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Abstract

Normalization of feature vector values is a common practice in machine learning. Generally, each 

feature value is standardized to the unit hypercube or by normalizing to zero mean and unit 

variance. Classification decisions based on support vector machines (SVMs) or by other methods 

are sensitive to the specific normalization used on the features. In the context of multivariate 

pattern analysis using neuroimaging data, standardization effectively up- and down-weights 

features based on their individual variability. Since the standard approach uses the entire data set to 

guide the normalization, it utilizes the total variability of these features. This total variation is 

inevitably dependent on the amount of marginal separation between groups. Thus, such a 

normalization may attenuate the separability of the data in high dimensional space. In this work 

we propose an alternate approach that uses an estimate of the control-group standard deviation to 

normalize features before training. We study our proposed approach in the context of group 

classification using structural MRI data. We show that control-based normalization leads to better 

reproducibility of estimated multivariate disease patterns and improves the classifier performance 

in many cases.
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1. Introduction

Machine learning classification algorithms such as the support vector machine (SVM) [1, 2] 

are often used to map high-dimensional neuroimaging data to a clinical diagnosis or 

decision. Structural and functional magnetic resonance imaging (MRI) are promising tools 

for building biomarkers to diagnose, monitor, and treat neurological and psychological 

illnesses. Mass-univariate methods such as statistical parametric mapping [3, 4, 5] and 

voxel- based morphometry [6, 7] test for marginal disease effects at each voxel, ignoring 

complex spatial correlations and multivariate relationships among voxels. As a result, 

methods have emerged for performing multivariate pattern analysis (MVPA) that leverage 

the information contained in the covariance structure of the images to discriminate between 

the groups being studied [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

26, 27, 28, 29]. Identifying multivariate structural and functional signatures in the brain that 

discriminate between groups may lead to a better understanding of disease processes and is 

therefore of great interest in the field of neuroimaging research.

The SVM is a common choice for estimating multivariate patterns in the brain because it is 

amenable to high-dimensional, low sample size data. Our focus in this work is on patterns in 

the brain that reflect structural changes due to disease. However, the methods apply more 

generally to applications of MVPA using BOLD measurements from fMRI data or measures 

of connectivity across the brain. The SVM takes as input image-label pairs and returns a 

decision function that is a weighted sum of the imaging features. The estimated weights 

reflect the joint contribution of the imaging features to the predicted class label.

Machine learning methods in general, and SVMs in particular, are sensitive to differences in 

feature scales. For example, a SVM will place more importance on a feature that takes 

values in the range of [1000, 2000] than a feature that takes values in the interval [1, 2]. This 

is because the former tends to have a stronger influence on the Euclidean distance between 

feature vector realizations and therefore drives the SVM optimization. To give all voxels or 

regions of interest equal importance during classifier training, it is common practice to 

implement feature-wise standardization in some way, either by normalizing each to have 

mean zero and unit variance or by scaling to a common domain. For example, [30] scale 

each feature to be in the interval [0, 1], and [31, 32, 33, 34, 35] normalize to mean zero and 

unit variance. Such a preprocessing step, while common in practice, tends to be applied 

without weighing the consequent ramifications in a careful manner. Careful consideration 

must be given to the choice of feature normalization, as it is directly tied to the relative 

magnitude of the estimated SVM weights and thus the performance and interpretation of the 

classifier. While the original idea of feature scaling dates back to the universal 

approximation theorem from the neural network literature, it has not been explored in detail 

in the context of neuroimaging and MVPA. This is the object of this manuscript.

The rest of this paper is organized as follows: in Section 2, we provide a brief introduction to 

MVPA using the SVM, review two popular feature normalization methods, and propose an 

alternative based on the control-group variability. Using simulations, we compare the 

performance of different feature normalization techniques in Section 3, followed by an 

investigation of the effects of feature normalization on an analysis of data from healthy 
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controls and patients with Alzheimer’s disease. We include a discussion in Section 4 and 

concluding remarks in Section 5.

2. Material and Methods

2.1. Multivariate Pattern Analysis using the SVM

Let , i = 1, …, n, denote n independent and identically distributed observations of 

the random vector (Y, X⊤)⊤, where Y ∈ {−1, 1} denotes the group label, and X ∈ ℝp 

denotes a vectorized image with p voxels. A popular MVPA tool used in the neuroimaging 

community is the SVM [1, 2]. SVMs are known to work well for high dimension, low 

sample size data [36]. Such data are common in the neuroimaging-based diagnostic setting. 

