.A., Guari-
glia, R., Moore, M.M., Kaye, J.A., 2004. Predicting the rate of cogni-
tive decline in aging and early Alzheimer disease. Neurology 64,
108–114.

Bansal, R., Geiger, B., Banihashemi, A., Krishnan, A., 2000. Integrated
segmentation, registration and visualization of multimodal medical
image datasets. IEEE Visualization.

Blennow K, Hampel H., 2003. CSF markers for incipient Alzheimer’s
disease. Lancet Neurol 2, 605–613.

Carlson, N.E., Moore, M.M., Dame, A., Howieson, D., Silbert, L.C.,
Quinn, J.F, Kaye, J.A., 2008. Trajectories of brain loss in aging and the
development of cognitive impairment. Neurology 70, 828–33.

Carmichael, O.T., Kuller, L.H., Lopez, O.L., Thompson, P.M., Dutton,
R.A., Lu, A., Lee, S.E., Lee, J.Y., Aizenstein, H.J., Meltzer, C.C., Liu,
Y., Toga, A.W., Becker, J.T., 2007. Ventricular volume and dementia
progression in the Cardiovascular Health Study. Neurobiol Aging 28,
389–397.

Chou, Y., Leporé, N., de Zubicaray, G., Carmichael, O., Becker, J., Toga,
A., Thompson, P., 2008. Automated ventricular mapping with multi-
atlas fluid image alignment reveals genetic effects in Alzheimer’s
disease. Neuroimage 40, 615–630.

Chou, Y.Y., Lepore, N., Brun, C., Barysheva, M., McMahon, K., de
Zubicaray, G.I., Wright, M.J., Toga, A.W., Thompson, P.M., 2009. Can
Tissue Segmentation Improve Registration? A Study of 92 Twins.
Organization for Human Brain Mapping 2009.

Cootes, T., Hill, A., Taylor, C., Haslam, J., 1994. The use of active shape
models for locating structures in medical images. Image Vis Comput
12, 355–366.

Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C., 1994. Automatic 3D
intersubject registration of MR volumetric data in standardized Ta-
lairach space. J Comput Assist Tomogr 18, 192–205.

Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E.,
Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., Pericak-Vance,
M.A., 1993. Gene dose of apolipoprotein E type 4 allele and the risk of
Alzheimer’s disease in late onset families. Science 261, 921–923.

Durrleman, S., Pennec, X., Trouve, A., Thompson, P.M., Ayache, N.,
2008. Inferring brain variability from diffeomorphic deformations of
currents: an integrative approach. Med Image Anal 12(5):626–637.

1398 Yi-Yu Chou et al. / Neurobiology of Aging 31 (2010) 1386–1400



Author's personal copy

Fleisher, A.S., Sun, S., Taylor, C., Ward, C.P., Gamst, A.C., Petersen,
R.C., Jack, C.R., Aisen, P.S., Thal, L.J., 2008. Volumetric MRI vs
clinical predictors of Alzheimer disease in mild cognitive impairment.
Neurology 70, 191–199.

Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. A practical method for
grading the cognitive state of patients for the clinician. J Psychiatr Res
12, 189–198.

Fox, N.C., Crum, W.R., Scahill, R.I., Stevens, J.M., Janssen, J.C., Rossor,
M.N., 2001. Imaging of onset and progression of Alzheimer’s disease
with voxel-compression mapping of serial magnetic resonance images.
Lancet 358, 201–205.

Frisoni, G.B., Pievani, M., Testa, C., Sabattoli, F., Bresciani, L., Bonetti,
M., Beltramello, A., Hayashi, K.M., Toga A.W., Thompson P.M.,
2007. The topography of grey matter involvement in early and late
onset Alzheimer’s disease. Brain 130, 720–730.

Frisoni, G.B., Prestia, A., Rasser, P.E., Bonetti, M., Thompson, P.M., 2009.
In vivo mapping of incremental cortical atrophy from incipient to overt
Alzheimer’s disease. J Neurol 256, 916–924.

Frisoni, G.B., Fox, N.C., Jack, C.R. Jr, Scheltens, P., Thompson, P.M.,
2010. The clinical use of structural MRI in Alzheimer disease. Nature
Rev Neurol 6, 1–11.

Gerig, G., Styner, M., Weinberger, D., Jones, D., Lieberman, J., 2001.
Shape analysis of brain ventricles using SPHARM. IEEE workshop on
mathematical methods in biomedical image analysis MMBIA, p. 171–
178.

