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Fully Automatic Hippocampus Segmentation and Classification
in Alzheimer’s Disease and Mild Cognitive Impairment Applied
on Data From ADNI
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ABSTRACT:  The hippocampus is among the first structures affected in
Alzheimer’s disease (AD). Hippocampal magnetic resonance imaging
volumetry is a potential biomarker for AD but is hindered by the limita-
tions of manual segmentation. We proposed a fully automatic method
using probabilistic and anatomical priors for hippocampus segmentation.
Probabilistic information is derived from 16 young controls and anatom-
ical knowledge is modeled with automatically detected landmarks. The
results were previously evaluated by comparison with manual segmenta-
tion on data from the 16 young healthy controls, with a leave-one-out
strategy, and eight patients with AD. High accuracy was found for both
groups (volume error 6 and 7%, overlap 87 and 86%, respectively). In
this article, the method was used to segment 145 patients with AD, 294
patients with mild cognitive impairment (MCI), and 166 elderly normal
subjects from the Alzheimer’s Disease Neuroimaging Initiative database.
On the basis of a qualitative rating protocol, the segmentation proved
acceptable in 94% of the cases. We used the obtained hippocampal vol-
umes to automatically discriminate between AD patients, MCI patients,
and elderly controls. The classification proved accurate: 76% of the
patients with AD and 71% of the MCI converting to AD before 18
months were correctly classified with respect to the elderly controls,
using only hippocampal volume. o 2009 Wiley-Liss, Inc.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia; its
early and accurate diagnosis is challenging. The hippocampus is a gray
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matter structure of the temporal lobe known to be
affected at the earliest stage of AD, even before the di-
agnosis can be made, at the stage of mild cognitive
impairment (MCI) (Braak and Braak, 1995). Hippo-
campal volumetry on magnetic resonance images
(MRI) can thus constitute a useful diagnostic tool
(Dubois et al., 2007). Till now, hippocampal volumetry
mostly relies on highly time-consuming manual seg-
mentation, which is rater-dependent, and not feasible
in clinical routine.

Automatic segmentation of the hippocampus would
overcome these limitations and provide a useful bio-
marker of AD. The incomplete definition of hippo-
campal boundaries on MRI scans makes the use of
prior information necessary for accuracy and robust-
ness. Prior knowledge can come from statistical infor-
mation on shape (Kelemen et al., 1999; Shen et al,
2002), deformations (Duchesne et al., 2002), or from
registering a single subject atlas template (Csernansky
et al., 2000); nevertheless, these methods may be
unsuitable for diseased structures. Segmentation using
probabilistic information (Fischl et al, 2002,
Heckemann et al., 2006) offers more thorough global
spatial knowledge compared to single object atlases.

We proposed a fully-automatic method (Chupin
et al., 2007, 2009) for the segmentation of the hippo-
campus (Hc) and the amygdala (Am), based on
simultaneous region deformation driven by both ana-
tomical and probabilistic priors. Anatomical informa-
tion (Bloch et al., 2005) is derived from local anatom-
ical patterns that are stable in controls and patients,
around landmarks automatically detected during the
deformation (Chupin et al., 2007). Probabilistic infor-
mation is derived from an atlas built from the regis-
tration of manually segmented Hc and Am for 16
young healthy subjects (Chupin et al., 2009). Initiali-
zation is obtained from global information and defor-
mation is constrained by local anatomical and proba-
bilistic information.

The goal of this article is to further evaluate this seg-
mentation method in patients with AD, MCI, and el-
derly controls from the ADNI database (Alzheimer’s
Disease Neuroimaging Initiative). It will assess the
method’s robustness with respect to different MRI scan-
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ners and acquisition parameters, and with respect to pathology,
some of the patients with AD having highly atrophic Hc. Seg-
mentation accuracy will be evaluated with a qualitative rating
protocol. Furthermore, we will assess the ability of resulting He
volumes to discriminate patients with AD and MCI from elderly
controls. We will also study the influence of some of image pre-
processing steps, and of age group and normalization by total in-
tracranial volume. A preliminary version of this work has been
presented at the MICCAI CAPH’08 workshop.

