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Abstract

Objective: Changes in progranulin (GRN) expression have been hypothesized

to alter risk for Alzheimer’s disease (AD). We investigated the relationship

between GRN expression in peripheral blood and clinical diagnosis of AD and

mild cognitive impairment (MCI). Methods: Peripheral blood progranulin gene

expression was measured, using microarrays from Alzheimer’s (n = 186), MCI

(n = 118), and control (n = 204) subjects from the University of California San

Francisco Memory and Aging Center (UCSF-MAC) and two independent pub-

lished series (AddNeuroMed and ADNI). GRN gene expression was correlated

with clinical, demographic, and genetic data, including APOE haplotype and

the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progran-

ulin protein levels, using enzyme-linked immunosorbent assay, and methylation

status using methylation microarrays. Results: We observed an increase in

blood progranulin gene expression and a decrease in GRN promoter methyla-

tion in males (P = 0.007). Progranulin expression was 13% higher in AD and

MCI patients compared with controls in the UCSF-MAC cohort

(F2,505 = 10.41, P = 3.72*10�5). This finding was replicated in the AddNeur-

oMed (F2,271 = 17.9, P = 4.83*10�8) but not the ADNI series. The rs5848 SNP

(T-allele) predicted decreased blood progranulin gene expression (P = 0.03).

The APOE4 haplotype was positively associated with progranulin expression

independent of diagnosis (P = 0.04). Finally, we did not identify differences in

plasma progranulin protein levels or gene methylation between diagnostic cate-

gories. Interpretation: Progranulin mRNA is elevated in peripheral blood of

patients with AD and MCI and its expression is associated with numerous

genetic and demographic factors. These data suggest a role in the pathogenesis

of neurodegenerative dementias besides frontotemporal dementia.
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Introduction

The 88 kDa progranulin and its 6 kDa processed products

(granulins) represent a class of secreted proteins with

diverse functions peripherally and in the brain. Granulins

and progranulin have been implicated as potent

immunomodulators and cell-cycle regulators. In the CNS,

progranulin expression increases with age in both neurons

and microglia, and plays a role in neurite outgrowth,

synapse modification, and the prevention of neuronal

apoptosis.1–4 This neuroprotective function is highlighted

by the relationship between progranulin and neurodegen-

erative disease; heterozygous loss-of-function mutations in

the gene encoding progranulin (GRN) cause frontotempo-

ral dementia (FTD),5,6 and a common rs5848 allele in the

30UTR of GRN has been associated with both decreased

serum and brain progranulin expression levels and

increased risk of developing Alzheimer’s disease (AD).7–9

Additionally, misregulation of progranulin expression has

been implicated in parkinsonism, neuronal ceroid lipofus-

cinosis, and other neuropsychiatric disorders.10,11

Mutations in the GRN gene may contribute to the risk

of developing AD.8,12 Additionally, progranulin localizes

at the margins of amyloid plaques in both mouse and

human postmortem brain tissue, and increased progran-

ulin mRNA levels have been reported in the brains of

multiple AD-mouse models.13 Overexpression of progran-

ulin in these models has been shown to slow plaque

deposition and cognitive decline.14,15 Taken together,

these data suggest a direct role of progranulin in AD

pathogenesis. Previous studies examining protein levels in

peripheral blood failed to detect a relationship between

peripheral progranulin protein levels and AD status.16 We

first observed a relationship between GRN mRNA levels

and AD status in a small patient series,17 but no study to

date has conclusively shown a connection between pro-

granulin expression and sporadic AD.

Early detection of AD has increasingly become a focus of

the biomedical community, as future treatment modalities

will likely hinge on slowing or preventing neurodegeneration

before it has occurred. As such, mild cognitive impairment

(MCI)–defined by focal memory or executive function defi-

cits not explained by age, without dementia or loss of day-to-

day function – has become a major focus of study.18 MCI

patients convert to AD at a rate of 10–15% per year.19,20

However, the majority of MCI patients will not transition to

dementia, and some may display spontaneous improve-

ment.19 Currently, estimates of hippocampal or entorhinal

cortex volume coupled with cognitive function testing are the

best predictors of disease transition.20,21 However, recon-

structive MRI imaging is expensive and not easily transferable

to community hospitals. Thus, further work is needed to

uncover peripheral blood markers of MCI.