Gunter, J., Bernstein, M., Borowski, B., Felmlee, J., Blezek, D., Mallozzi,
R., 2006. Validation testing of the MRI calibration phantom for the
Alzheimer’s Disease Neuroimaging Initiative Study. ISMRM 14th Sci-
entific Meeting and Exhibition, Seattle, WA.

Gutman, B., Wang, Y.L., Morra, J.H., Toga, A.W., Thompson, P.M., 2009.
Disease Classification with hippocampal surface invariants. Hippocam-
pus 19, 572–578.

Ho, A.J., Stein, J.L., Hua, X., Lee, S., Hibar, D.P., Leow, A.D., Dinov, I.,
Toga, A., Saykin, A.J., Shen, L., Foroud, T., Pankratz, N., Huentelman,
M.J., Craig, D.W., Gerber, J.D., Allen, A., Corneveaux, J., Stephan,
D.A., Webster, J., DeChairo, B.M., Potkin, S.G., Jack, C., Weiner, M.,
Raji, C.A., Lopez, O.L., Becker, J.T., Thompson, P.M., 2010a. Com-
monly carried allele within FTO, an obesity-associated gene, relates to
accelerated brain degeneration in the elderly. Proc Natl Acad Sci USA
[epub ahead of print April 19, 2010].

Ho, A.J., Raji, C.A., Becker, J.T., Lopez, O.L., Kuller, L.H., Hua, X., Lee,
S., Hibar, D., Dinov, I.D., Stein, J.L., Jack, C.R., Weiner, M.W., Toga,
A.W., Thompson, P.M., 2010b [in press]. The Cardiovascular Health
Study, ADNI. Obesity and brain structure in 700 AD and MCI patients.
Neurobiol Aging.

Ho, A.J., Hua, X., Lee, S., Yanovsky, I., Leow, A.D., Gutman, B., Dinov,
I.D., Toga, A.W., Jack, C.R., Jr., Bernstein, M.A., Reiman, E.M.,
Harvey, D., Kornak, J., Schuff, N., Alexander, G.E., Weiner, M.W.,
Thompson, P.M., 2010c. Comparing 3T and 1.5T MRI for tracking AD
progression with tensor-based morphometry. Hum Brain Mapp 31,
499–514.

Hua, X., Leow, A., Lee, S., Klunder, A.D., Toga, A., Lepore, N., Chou,
Y.Y., Chiang, M.C., Barysheva, M., Jack, C.R., Bernstein, M., Britson,
P., Gunter, J., Ward, C., Whitwell, J., Borowski, B., Fleisher, A., Fox,
N.C., Boyes, R.G., Barnes, J., Harvery, D., Kornak, J., Schuff, N.,
Boreta, L., Studholme, C., Alexander, G., Weiner, M.W., Thompson,
P., 2008a. 3D characterization of brain atrophy in Alzheimer’s disease
and mild cognitive impairment using tensor-based morphometry. Neu-
roimage 41(1):19–34.

Hua, X., Leow, A.D., Parikshak, N., Lee, S., Chiang, M.C., Toga, A.W.,
Jack, C.R., Weiner, M.W., Thompson, P.M., 2008b. Tensor-based
morphometry as a neuroimaging biomarker for Alzheimer’s Disease:
an MRI Study of 676 AD, MCI, and normal subjects. Neuroimage
43(3):458–469.

Hua, X., Lee, S., Hibar, D.P., Yanovsky, I., Leow, A.D., Toga, A.W., Jack,
C.R., Jr, Bernstein, M.A., Reiman, E.M., Harvey, D.J., Kornak, J.,

Schuff, N., Alexander, G.E., Weiner, M.W., Thompson, P.M., 2010.
Mapping Alzheimer’s disease progression in 1309 MRI scans: power
estimates for different inter-scan intervals. Neuroimage 51(1):63–75.

Hua, X., Lee, S., Yanovsky, I., Leow, A.D., Chou, Y.Y., Ho, A.J., Gutman,
B., Toga, A.W., Jack, C.R., Jr., Bernstein, M.A., Reiman, E.M., Har-
vey, D.J., Kornak, J., Schuff, N., Alexander, G.E., Weiner, M.W.,
Thompson, P.M., 2009. Optimizing power to track brain degeneration
in Alzheimer’s disease and mild cognitive impairment with tensor-
based morphometry: an ADNI study of 515 subjects. Neuroimage 48,
668–681.