METHOD

The segmentation is based on the alternate deformation of
two objects, one for Hc and one for Am, from two initial
objects, through homotopic region deformation. It is modeled
in a Bayesian framework, the deformation being driven by an
iterative energy minimization. This energy is defined with a
functional made of five terms: global and local data attach-
ment, regularization, and volume and surface terms (Chupin
et al., 2007). The initial objects are determined from the prob-
abilistic atlases, inside an automatically extracted bounding box
(Chupin et al., 2009). The energy functional is then iteratively
minimized for Hc and Am, with additional constraints derived
from the anatomical and probabilistic priors.

Probabilistic Atlases

The datasets from N (here N = 16) young healthy subjects
were manually segmented by an expert following a protocol
ensuring coherence in the three planes. For each of the atlas
subject, {S;, 7 = 1...MV}, the transformation 7; to the MNI
standard space is then obtained through the unified registration
and segmentation module of SPM5 (Ashburner and Friston,
2005) using the native data.The transformation (expressed on a
basis of ~1,000 cosine functions) is then used to propagate the
manually labeled binary masks (Hc; and Am;) to the MNI
space. The atlases PAy, and PA4,, are created only once as
follows, in the MRI set Q:

Vv € Q PAHc

where PAp(v) and PA,(v) are the probabilities that » belongs
to Hc and Am.

Initialization

The first step is to compute forward and backward transforma-
tions 7 and 7' between native and MNI spaces. Individual

atlases IPAyy. and IPA,,, are created by back-registering the atlases
PApy. and PA,,, using 7' IPAy. and IPA,,, are used to auto-
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matically define left and right bounding boxes around the struc-
tures of interest, as the smallest boxes embedding the nonnull
probability values in both atlases, with an extra one-voxel margin,
for the left and right hemispheres, as illustrated in Figure la.

Atlas local registration failure in the bounding box is auto-
matically detected and corrected when necessary. For this, it is
assumed that, if IPAy, is locally misregistered, the 0.5-proba-
bility object {z, IPAy () > 0.5} will cover a wider intensity
range than if IPAy. is correctly registered. Details are given in
Chupin et al. (2009).

The last step of the initialization procedure is to create initial
objects for Hc and Am. Each probability map is pruned
through thresholding while ensuring that the object is still
topologically a single object (conditional pruning) to ensure
obtaining one smooth and connected object corresponding to
the region with maximal probability in each probability map.
The two objects thus obtained are then eroded to create the
initial objects (Fig. 1b).

Deformation

The deformation is then driven by the iterative minimization
of the energy functional. At each iteration, voxel candidates are
selected at the border of the deforming objects, for which
reclassification will be considered; meta-regions are automati-
cally detected during the deformation, these regions being the
interface between Hc and Am and 11 families of anatomical
landmarks at the border of Hc and Am (Chupin et al., 2007).
The energy is then minimized on the voxel candidates through
an Iterated Conditional Modes procedure. Low and high likeli-
hood zones are defined around the anatomical landmarks from
intensity and spatial local relationships, and three zones are
derived from the probability maps: P2 = {4 IPA(») = 0},
PZ' = {o TPA(v) = 1}, PZ°7° = {5, 0.75 < IPA(») < 1}.
These specific features are modeled in the regularization term,
comparing N°(») the number of O-labeled neighbors of v with
a standard value N, with respect to a tolerance G, to prevent
holes and wires:

(N = YY) (No(v) + ab(v)

Ep(v) = (2)

T <« . » .
where " = 0, except for voxels detected as “tail of Hc” given

by a local pattern (o' then increases from 0 to 16 in the
bounding box posterior half). N =1, except for voxels in
low and high likelihood zones (y** = 0.5 in O-unlikely and 2
in O-likely zones). y** = 1, except for voxels in the three
probability zones (’YPZ(U) = 0.75 in PZ°, "ypz(v) = 2 in P2,

PZ(3) = 1.5 in PZ°7%). These parameters constrain the defor-
mation by decreasing the regularization energy in O-likely

zones and vice versa, as detailed in Chupin et al. (2009).

Data Analysis: Segmentation and Classification

Using the fully automatic method, we segmented the hippo-
campus and the amygdala in all subjects using the atlas built



FIGURE 1.

from the 16 young controls, and the parameters of the algo-
rithm as described in Chupin et al. (2008). The images first
underwent SPM5 bias correction, which is available with the
unified segmentation module. The automatic segmentations
were quality-controlled for the hippocampus with a scale from
0 (unsatisfactory) to 4 (perfect), to estimate if the computed
volumes were reliable. The three observers (EG, CB, and MC)
were trained on a common subset of 30 subjects, to ensure co-
herence between the ratings, and blinded to the clinical diagno-
sis of the subjects.