Henceforth, we focus on MVPA using the SVM.

The hard-margin linear SVM solves the constrained optimization problem

(1)

where b ∈ ℝ and v ∈ ℝp are parameters that describe the classification function. For a given 

set of training data, let the solution to (1) be denoted by . Then, for a new observation 

Xnew with unknown label Ynew, the classification function 

returns a predicted group label.

When the data from the two groups are not linearly separable, the soft-margin linear SVM 

allows some training observations to be either misclassified or fall in the SVM margin 

through the use of slack variables ξi with associated cost parameter C. In this case, the 

optimization problem becomes

(2)

where C ∈ ℝ is a tuning parameter that penalizes misclassification, and ξ = (ξ1, ξ2, …, ξn)⊤ 

is the vector of slack variables. For details about solving optimization problems (1) and (2) 

we refer the reader to [37].

In high-dimensional problems where the number of features is greater than the number of 

observations, the data are almost always separable by a linear hyperplane [38]. However, 

when applying MVPA to region of interest (ROI) data such as volumes of subregions in the 

brain, the data may not be linearly separable. In this case, the choice of C is critical to 

classifier performance and generalizability. Examples of MVPA using the SVM include 

classification of multiple sclerosis patients into disease subgroups [39], the study of 

Alzheimer’s disease [9, 10], and various classification tasks involving patients with 
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depression [40, 41, 42]. This is only a small subset of the relavant literature, which 

demonstrates the widespread popularity of the approach.

2.2. SVM Feature Normalization for MVPA

The choice of feature normalization affects the estimated weight pattern of a SVM and can 

lead to vastly different conclusions about the underlying disease process. Two widely 

implemented approaches are to (i) normalize each feature to have mean zero and unit 

variance, and (ii) scale each feature to have a common domain such as [0, 1]. Henceforth, 

we will refer to (i) as standard normalization and (ii) as domain standardization [43].

Let μj and σj denote the mean and standard deviation of the jth feature, j = 1, …, p. Denote 

the corresponding empirical estimates by  and 

. Then, subject i’s standard-normalized jth feature is 

calculated as

Alternatively, subject i’s domain-scaled jth feature is calculated as

One potential drawback of using domain scaling is the instability of the minimum and 

maximum order statistics, especially in small sample sizes. This may introduce bias in the 

estimated weight pattern by up- and down-weighting features in an unstable way. In 

comparison, the standard normalization may seem relatively stable. However, it implicitly 

depends on the relative sample size of each group and the separability between groups. To 

see this, let  denote the marginal distribution of Xj, with mean μj and variance . Let 

 denote the conditional distribution of Xj given Y = y with mean μj,y and variance 

. In addition, let γ = pr(Y = 1). Then, μj = γμj,1 + (1 − γ)μj,−1 and

After simplification, the previous expression can be written as

(3)
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The right-hand side of expression (3) shows that the variance of feature j depends on a 

mixture of the conditional variances of both classes and a term that depends on the squared 

Euclidean distance between their marginal means. Larger marginal separability of feature j 
will lead to a larger estimate of the pooled standard deviation used for normalization. Thus, 

normalizing by the pooled standard deviation can in some cases harshly penalize, or down-

weight, features that have good separability, leading to a loss in predictive performance. We 

demonstrate this using simulated data examples in Section 3.1.

The right-hand side of equation (3) also illuminates how normalization is dependent on the 

relative within-group sample sizes, which may have adverse effects on classifier 

performance. Suppose data for MVPA are available from a case-control study where the 

cases have been oversampled. That is, there is one healthy control for each subject with the 

disease. Suppose further that the true disease prevalence in the population is rare. Then, the 

estimate of  will be an equal mixture of the group variances  and , whereas the 

true  in the population depends more heavily on the control-group variance, . 

Methods for dataset or covariate shift address this issue by weighting individual data points 

to reflect the distribution of covariates in the population [44, 45]. However, these methods 

are usually implemented after feature normalization. As a result, the estimated decision rule 

may be undesirably influenced by the use of a biased estimate of the pooled variance.