We studied GRN expression levels in peripheral blood

in a large patient series with AD and MCI, and asymp-

tomatic controls, as well as in multiple datasets from the

literature. We correlated GRN mRNA levels with demo-

graphic characteristics, disease status, genetic risk factors,

methylation at the GRN locus, and progranulin protein

levels as assayed by ELISA.

Material and Methods

Subjects and samples

This study received prior approval from the Institutional

Review Board at the University of California San Fran-

cisco, and informed consent was obtained from subjects

prior to study enrollment and sample collection.

UCSF-MAC cohort

In this study, 530 patients clinically diagnosed as either

AD, MCI, or unaffected controls were enrolled at the
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UCSF-MAC between 2006 and 2016. MRI and Amyloid

PET imaging were not uniformly performed to support

diagnosis.

Peripheral blood from each subject was collected in

Paxgene tubes and kept in ice prior to total RNA isola-

tion. RNA extraction was performed, using the RNeasy

QIAcube extraction kit (Qiagen) and RNA quantity was

determined, using a Nanodrop instrument (Nanodrop

Technologies). RNA quality was assessed with the Agilent

Bioanalyzer (Agilent Technology) and samples with an

RNA Integrity Number (RIN) <7 were excluded. RNA

libraries were hybridized to Illumina HumanHT-12 V4.0

microarrays at the UCLA Neuroscience Genomics Core.

Microarray slides were scanned and signal processed using

Illumina BeadStation and the BeadStudio software pack-

age in preparation for subsequent analysis. Here, 22 sam-

ples were ultimately excluded due to poor RIN or were

detected as outliers (described below) for a final cohort

size of n = 508.

AddNeuroMed cohort

The AddNeuroMed cohort 1 is publicly available in the

Gene Expression Omnibus (GEO) repository (Accession:

GSE63060).22 Briefly, this patient cohort is composed of

329 samples diagnosed as AD, MCI, or control with

RNA hybridized to Illumina HumanHT-12 V3.0

microarrays. Ultimately 21 outliers were removed and

an additional 34 samples were dropped to correct for

an age confound (described below) for a final cohort

size of n = 274.

ADNI

Data used in this manuscript were obtained from the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) data-

base (adni.loni.usc.edu). The ADNI was launched in 2003

under the direction of Principal Investigator Dr. Michael

W. Weiner, MD to interrogate whether biological markers

and clinical assessment can be combined to measure the

progression of MCI and early AD.

The ADNI_Gene_Expression_Profile dataset is made

available from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) repository. Samples were prepared as

described (http://adni.loni.usc.edu/wp-content/uploads/

2008/07/ADNI_GO_Procedures_Manual_06102011.pdf).

Briefly, 811 patients in the ADNI cohort were catego-

rized as Control, Early MCI, Late MCI, or AD using

published clinical criteria. Total RNA was extracted and

hybridized to an Affymetrix Human Genome U219

array and scanning and signal extraction were per-

formed, using the Affymetrix GeneTitan system. After

quality control, outlier removal, and stratification for

an age confound (described below), the final processed

cohort was n = 617.

San Antonio family heart study

The San Antonio Family Heart Study (SAFHS) dataset23

is publicly available through ArrayExpress (www.ebi.ac.

uk/arrayexpress) under the accession E-TABM-305. This

cohort is composed of 1240 peripheral blood lymphocyte

samples hybridized to Illumina Human-6 v1 Expression

BeadChip microarrays. Following outlier removal, we

stratified this dataset to remove collinearity between sex

and smoking status (described below). We then excluded

all samples below 30 years old to match the age of our

other datasets. The final processed cohort was n = 543.

Genotyping

Subjects in the UCSF-MAC cohort had genomic DNA iso-

lated from peripheral blood following standard procedures.

APOE and GRN rs5848 genotyping were carried out by

real-time PCR on an Applied Biosystems 7900HT Real

Time PCR machine (Applied Biosystems, Foster City, CA),

using Taqman SNP Genotyping Assays (#C___7452046_20,

C___3084793_20, and C____904973_10 for rs5848,

rs429358, and rs7412, respectively). Assays were run in

triplicate. The SDS version 2.3 software was used to analyze

the raw data and to call the genotypes.