Jack, C., Bernstein, M., Fox, N.C., Thompson, P., Alexander, G., Harvery,
D., Borowski, B., Britson, P., Whitwell, J., Ward, C., Dale, A., Felm-
lee, J., Gunter, J., Hill, D., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin,
C., Studholme, C., DeCarli, C., Krueger, G., Ward, H., Metzger, G.,
Scott, E., Mallozzi, R., Blezek, D., Levy, J., Debbins, J., Fleisher, A.,
Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner,
M.W., 2008. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI): the MR imaging protocol. J MRI 27, 685–691.

Jack, C.R., Shiung, M.M., Gunter, J.L., O’Brien, P.C., Weigand, S.D.,
Knopman, D.S., Boeve, B.F., Ivnik, R.J., Smith, G.E., Cha, R.H.,
Tangalos, E.G., Petersen, R.C., 2004. Comparison of different MRI
brain atrophy rate measures with clinical disease progression in AD.
Neurology 62, 591–600.

Jack, C.R. Jr, Lowe, V.J., Weigand, S.D., Wiste, H.J., Senjem, M.L.,
Knopman, D.S., Shiung, M.M., Gunter, J.L., Boeve, B.F., Kemp, B.J.,
Weiner, M., Petersen, R.C., 2009. Serial PIB and MRI in normal, mild
cognitive impairment and Alzheimer’s disease: implications for se-
quence of pathological events in Alzheimer’s disease. Brain 132, 1355–
65.

Jack, C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner,
M.W., Petersen, R.C., Trojanowski, J.Q., 2010. Hypothetical model of
dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet
Neurol 9, 119–128.

Kohannim, O., Hua, X., Hibar, D.P., Lee, S., Chou, Y.Y., Toga, A.W.,
Jack, C.R., Weiner, M.W., Thompson, P.M., 2010 [in press]. The
Alzheimer’s Disease Neuroimaging Initiative. Boosting power for clin-
ical trials using classifiers based on multiple biomarkers. Neurobiol
Aging.

Leow, A.D., Yanovsky, I., Parikshak, N., Hua, X., Lee, S., Toga, A.W.,
Jack, C.R., Bernstein, M.A., Britson, P.J., Ward, C.P., Borowski, B.,
Trojanowski, J.Q., Shaw, L., Fleisher, A.S., Harvey, D., Kornak, J.,
Schuff, N., Alexander, G.E., Weiner, M.W., Thompson, P.M., 2009.
Alzheimer’s Disease Neuroimaging Initiative: A One-year Follow up
Study Correlating Degenerative Rates, Biomarkers and Cognition.
Neuroimage 45(3):645–655.

Lopez, O.L., Jagust, W.J., DeKosky, S.T., Becker, J.T., Fitzpatrick, A.,
Dulberg, C., Breitner, J., Lyketsos, C., Jones, B., Kawas, C., Carlson,
M., Kuller, L.H., 2003. Prevalence and classification of mild cognitive
impairment in the Cardiovascular Health Study Cognition study. Part 1.
Arch Neurol 60, 1385–1389.

Lui, L.M., Thiruvenkadam S,., Wang, Y.L., Thompson, P.M., Chan, T.F.,
2010. Optimized conformal surface registration with shape-based land-
mark matching. SIAM Journal on Imaging Sciences 3(1):52–78.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan,
E.M., 1984. Clinical diagnosis of Alzheimer’s disease: report of the
NINCDS-ADRDA Work Group under the auspices of the Department
of Health and Human Services Task Force on Alzheimer’s Disease.
Neurology 34, 939–944.

Morra, J., Tu, Z., Apostolova, L.G., Green, A.E., Avedissian, C., Madsen,
S.K., Parikshak, N., Hua, X., Toga, A.W., Jack, C.R., Schuff, N.,
Weiner, M.W., Thompson P.M., 2008. Validation of a fully automated
3D hippocampal segmentation method using subjects with Alzheimer’s
disease, mild cognitive impairment, and elderly controls. Neuroimage
43(1):59–68.