As an alternative, we propose normalizing the jth feature as follows:

for all subjects i = 1, …, n, where  is the pooled sample mean of feature j, and  j is the 

sample standard deviation of the jth feature calculated using the control-group data only. 

Note that  and  are computed using only the control-group, but the normalization is 

applied to subjects from both groups. We refer to this as control normalization. Note that for 

features that contribute greatly to the separability of the groups, the control-group standard 

deviation will be smaller than the pooled-group standard deviation. Scaling by this smaller 

value will implicitly up-weight the most discriminative features in comparison to the 

standard-normalization. In some studies or applications, there may not be a control group. In 

this case, a reference group may be chosen based on expert knowledge or the scientific goals 

of the study. In Section 3 we demonstrate how the choice of feature normalization technique 

may lead to a tradeoff of classifier properties such as sensitivity and specificity but results in 

better overall accuracy in many settings.

Another advantage of the control normalization is the resulting interpretability of the feature 

values. Fixing all other SVM features at a constant value, the estimated weight 

corresponding to feature j conveys the magnitude and direction of change in the decision 

function score for a one unit increase in feature j, where the units are in terms of the control-

group standard deviation of that feature. In many studies, it is likely that more knowledge 

exists about the distribution of values in the normal population, as the disease being studied 
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may be highly heterogeneous, rare, or not yet well-understood. Being able to interpret the 

estimated disease pattern relative to the healthy control distribution may improve the 

reproducibility and clinical value of the MVPA results.

Figure 1 displays an example of the influence of feature normalization on the estimated 

SVM weight pattern. We generated n = 100 independent feature vectors with two signal 

features and 20 noise features each. The signal features X1 and X2 are generated from a 

multivariate normal distribution that differs in its parameters between the two diagnostic 

groups. The signal features jointly have discriminative power, while the remaining noise 

features are generated independently from the standard normal distribution. The classes are 

balanced with n0 = 50 control observations and n1 = 50 disease group observations. All 

features are plotted pre-normalization in the first panel of Figure 1. The correlation between 

X1 and X2 in the control group is ρ0 = −0.2, and it is ρ1 = −0.6 in the disease-group. The 

control-normalized, standard-normalized, and domain-scaled versions are plotted in the 

second, third, and fourth panels. The estimated SVM decision boundary is projected onto the 

space of these two features by setting the weights of the noise features to zero. The black 

line in each panel represents this projected decision boundary.

We carefully chose the parameters for the toy example in Figure 1 because they represent a 

worst-case scenario where the choice of feature normalization changed the sign of the 

estimated weight associated with feature X1. While changes in magnitude of the estimated 

SVM weights are expected due to the fact that the SVM is scale-invariant, changes in the 

direction of the effect of a feature are alarming because this alters the biological 

interpretation of the feature relative to the overall disease pattern. Using the classifier from 

the standard normalization, as X2 increases for any fixed X1 it is more likely a subject 

presenting with the pair (X1, X2) will be classified as healthy. However, using the control 

normalization the relationship is reversed so that subjects are more likely to be classified as 

having the disease. Thus, the multivariate pattern in this example is highly dependent on the 

choice of normalization. While the difference in results and interpretation may not always be 

so drastic, this example motivates the need for researchers to adopt a single, interpretable 

technique for feature normalization when performing MVPA using SVMs. We study the 

effects of feature normalization for a range of parameter settings in Section 3.1.

Using the same data generating set-up as the toy example in Figure 1 but restricting the data 

sets to include only the two signal features, we implemented a small experiment to compare 

the reproducibility of estimated disease patterns using the control normalization, standard 

normalization, and domain scaling. Specifically, we studied the effects of disease group 

sample size and normalization method using a two-way analysis of variance (ANOVA). In 

particular, we were interested in the effect of increasing samples in the disease group on the 

average slope of the estimated SVM line for each normalization method. In the ANOVA 

model, we included terms for the main effects of method and sample size as well as an 

interaction term, with the interaction effect being of highest interest. A significant 

interaction term implies that the effect of increasing the sample size of the disease group on 

the average estimated SVM slope differs among the normalization methods. In our 

simulation, we estimated the average SVM slope for each level of sample size and 

normalization method using 100 independent iterations. We then repeated this procedure 20 
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times to provide replications for the ANOVA model. Results are presented in Figure 2 and 

the p-value for the interaction term was highly significant (< 0.0001). Based on Figure 2 we 

are able to conclude that the change in the SVM slope using the control normalization is less 

than the change observed using the other methods when varying the disease group sample 

size. Conservatively, the change observed from 150 to 450 disease group samples using the 

control normalization is approximately 50% and 40% less compared to the standard 

normalization and domain scaling, respectively. This suggests that results from MVPA may 

be more reproducible across studies with different sample sizes when the control 

normalization is used to preprocess the features prior to SVM training.