Volumes were normalized by the total intracranial volume

(TIV) computed by summing SPMS5 segmentation maps of

manual 0.5-level object
QC=3.5
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Initialization. (a) Extraction of the bounding boxes from the probabilistic atlases;
(b) extraction of the initial objects from each probabilistic atlas through conditional pruning.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

gray matter, white matter, and cerebrospinal fluid (CSF), inside
a bounding box defined in standard space to obtain a system-
atic inferior limit. For more robustness with respect to segmen-
tation errors, left and right volumes were averaged. Group dif-
ferences were assessed using Student’s #-test.

For the classification of patients versus controls, each partici-
pant was assigned to the closest group as follows. Robust esti-
mates of classification rate, sensitivity, and specificity were com-
puted with a bootstrap approach for training set selection. In
this procedure, we drew without replacement ~75% of each
group to obtain a training set. On this training set, we esti-
mated the mean normalized hippocampal volume for each

automatic
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FIGURE 2.
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3D-renderings of manual, atlas-derived and automatic segmentations, overlap
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between segmentations (manual segmentations in shades of gray) and probabilistic atlases, for the
best and worst results among eight patients with AD. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Hippocampus



582 CHUPIN ET AL.

TABLE 1.

Experiment 1: Study Population

Subjects Number Age MMS Centres
CN 30 74 + 4 (65—85) 29 + 1 (26—30) 13
AD 29 77 =7 (56—89) 23 + 2 (20—26) 15

CN, cognitively normal subjects; AD, patients with AD. Values: average =
standard deviation (range), MMS, mini-mental state.

group. Each participant in the remaining 25% was then
assigned to the group which mean was closest to the volume of
this participant. The procedure was repeated 5,000 times.

EXPERIMENTS AND RESULTS

Evaluation of segmentation accuracy with respect
to manual tracing

Segmentation accuracy for the hippocampus was evaluated
by comparing automatic segmentation (S) with a reference
manual segmentation (R) with two quantitative indices:
RV(S,R) = 2|Vs — VR|/(Vs + VR), the error on volumes and
DO(S, R) = 2Vsnr/(Vs + V), the Dice overlap. We com-
pared the performance of the fully automatic approach with an
“atlas-derived” segmentation given by the 0.5-level probability
object.

Complete results are given in Chupin et al. (2008). In sum-
mary, for the 16 young controls used to create the atlas, for the
automatic segmentation with a leave-one-out strategy, RV =
6% and DO = 87%. For eight patients with AD, fully
described in Chupin et al. (2007), RV = 7% and DO =
86%. For the same patients, if we consider the objects derived
from the registered atlases, RV = 27% and DO = 68%. Two
examples of segmentation and atlas registration are given in
Figure 2. The quality control evaluated the segmentation as
correct (>3) for 13 Hc (81%), acceptable (>2) for 3 Hc
(19%) and unsatisfactory (<2) for none.

Segmentation and classification of subjects from
the ADNI database

To assess whether our automatic segmentation method can
provide a biomarker for AD, we tested the ability of Hc
volumes to discriminate between patients with AD, patients
with MCI and elderly controls.

Subjects

Data were obtained from the ADNI database (www.loni.u-
cla.edu/ADNI). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical com-
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panies, and nonprofit organizations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has
been to test whether serial MRI, positron emission tomography
(PET), other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression
of MCI and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and moni-
tor their effectiveness, as well as lessen the time and cost of
clinical trials.

The principal investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of California,
San Francisco. ADNI is the result of efforts of many coinvesti-
gators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50
sites across the United States and Canada. The initial goal of
ADNI was to recruit 800 adults, ages 55-90, to participate in
the research, ~200 cognitively normal (CN) older individuals
to be followed for 3 yrs, 400 people with MCI to be followed
for 3 yrs, and 200 people with early AD to be followed for 2

yrs. For up-to-date information see www.adni-info.org.

Experiments

Three different experiments were considered, to evaluate the
influence of preprocessing, normalization by TIV, age groups,
and segmentation method on classification results. MRI acqui-
sition was done according to the ADNI acquisition protocol
(Jack et al., 2008). ADNI images with B1 and “grad warp”
corrections were used, as they seemed to correspond to the best
quality that could be obtained in clinical routine.