Morra, J., Tu, Z., Apostolova, L.G., Green, A.E., Avedissian, C., Madsen,
S.K., Parikshak, N., Hua, X., Toga, A.W., Jack, C.R., Schuff, N.,

1399Yi-Yu Chou et al. / Neurobiology of Aging 31 (2010) 1386–1400



Author's personal copy

Weiner, M.W., Thompson, P.M., Alzheimer’s Disease Neuroimaging
Initiative, 2009a. Automated 3D mapping of hippocampal atrophy and
its clinical correlates in 400 subjects with Alzheimer’s disease, mild
cognitive impairment, and elderly controls. Hum Brain Mapp
30(9):2766–2788.

Morra, J.H., Tu, Z., Toga, A.W., Thompson, P.M. Machine learning for
brain image segmentation. In: F. Gonzalez, E. Romero, editors. Bio-
medical Image Analysis and Machine Learning 2009b. Available at:
http://www.loni.ucla.edu/�thompson/PDF/MorraThompson-ML-Chpt08.
pdf. Accessed: June 2, 2010.

Morris, J., 1993. The clinical dementia rating (CDR): current version and
scoring rules. Neurology 43, 2412–2414.

Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C.R., Jagust,
W., Trojanowski, J.Q., Toga, A.W., Beckett, L., 2005. Ways toward an
early diagnosis in Alzheimer’s Disease: the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI). Alzheimers Dement 1, 55–66.

Motter, R., Vigo-Pelfrey, C., Kholodenko, D., Barbour, R., Johnson-Wood,
K., Galasko, D., Chang, L., Miller, B., Clark, C., Green, R., 1995.
Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of
patients with Alzheimer’s disease. Ann Neurol 38, 643–648.

Narr, K.L., Thompson, P.M., Sharma, T., Moussai, J., Blanton, R., Anvar,
B., Edris, A., Krupp, R., Rayman, J., Khaledy, M. Toga, A.W., 2001.
Three-dimensional mapping of temporo-limbic regions and the lateral
ventricles in schizophrenia: gender effects. Biol Psychiatry 50, 84–97.

Pizer, S.M., Gerig, G., Joshi, S., Aylward, S., 2003. Multiscale medial
shape-based analysis of image objects. Proc IEEE 91, 1670–1679.

Raji, C.A., Ho, A.J., Parikshak, N.N., Becker, J.T., Lopez, O.L., Kuller,
L.H., Hua, X., Leow, A.D., Toga, A.W., Thompson, P.M., 2010. Brain
structure and obesity. Hum Brain Mapp 353–364.

Risacher, S.L., Saykin, A.J., West, J.D., Shen, L., Firpi, H.A., McDonald,
B.C., 2009. Baseline MRI predictors of conversion from MCI to prob-
able AD in the ADNI cohort. Curr Alzheimer Res 6, 347–361.

Salerno, J.A., Murphy, D.G., Horwitz, B., DeCarli, C., Haxby, J.V., Rap-
oport, S.I., Schapiro, M.B., A volumetric magnetic resonance imaging
study. Hypertension 1992. 20, 340–348.

Selkoe, D.J., 2001. Alzheimer’s disease: genes, proteins, and therapy.
Physiol Rev 81, 741–766.

Silbert, L., Quinn, J., Moore, M., Corbridge, E., Ball, M., Murdoch, G.,
Sexton, G., Kaye, J.A., 2003. Changes in premorbid brain volume
predict Alzheimer’s disease pathology. Neurology 61, 487–492.

Shaw, L.M., Vanderstichele, H., Knapik-Czajka, M., Clark, C.M., Aisen,
P.S., Petersen, R.C., Blennow, K., Soares, H., Simon, A., Lewczuk, P.,
Dean, R., Siemers, E., Potter, W., Lee, V.M.Y., Trojanowski, J.Q.,
Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuro-
imaging initiative subjects. Ann Neurol 2009. 65, 403–413.

Stein, J.L., Hua, X., Morra, J.H., Lee, S., Hibar, D.P., Ho, A.J., Leow,
A.D., Toga, A.W., Sul, J.H., Kang, H., Eskin, E., Saykin, A.J., Shen,
L., Foroud, T., Pankratz, N., Huentelman, M.J., Craig, D.W., Gerber,
J.D., Allen, A.N., Corneveaux, J.J., Stephan, D.A., Webster, J.,
DeChairo, B.M., Potkin, S.G., Jack, C.R., Weiner, M.W., Thompson,
P.M., 2010. Genome-wide analysis reveals novel genes influencing
temporal lobe structure with relevance to neurodegeneration in Alzhei-
mer’s disease. Neuroimage 51(2):542–554.