3. Results

3.1. Simulations

In this section, we study a range of data-generating models to compare the performance of 

the control normalization, standard normalization, and domain scaling when using the linear 

SVM for MVPA. For all simulations, we generate p features, (X1, X2, …,Xp)⊤, the first two 

of which have varying levels of joint discriminative power. The remaining p − 2 are 

independent noise features. The first two features are generated as mixtures of multivariate 

normal distributions. The following steps describe the procedure used to obtain the results in 

Figures 3–6. For each of M=1,000 iterations, n0 control subjects are generated as 

independent draws from the model

(4)

Non-control group subjects are generated as n1 independent draws from the model

(5)

where , , j = 3, …, p, are all mutually independent. Additionally, we generate t0 = 500 

independent control-group samples from model (4) and t1 = 500 independent samples from 

model (5) for testing. We then train an SVM using the n0 + n1 training samples using the 

scikit learn library in Python, which internally calls libSVM [46]. When n0 ≠ n1, we train a 

class-weighted SVM that weights the cost parameter by (n1 + n0)/n0 for the control group 

and by (n1 + n0)/n1 for the disease group. In Figures 3 and 4 the correlations are fixed at ρ0 = 

0, ρ1 = 0, and we vary n0, n1 ∈ {20, 40, …, 200}. In Figures 5 and 6 the sample sizes are 

fixed at n0 = 50, n1 = 50, and we vary ρ0, ρ1 ∈ {−0.9, −0.8, …, 0.9}.

We compare the average difference in accuracy, area under the ROC curve (AUC), 

sensitivity, and specificity of the SVM on the test set. Given the true test labels, accuracy is 

defined as the percentage of correct classifications using the SVM decision rule learned 

from the training data. Sensitivity is the percentage of correct positive predictions, and 

specificity is the percentage of correct negative predictions. The ROC curve is the proportion 

of true positives as a function of the false positive rate which ranges in [0, 1] as the SVM 
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intercept b is varied across the real line. Larger values of the criteria are desirable and 

indicate better classifier performance.

Each colored square in the heatmaps represents a self-contained simulation with 1,000 

iterations. The color indicates the average difference between a given performance measure 

between the control-normalized SVM and either the standard-normalized or domain-scaled 

SVM. Dark blue indicates superior performance of the control normalization. Across the 

simulations summarized in Figures 3 and 4, average accuracies varied approximately 

between 60% and 80%, average AUCs varied approximately between 70% and 80%, 

average sensitivities varied approximately between 55% and 80%, and average specificities 

varied approximately between 55% and 80%. In Figures 3 and 4, the control normalization 

performs better on average than the standard normalization and domain scaling for most 

combinations of within-group sample size. Notable exceptions are when the sample size of 

the control-group is much smaller than that of the disease-group. The standard normalization 

appears to improve sensitivity when the disease-group sample size is large but seemingly at 

the cost of reduced specificity. Overall, the results appear similar when comparing the 

control normalization to domain scaling.

Next, we present a case where the control normalization demonstrates significant 

improvement over the alternative feature standardizations. The following procedure was 

used to obtain the results in Figures 7–8. For each of M=1,000 iterations, n0 control subjects 

are generated as independent draws from the model

(6)

Non-control group subjects are generated as n1 independent draws from the model

(7)

Additionally, we generate t0 = 500 independent control-group samples from model (6) and t1 

= 500 independent samples from model (7) for testing. We vary the group sample sizes, n0, 

n1 ∈ {20, 40, …, 200}. For this set of model parameters, the control-normalization 

demonstrates improvement in accuracy, AUC, sensitivity, and specificity for a majority of 

sample sizes when compared to the standard normalization and domain scaling. In some 

cases, the gains surpass four percent. While there is a tradeoff between sensitivity and 

specificity with larger disease-group sample sizes, the overall accuracy and AUC favor the 

control normalization.