Experiment 1: Feasibility and segmentation quality. Sixty
subjects (30 patients with AD and 30 CN subjects) were ran-
domly selected from the ADNI database (Table 1). Thirty
patients with AD were inidally selected, but one reverted to
CN during follow-up and was therefore excluded from our
analysis. The 59 images came from 18 centers, resulting in 58
images on 1.5T scanners (GE and SIEMENS) and one image
on a 3T scanner (SIEMENS). Images were selected at random
among the available scanning sessions (baseline or screening)
for each subject; only volumes derived from images with pre-
processing and normalized by TIV were used.

TABLE 2.

Experiment 2: Study Population

Subjects Number Age MMS Centres
CN 139 76 = 5 (60—90) 29 *+ 1 (26—30) 37
AD 124 76 =7 (55-91) 23 =2 (18-27) 39

CN, cognitively normal subjects; AD, patients with AD. Values: average *
standard deviation (range), MMS, mini-mental state.



TABLE 3.

Experiment 3: Study Population

Number
with 18
months
Subjects Number follow up Age MMS Centres
CN 166 162 76 +5 29+ 1 40
(60—90)  (25—30)
AD 145 137 76 = 8 232 39
(55-91)  (18-27)
MCI 294 210 75 +7 27 £ 2 40
(55-90) (23-30)
MCT™ 134 74 7 27 £ 2 35
(58-88) (24-30)
MCI* 76 75 *7 26 =2 28
(55-88) (23-30)

CN, cognitively normal subjects; AD, patients with AD; MCI, patients with
mild cognitive impairment; nc, non converter at 18 months; ¢, converter at 18
months; MMS, mini-mental state.

Experiment 2: Effect of preprocessing, group age and normal-
ization by TIV. AD and CN subjects (124 patients with
AD and 139 CN subjects) with and without the preprocessing
steps available at the time of the study were selected from the
ADNI database (Table 2). The 263 images were chosen at ran-
dom from all the available scanning sessions (baseline or
screening) for each subject. They came from 41 centers (262
images on 1.5T scanners (GE and SIEMENS) and one image
on a 3T scanner (SIEMENYS)).

Experiment 3: Segmentation of the full database with
preprocessing. We selected all the subjects for whom prepro-
cessed images were available at the time of the study. As a result,
605 subjects (145 patients with AD, 166 CN subjects, and 294
patients with MCI) were selected (Table 3). For each subject, we
used the MRI scan from the baseline visit when available and
from the screening visit otherwise. We only used images acquired
at 1.5T. The 605 images came from 41 centers. Among the 210
patients with MCI for whom 18-months follow up was available,
76 converted to AD before 18 months.

We also compared classification results with hippocampal
volumes given by our method and those available in ADNIL
Semiautomated hippocampal volumetry was carried out using a
commercially available high-dimensional brain mapping tool
(Medtronic Surgical Navigation Technologies, Louisville, CO),
that has previously been validated and compared to manual
tracing (Hsu et al., 2002). SNT hippocampal volume is meas-
ured first by placing manually global landmarks and 22 local
landmarks per hippocampus on each MRI scan. Second, fluid
image transformation is used to match each brain to a template
brain. Note that the segmentation was also manually edited if
the result was not satisfactory.

HIPPOCAMPUS SEGMENTATION AND CLASSIFICATION IN AD
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FIGURE 3. Experiment 1: automatically computed (left +
right) volumes for the CN (red + for correct segmentations, * for
acceptable segmentations, and — for the unsatisfactory segmenta-
tion) and AD (blue discs for correct segmentations, squares for ac-
ceptable segmentations, and triangles for unsatisfactory segmenta-
tions) as a function of age. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Results

Experiment 1. For the 29 patients with AD, the segmentation
proved correct (>3) for 19 patients (66%), acceptable (>2) for
seven patients (24%), and unsatisfactory (<2) for three patients
(10%). For the 30 elderly controls, the segmentation proved
correct for 24 controls (80%), acceptable for five controls
(17%), and not satisfactory for one control (3%). The volumes
obtained with the automatic segmentation of the hippocampus
(left + right) are displayed in Figure 3. Note that the segmen-
tations which were considered as unsatisfactory still give vol-
umes which are coherent with the classification, and the
patients with AD who are likely to be misclassified in fact cor-
respond to reliable segmentations.