Styner, M., Lieberman, J.A., McClure, R.K., Weinberger, D.R., Jones,
D.W., Gerig, G., 2005. Morphometric analysis of lateral ventricles in
schizophrenia and healthy controls regarding genetic and disease-spe-
cific factors. Proc Natl Acad Sci USA 102, 4872–4877.

Thompson, P.M., Schwartz, C., Toga, A.W., 1996. High-resolution random
mesh algorithms for creating a probabilistic 3D surface atlas of the
human brain. Neuroimage 3, 19–34.

Thompson, P.M., Toga, A.W., 1997. Detection, visualization and anima-
tion of abnormal anatomic structure with a deformable probabilistic
brain Atlas based on random Vector Field transformations. Med Image
Anal 1, 271–294.

Thompson, P.M., Mega, M.S., Narr, K.L., Sowell, E.R., Blanton, R.E.,
Toga, A.W., M. Fitzpatrick, M. Sonka, editors. SPIE Handbook on
Medical Image Analysis. Society of Photo-Optical Instrumentation
Engineers (SPIE) Press, 2000. p. 1063–1131.

Thompson, P.M., Hayashi, K.M., de Zubicaray, G., Janke, A.L., Rose,
S.E., Semple, J., Herman, D., Hong, M.S., Dittmer, S.S., Doddrell,
D.M., Toga, A.W., 2003. Dynamics of gray matter loss in Alzheimer’s
disease. J Neurosci 23, 994–1005.

Thompson, P.M., Hayashi, K.M., de Zubicaray, G., Janke, A.L., Rose,
S.E., Semple, J., Hong, M.S., Herman, D., Gravano, D., Doddrell,
D.M., Toga, A.W., 2004a; Mapping hippocampal and ventricular
change in Alzheimer’s disease. Neuroimage 22, 1754–1766.

Thompson, P.M., Hayashi, K.M., Sowell, E.R., Gogtay, N., Giedd, J.N.,
Rapoport, J.L., de Zubicaray, G.I., Janke, A.L., Rose, S.E., Semple, J.,
Doddrell, D.M., Wang, Y.L., van Erp, T.G.M., Cannon, T.D., Toga,
A.W., 2004b; Mapping cortical change in Alzheimer’s disease, brain
development, and schizophrenia Neuroimage 23[Suppl 1]:S2–18.

Walhovd, K.B., Fjell, A.M., Brewer, J., McEvoy, L.K., Fennema-Notes-
tine, C., Hagler, D.J. Jr, Jennings, R.G., Karow, D., Dale, A.M., the
Alzheimer’s Disease Neuroimaging Initiative, 2010. Combining MR
imaging, positron-emission tomography, and CSF biomarkers in the
diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol
31(2):347–54.

Wang, Y.L., Zhang, J., Gutman, B., Chan, T.F., Becker, J.T., Aizenstein, H.J.,
Lopez, O.L., Tamburo, R.J., Toga, A.W., Thompson, P.M., 2010. Multi-
variate tensor-based morphometry on surfaces: application to mapping
ventricular abnormalities in HIV/AIDS. Neuroimage 1, 2141–2157.

Weiner, M.W., 2008. Expanding ventricles may detect preclinical Alzhei-
mer disease. Neurology 70, 824–825.

Whitwell, J.L., Josephs, K.A., Murray, M.E., Kantarci, K., Przybelski,
S.A., Weigand, S.D., Vemuri, P., Senjem, M.L., Parisi, J.E., Knopman,
D.S., Boeve, B.F., Petersen, R.C., Dickson, D.W., Jack, C.R., Jr., 2008.
MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-
based morphometry study. Neurology 71, 743–749.

Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M.,
Leirer, V.O., 1982. Development and validation of a geriatric depres-
sion screening scale: a preliminary report. J Psychiatr Res 17, 37–49.

Yushkevich, P.A., 2009. Continuous medial representation of brain struc-
tures using the biharmonic PDE. Neuroimage 45;[suppl]:S99–110.

Zeineh, M.M., Engel, S.A., Thompson, P.M., Bookheimer, S., 2001. Un-
folding the human hippocampus with high-resolution structural and
functional MRI. Anat Rec 265(2):111–120.

1400 Yi-Yu Chou et al. / Neurobiology of Aging 31 (2010) 1386–1400