3.2. Case Study

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://www.adni.loni.usc.edu) is 

a multimillion dollar study funded by a number of public and private resources from the 

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), Food and Drug Administration (FDA), the pharmaceutical 

industry, and non-profit organizations. Aims of the study include developing sensitive and 
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specific image-based biomarkers for early diagnosis of Alzheimer’s disease (AD), as well as 

monitoring the progression of mild cognitive impairment (MCI) and AD. Understanding and 

predicting disease trajectories is imperative for the discovery of effective treatments that 

intervene in the early stages of the disease to prevent irreversible damage to the brain.

The ADNI data are publicly available and as a result have been thoroughly analyzed in the 

neuroimaging literature [47]. A detailed comparison of SVM classification results using 

different categories of imaging features is given in [9]. In this section, we compare the 

performance of different SVM feature normalization techniques using volumes obtained 

from a multi-atlas segmentation pipeline applied to structural MRIs from the ADNI database 

[48].

The final dataset used for this analysis consists of labels indicating the presence or absence 

of AD and the volumes of 137 regions of interest (ROIs) in the brain for each subject. Each 

region is divided by the subject’s total intracranial volume to adjust for differences in 

individual brain size. The data consist of 230 healthy controls (CN) and 200 patients 

diagnosed with AD with ages ranging between 55 and 90. Table 2 displays the number (N) 

and average age of subjects in each diagnosis by sex group. The overall p-value for the mean 

difference in age between diagnosis groups was not significant (p = 0.59), nor were the p-

values significant when calculated separately by sex (p = 0.24, Female; p = 0.68, Male). AD 

is associated with atrophy in the brain, and thus the AD group has smaller volumes on 

average in particular ROIs compared to the CN group.

To give intuition about the differences between the control and standard normalization 

procedures in the ADNI data, we plot the densities of six features, stratified by group, in 

Figure 9. Whereas the pooled and control-group estimated variability is nearly identical for 

features such as the white matter parietal lobe and occipital pole, the control-group 

variability is less than the pooled variability for more marginally separable features such as 

the amygdala, hippocampus, inferior lateral ventricle, and parahippocampal gyrus. Thus, we 

expect a SVM trained after control normalization to place relatively heavier weights on these 

marginally discriminative features than a SVM trained after standard normalization. Figure 

10 displays SVM weight patterns from the three methods. Based on Figure 10, it appears all 

methods obtain similar estimated disease patterns with a few subtle differences. Table 1 lists 

the top 10 features in order of the magnitude of their weights. As anticipated, the control 

normalization places more emphasis on the two amygdala regions because their marginal 

separability ensures a smaller denominator is used in the control-group normalization step, 

up-weighting these features compared to the standard normalization.

We compare the control normalization proposed in Section 2.2 to the standard normalization 

and domain scaling using 5-fold cross-validated estimates of classifier accuracy, area under 

the curve (AUC), sensitivity, and specificity. Results are shown in Figure 11. The control 

normalization and domain scaling outperform the standard normalization across all 

performance measures, increasing the cross-validated accuracy, sensitivity, and specificity 

by more than one percent. By a small margin, domain-scaling performs best in terms of 

prediction for this dataset but at the cost of fitted model interpretability. To quantify the 

uncertainty in the estimates in Figure 11, we repeated the 5-fold cross-validation proceedure 
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1000 times using random subsamples of 140 patients and 140 controls. The point estimates 

are shown with a single standard error on each side. For this particular data set, the 

performance differences are not statistically significant across the three methods.

Finally, to compare the generalizabilitiy of the control normalization to other methods and 

study robustness of the results of this section to possible confounding by gender, we 

performed a gender-stratified analysis. Table 2 gives the counts of gender by diagnosis and 

the average age in these categories. An overall t-test of the mean age across diagnosis groups 

was not significant, and similarly t-tests of mean age between diagnosis groups calculated 

separately by gender were not significant. However, it is still possible that disease patterns 

vary across gender. In addition, the data are sparse for subjects less than 70 years of age. 

Thus, to study generalizability and robustness of our results to possible age and gender 

confounding, we split the data by gender and restricted our analysis to subjects 70 and older. 