The results of group analysis and individual classification
using all the segmented volumes are presented in Table 4 for
Hc. We also found a significant group difference for Am
between AD and controls (0.95 vs. 1.11, 14% atrophy, P <
0.05), but using Am volume with Hc volume in a linear SVM
analysis did not improve classification results.

Experiment 2. For the second experiment, the goal was to
compare the classification performances between several condi-
tions: with and without TIV normalization, with and without
preprocessing and in a reduced age range (between 70- and 80-
yr-old, with 99 CN and 60 AD subjects). We chose not to
keep subjects under 70-yr-old, because the populations were
highly unbalanced (more AD than CN subjects), and above

TABLE 4.

Experiment 1: Results

Hc volume (cm®) 1.69 vs. 2.49 Class. rate 82%
Mean vol. reduction —32% Sensitivity 75%
Statistical significance P < 0.001 Specificity 89%

Two left columns: group comparisons of Hc volumes. Two right columns: clas-
sification rate, sensitivity, and specificity for classification between AD and CN.

Hippocampus
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TABLE 5.

Experiment 2: Results

No prepro Prepro Prepro Prepro,
—no TIV —no TIV - TIV no TIV 70-80
Hc volume  1.84 vs. 245 1.77 vs. 243 176 vs. 249 1.81 vs. 2.47
(em®)
Mean vol. —25%** —27%** —29%** —27%**
reduction
Class. rate 75% 78% 78% 82%
Sensitivity 73% 76% 77% 81%
Specificity 76% 80% 78% 84%

Top two rows: group comparisons of Hc volumes. Bottom three rows: classifica-
tion rate, sensitivity, and specificity for classification between AD and CN (see
text for details).

**P < 0.001.

80-yr-old, because very elderly CN subjects are highly
heterogeneous.

Some dependence with age can be observed in all three con-
ditions. Group analyses indicate significant differences in all
three conditions, as shown in Table 5, and within the 70-80
year age range. Classification results are better with preprocess-
ing; they are equivalent with and without TIV normalization.
Restricting the classification problem on a 70-80 year age
group increases the classification rate to 82%.

Experiment 3. Among the patients with AD, the segmentation
proved correct (>3) for 69 (48%), acceptable (>2) for 57
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FIGURE 4. Experiment 3: automatically computed volumes
corresponding to the classification experiments: (a) CN (X) vs AD,
(b) CN (X) vs MCI, (c) CN at 18 months (X) vs MCI converting
at 18 months, (d) MCI not converting (X) vs MCI converting. {x,
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(39%) and unsatisfactory (<2) for 19 (13%) patients. Among
the MCI patients, the segmentation proved correct for 185
(63%), acceptable for 92 (31%), and unsatisfactory for 17
(6%) patients. Among the CN, the segmentation proved cor-
rect for 127 (77%), acceptable for 37 (22%), and unsatisfactory
for 2 (1%) subjects. Volumes are shown in Figure 4, as a func-
tion of age, for the pairs of groups for which classification is
considered.

Group analyses for the whole cohort are displayed in the first
rows of Table 6. Quality control results show that hippocampal
segmentation seems to perform better for CN than for AD; on
the other hand, segmentation quality is more difficult to asses
for highly atrophic structures. Hippocampal volume signifi-
cantly differs between AD, MCI, or MCI converters and CN,
and, more importantly, hippocampal volume significanty dif-
fers between MCI converters and nonconverters, with a 14%
atrophy between the groups. Note that MMS difference is very
small between the two MCI groups, whereas hippocampal vol-
ume difference is large and highly significant. Classification
results are coherent with those of experiment 2 for AD versus
CN. Note that the classification results of MCI converters ver-
sus CN are only slightly lower than for AD versus CN, and
coherent with the volume difference.