Using this subset of the ADNI data, we trained the SVMs for each normalization method on 

100 randomly sampled females and applied the model to classify male subjects as AD or 

CN. We repeated this process 1000 times and report average results in Table 3. We also 

report average results from the same procedure where we used random subsets of male 

subjects to train the models and diagnose the female group as AD or CN. On average, we 

observe slight gains in accuracy and area under the ROC curve when using the control 

normalization. Gains of one to two percentage points are along the lines of the 

improvements observed in our simulation study in Section 3.1. While not statistically 

significant, it is notable that the control normalization outperformed the other methods 

across all performance measures with the exception of displayed equivalence in sensitivity to 

the standard normalization.

4. Discussion

Interpretability of estimated disease patterns is a desirable quality for most applications of 

MVPA to neuroimaging data. Standardizing features by the control-group variability leads to 

estimated support vector weights whose individual interpretation relies solely on a sample of 

normal subjects. In some cases, this may increase the reliability of image-based biomarkers 

for disease classification. Indeed, the use of normative samples to develop cognitive tests is 

commonplace in the neuropsychological literature, and we refer the reader to [49] and 

references therein for many examples. Along these lines, we advocate for control-group 

feature standardization when estimating disease patterns in the brain and developing image-

based biomarkers. Additionally, as demonstrated in Section 2.2, the control normalization 

improves the interpretability of the SVM weight pattern due to the relative stability of the 

weights across different disease group sample sizes. It is difficult to interpret estimated 

disease patterns that are affected by sample size, since the underlying “true” SVM weights 

should not depend on the number of samples in each group.

We showed in Section 2.2 that the standard normalization method depends on the relative 

sample size of the two groups as well as the marginal separability; in contrast, the control 

normalization is unaffected by these qualities of the data and hence provides better 

generalizability across samples. We believe that including a control normalization step in the 
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MVPA preprocessing pipeline is a simple alternative to current practice that promises 

increased interpretability, generalizability, and performance of the results.

We have focused attention on classification of subjects into groups based on medical 

diagnosis. In principle, the idea of control-based feature normalization for MVPA naturally 

extends to classification of events within subjects. For example, MVPA is increasingly 

applied to fMRI data in order to decode which patterns of activity correspond to a specific 

cognitive task or mental state [11, 50, 51]. In this setting, one could normalize the fMRI data 

using the subset of time points where the subject is at rest or performing the control task. 

Application of these techniques to within-subject timeseries data would have the potential 

for increasing task decoding accuracy in the face of performance variability that exists both 

between [52] and within individuals [53, 54], and is known to have a substantial relationship 

to patterns of activation [55, 56]. Performance variability is a particularly important 

confound in studies of neuropsychiatric conditions [57, 58] as well as lifespan studies of 

[59] and aging [60]. Such an application would represent a natural extension of the current 

work, and the overarching idea remains the same: feature normalization as a data 

preprocessing step in MVPA should be applied in an intentional way with an understanding 

of the way in which it might affect the results of the analysis.

5. Conclusion

The roots of feature scaling for preprocessing lie in the neural network literature of the 

1990s. The universal approximation theorem, which broadly states that simple neural 

networks can approximate a rich set of functions, was initially proven for functions defined 

on a unit hypercube domain using a multilayer perceptron constructed with sigmoidal 

neurons [61]. It became natural to assume that centering and scaling of data would lead to a 

faster convergence even though neural networks are theoretically affine invariant [62]. For 

the most part, the optimization turned out to be more graceful with these scaled inputs, since 

it slowed down network saturation and avoided the vanishing gradients problem to a certain 

extent.

However, applying scaling to kernel methods such as SVMs or distance-based methods such 

as k-means tends to yield completely different results depending on the scaling method used. 

This is because these methods are not transformation-invariant. In such a case, scaling 

essentially imposes a form of soft feature selection since it implicitly changes the metric 

used for computing the kernel matrix. This fact is important in the context of image-based 

diagnosis using SVMs with region of interest (ROI) data. Scaling implicitly enforces the fact 

that variation in the amygdala, which is a relatively small structure in terms of volume, is as 

important as that in the prefrontal lobe, which is much larger in volume. Thus, appropriate 

scaling of features is an important but under-emphasized issue that we have attempted to call 

attention to in this manuscript.