As in experiment 2, classification was also studied for a
smaller group of subjects between 70- and 80-yr-old. This
resulted in 67 AD, 143 MCI, and 123 CN, and in 69 AD, 42
MCI converters, 65 MCI nonconverters, and 119 CN with 18
months follow up. Group analyses are displayed in the first
four rows of Table 7 and show the same patterns as on the
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@} for correct segmentations, {, M} for acceptable segmentations,
and {—, A} for unsatisfactory segmentations. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]
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TABLE 6. TABLE 8.
Experiment 3: Results Experiment 3: Comparison with ADNI volumes
AD MCI MClc MClc SACHA volumes SNT volumes
vs. CN vs. CN vs. CN vs. MClInc
AD MClc AD MClc
MMS —20%** —8%** —9%** —3%* vs. CN vs. MClnc vs. CN vs. MClInc
Segmentation 2.7 vs. 3.1** 2.9 vs. 3.1* 27 vs. 3.1* 2.7 vs. 29
QC Hc volume 1.85 1.91 1.59 1.69
Hc volume 1.83 214 1.95 1.95 (cms) vs. 2.43 vs. 2.28 vs. 2.12 vs. 1.88
(em®) vs. 2.43 vs. 2.43 vs. 2.43 vs. 2.28 Mean vol. —24%** —16%** —25%** —10%**
Mean vol. —25%** —12%** —20%** —14%** reduction
reduction Class. rate 76% 65% 80% 65%
Class. rate 76% 61% 71% 64% Sensitivity 74% 63% 79% 67%
Sensitivity 75% 61% 67% 60% Specificity 78% 67% 81% 64%
Specificity 77% 61% 72% 65% Threshold 2.14 2.10 1.85 1.80
Threshold 213 2.29 2.19 2.11 (cm®)
(em®)

Top four rows: group comparisons. Bottom four rows: classification rate, sensi-
tivity, specificity, and threshold for classification (see text for details).

*P < 0.01.

**P < 0.001.

whole cohort. Segmentation quality differences were reduced,
but average volume reductions were preserved. Note that the
populations are not matched for age, sex, and scanner. Classifi-
cation results all appear better than on the complete cohort; ac-
curacy was 80% for AD versus CN, 74% for MCI converters
CN, and 67% for MCI

nonconverters.

versus MCI converters versus

Among the subjects we used, SNT volumes were available

for 122 AD and 128 CN, and 186 MCI with 18 months fol-
low-up (65 converters and 121 nonconverters). Classification

TABLE 7.

Experiment 3: Results for Age Group (70-80)

AD MCI MClc MClc
vs. CN vs. CN vs. CN vs. MClInc
MMS —20%** —7%** —10%** —4%*
Segmentation 2.7 vs. 3.1**  29vs.31 29vs. 31" 29 vs. 3.0
QC
Hc volume 1.80 2.16 1.95 1.95
(em®) vs. 2.46 vs. 2.46 vs. 2.47 vs. 2.28
Mean vol. —27%** —12%** —21%** —14%*
reduction
Class. rate 80% 63% 74% 67%
Sensitivity 80% 63% 75% 65%
Specificity 79% 63% 74% 68%
Threshold 2.13 2.31 2.22 2.12
(em®)

Top four rows: group comparisons. Bottom four rows: classification rate, sensi-
tivity, specificity, and threshold for classification (see text for details).

*P < 0.01.

**P < 0.001.

Top two rows: group comparisons. Bottom four rows: classification rate, sensi-
tivity, specificity, and threshold for classification) for our volumes (SACHA)
and the volumes given by ADNI (SNT) (see text for details).

**P < 0.001.

results on this population for volumes derived from our
method and SNT volumes are given in Table 8. Group analysis
is similar for AD versus CN, whereas our volumes tend to
show a larger difference between converter and nonconverter
MCI. Regarding classification, results are similar for converter
versus nonconverter MCI, whereas, for AD versus CN, the
classification is less good for our volumes (76% compared to

80%).

DISCUSSION

We have demonstrated in this article that the fully automatic
hippocampus segmentation method presented here is accurate
for data coming from patients and normal subjects acquired
on a variety of MRI platforms, with a systematic qualitative
evaluation process (the segmentation proved correct in 63%,
acceptable in 31%, and not satisfactory in 6% of the cases). It
has also proven its usefulness in discriminating between CN
subjects, patients with MCI, and patients with AD in a setting
which corresponds better to clinical routine. This study con-
firms the results that were shown in Chupin et al. (2008),
while being applied to more realistic datasets. Furthermore, the
segmentation process is fast (15 min, including 10 for the
registration and five for bilateral segmentation) and is imple-
mented as the SACHA module in a user-friendly environment
(htep://brainvisa.info).

Most importantly, no atlas modification was necessary, com-
pared to Chupin et al. (2008). The hybrid anatomical and
probabilistic priors make the segmentation more robust to pa-
thology and acquisition parameters than the semiautomatic
method (Chupin et al., 2007). Furthermore, the partial integra-

Hippocampus



586 CHUPIN ET AL.

tion of probabilistic maps as a constraint in the deformation
process makes it more robust to pathology than methods that
rely more strongly on a single atlas. In fact, it was previously
demonstrated that segmentation based on the registration of a
single subject atlas does not perform satisfactorily when the
atlas does not belong to the same disease category as the subject
(Carmichael et al., 2005).

Validation studies on the segmentation of the hippocampus
in patients with AD are limited and difficult to compare
because of different patient samples and evaluation strategies
(Crum et al., 2001; Hsu et al., 2002). Recently, a method
based on the registration and segmentation module of SPM5
(Firbank et al., 2008) was evaluated on nine elderly controls
with an RV of 5% and a DO of 74%; and nine patients
with AD, with an RV of 15% and a DO of 67%. Another
method, based on finding the best match among a library of
templates (Barnes et al., 2008), with a refinement step based
on intensity, was evaluated on 19 elderly controls, with a DO
of 82%, and 36 patients with AD, with a DO of 84%.
Finally, a method based on statistically learned image features
was evaluated on 21 subjects (seven controls, seven patients
with MCI, and seven patients with AD) from the ADNI
database (Morra et al., 2008), and a DO value of 83% were
reported.

Using fully automatic volumetry of the hippocampus, we
were able to discriminate patients with AD from controls with
76-80% accuracy, in this study. This remains in line with pre-
vious results based on manual segmentation which report accu-
racy between 82 and 90% for AD, e.g., Frisoni et al. (1999),
Xu et al. (2000). As for automatic methods, very few studies
investigated the classification of individual patients. Fischl et al.
(2002) detected significant group differences in hippocampal
volume but did not investigate classification of individual par-
ticipants. Using both volume and shape features, Csernansky
et al. (2000) reported a sensitivity of 83% and a specificity of
78%. The accuracy that we report for MCI (61-63% for the
whole group and 71-74% for the patients converting to AD
before 18 months) is also comparable to that obtained using
manual segmentation (between 60 and 74%, e.g., Xu et al.
(2000) and Pennanen et al. (2004)). Compared to our results
reported in Chupin et al. (2008) and Colliot et al. (2008)
(87% for AD vs. controls, 74% for MCI vs. controls), the clas-
sification accuracies obtained here on the ADNI database are
slightly lower. This can be explained by several factors. First,
ADNI is a multicenter database (41 centers, different voxel
sizes and acquisition parameters) whereas the data in our previ-
ous study came from a single scanner. Moreover, the popula-
tion includes a large number of subjects with vascular lesions,
thus being closer to real life datasets. The systematic quality
control procedure allowed establishing that the cases which
were not consistent for the classification did not always corre-
spond to cases which were not satisfactory for the segmenta-
tion. Classification results without unsatisfactory segmentations
did not prove any better, which is likely to be due to the
intrinsic variability of the hippocampal volume among the
study population.

Hippocampus

We compared the classification accuracy derived from our
method and derived from SNT volumes. Accuracy was similar
for converter versus nonconverter MCI, while SNT volumes
were slightly more discriminative for AD versus CN (80-76%).
Note that our approach is fully automatic and fast, while the
SNT approach requires the placement of more than 22 land-
marks per hippocampus, and the unsatisfactory segmentations
were manually edited.

In the second experiment, we have also shown that the pre-
processing steps that we kept from those available in ADNI
have an effect on the segmentation and/or the classification
results. These correction steps appear useful in the present
study. Furthermore, we have shown that the normalization by
total intracranial volume does not improve classification results;
this may be due to errors in the TIV values (due to CSF seg-
mentation), or to the absence of linear relationship between the
volume of the hippocampus and TIV.

Groups are not matched for age and gender, and the data-
base includes more controls than patients older than 80-yr-old;
we have shown that age impacts on the classification results.
Furthermore, controls over 80 will correspond to a far more
variable population than younger controls, as most of them
will have cerebral atrophy and ventricular enlargement, and are
likely to have incipient dementias. Age groups should be taken
into account when devising a diagnostic tool; careful considera-
tions should be given to the age range.

Finally, results when comparing MCI converters and non-
converters show that the hippocampus conveys useful informa-
tion for designing prognostic tools. Nevertheless, hippocampal
volume is not yet sufficient for a complete discrimination of
the two populations. Shape analysis and/or classification meth-
ods using both local and global information may give comple-
mentary information and improve classification reliability.
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