It is critical for researchers wishing to interpret the results of MVPA from SVMs to 

understand how the choice of feature normalization influences the results, as well as how to 

determine the best method for their scientific question. We have proposed a control-based 

normalization and demonstrated several advantages of the approach for classifying subjects 

Linn et al. Page 11

Neuroimage. Author manuscript; available in PMC 2017 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



into groups, for example, by medical diagnosis. Most notably, we have highlighted the 

possibility of improved classifier performance according to criteria such as accuracy and 

AUC for a comprehensive set of data generating distributions. The control normalization 

improves classifier performance by giving higher weight, relative to other standardization 

techniques, to features with greater marginal separability between groups. Depending on the 

underlying data generating distribution and relative sample size between groups, different 

classifiers will experience tradeoffs between sensitivity and specificity. The optimal choice 

of feature normalization may depend on the unknown data generating distribution as well as 

certain clinical considerations. As a result, the interpretability of the control normalization is 

an attractive property that makes it amenable to a vast majority of clinical applications. 

Considered along with overall increases in accuracy and AUC demonstrated by the control 

normalization in the simulations and data examples, we advocate for its adoption as standard 

practice in MVPA using the SVM.
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Highlights

• A control-based feature normalization is proposed for support vector 

classification.

• Classifier performance is improved over two common feature normalization 

methods.

• Estimated multivariate patterns are more interpretable using the proposed 

method.
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Figure 1. Influence of feature normalization on the SVM decision boundary. From left to right: 
original feature scales, control-normalized features, standard-normalized features, domain-
scaled features
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Figure 2. Average estimated SVM slope for the control normalization, domain scaling, and 
standard normalization when the disease group sample size is varied. The control group sample 
size is fixed at 300
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Figure 3. Average difference in performance measures between the control normalization and 
standard normalization for a range of sample sizes. Data generated from models 4 and 5. Results 
reported are percentages
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Figure 4. Average difference in performance measures between the control normalization and 
domain scaling for a range of sample sizes. Data generated from models 4 and 5. Results 
reported are percentages
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Figure 5. Average difference in performance measures between the control normalization and 
standard normalization for a range of feature correlations. Data generated from models 4 and 5. 
Results reported are percentages
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Figure 6. Average difference in performance measures between the control normalization and 
domain scaling for a range of feature correlations. Data generated from models 4 and 5. Results 
reported are percentages
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Figure 7. Average difference in performance measures between the control normalization and 
standard normalization for a range of sample sizes. Data generated from models 6 and 7
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Figure 8. Average difference in performance measures between the control normalization and 
domain scaling for a range of sample sizes. Data generated from models 6 and 7
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Figure 9. Density plots of ROI volumes by group
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Figure 10. SVM weight patterns for discriminating between AD and CN subjects by feature 
standardization method
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Figure 11. 5-fold cross-validation results with measures of uncertainty estimated by sub-
sampling the original data
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Table 1

Top 10 ranked features by the SVM weights in decreasing absolute value.

Rank Control Normalization Standard Normalization Domain Scaling

1 Left Hippocampus Left Hippocampus Left Hippocampus

2 Right Hippocampus Left Inferior Temporal Gyrus Right Hippocampus

3 Left Inferior Lateral Ventricle Left Inferior Lateral Ventricle Left Inferior Lateral Ventricle

4 Left Inferior Temporal Gyrus Left Middle Frontal Gyrus Left Inferior Temporal Gyrus

5 Left Amygdala Right Hippocampus Left Middle Frontal Gyrus

6 Right Amygdala Left Superior Frontal Gyrus Right Middle Temporal Gyrus

7 Right Middle Temporal Gyrus Right Middle Temporal Gyrus Left Superior Temporal Gyrus

8 Left Middle Frontal Gyrus Left Amygdala Right Amygdala

9 Right Angular Gyrus Left Superior Temporal Gyrus Left Amygdala

10 Right Inferior Lateral Ventricle Right Calcarine Cortex Left Middle Temporal Gyrus

Neuroimage. Author manuscript; available in PMC 2017 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Linn et al. Page 29

Table 2

Demographic summary of the ADNI data. The number (N) and average age of subjects in each group is given.

Diagnosis Sex N Average Age

CN Female 112 76.15

AD Female 97 75.05

CN Male 118 75.83

AD Male 103 76.20
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