Array processing

Microarray raw signal processing for the UCSF-MAC

cohort was performed using the lumi package.24 First,

within-sample raw gene expression intensities were nor-

malized using variance-stabilized transformation (VST)25

and interarray normalization was performed with robust

spline normalization. Probes with a detection score below

standard threshold (P = 0.01) for all samples were

dropped along with probes not annotated within the

lumiHumanAll.db database. Next, ComBat from the sva

package26 was used to perform batch correction. Outliers

were removed using a connectivity Z-score (thresh-

old > 2) calculated using the fundamentalNetworkConcepts

function from the WGCNA package.27 The AddNeur-

oMed cohort was processed using the same pipeline

except that log2 normalization was used instead of VST

because some quality control information was missing

from the raw data.

The raw data for the ADNI dataset is not publicly

available. Therefore, we performed analysis on prepro-

cessed array data which were normalized, using standard

Robust-Multi-Array Averaging from the affy package.28

We subsequently excluded 33 outliers using connectivity
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Z-scores (threshold > 2) and 11 samples with a RIN < 7,

and performed batch correction using ComBat. Probes

were annotated using the Affymetrix hgu219.db database

from BioConductor. The SAFHS cohort was analyzed

using the same pipeline as the UCSF-MAC cohort except

for batch correction, which was not performed as batch

information was not available.

Removal of confounding covariates

We used linear modeling and G-tests29 to determine if

age or sex were collinear with diagnosis using a signifi-

cance threshold of P < 0.05. When significant collinearity

was observed, samples were stratified, using a randomized

nonbiased approach to drop samples until collinearity

was no longer observed. Thus, final analysis was run on

cohorts with age, sex, and diagnosis verified as indepen-

dent variables. For the SAFHS dataset, sample stratifica-

tion was used to remove collinearity between sex and

smoking status.

Statistical analysis

Intensity values for probes querying GRN expression were

collected from each platform. Each GRN probe was veri-

fied for every cohort by ensuring that average expression

intensity was greater than the 60th percentile of all

detected probes – no probes were dropped. For Illumina

platforms, two progranulin probes were identified:

AAGGCTCGATCCTGCGAGAAGGAAGTGGTCTCTGCC-

CAGCCTGCCACCTT (Probe 1, mapping to exon 11)

and GGCCTTCCCTGTCAGAAGGGGGTTGTGGCAAA

AGCCACATTACAAGCTGC (Probe 2, mapping to the

30UTR). Neither location harbors known SNPs or InDels

at a high population frequency (>1:1000). As probes were
correlated (r2 = 0.75), we reported only probe 1, which

also had higher mean expression values. Linear models

were used to assess significance of diagnosis or genotype

with gender, age, and interactions (when appropriate)

included as covariates. An F-test was used to assess

significance of categorical predictors with more than two

groups, and Welch’s T-test was used for continuous

predictors or categorical predictors with two groups.

Post hoc pairwise testing was done using Tukey’s test

with a significance threshold of P < 0.05. The Wilcoxon

rank sum test was used in a case of small, nonnormal

sample.

Quantification of progranulin protein by
ELISA

Progranulin protein in human plasma and cerebrospinal

fluid (CSF) was quantified by A&G Pharmaceutical Inc.

(Columbia, MD) using their Progranulin (GP88/PGRN)

ELISA, which detects full-length progranulin in both

biofluids. The detection limit of this assay is 100 pg/mL

with a working range up to 20 ng/mL. Assay details have

been described previously.30–32 Briefly, a subset of patients

enrolled in the UCSF-MAC cohort underwent peripheral

blood draws (n = 266) and/or lumbar puncture (n = 80)

during multiple follow-up visits. Each sample was run in

duplicate and normalized against a recombinant progran-

ulin standard and two reference serum samples. A coeffi-

cient of variation score (SD/mean*100) was calculated for

every sample. The 11 plasma samples with a coefficient of

variation >15% were dropped as a quality control mea-

sure. Patients who underwent multiple draws had their

plasma or CSF PGRN values averaged. Outliers were

removed using the R boxplot function. Statistical analysis

was done using the same models and tests as described

for gene expression.

Methylation

DNA was extracted from peripheral blood using standard

methods. DNA methylation was quantified using the Illu-

mina Human Methylation 450K microarray. Preprocess-

ing was run with the RnBeads package33, using the default

options for quality control. Background correction was

performed with the normal exponential convolution,

using out-of-band probes (noob) method,34 and arrays

were normalized using beta mixture quantile dilation

(BMIQ).35 The normalized data was corrected for batch

effect using the parametric empirical Bayes method from

ComBat.26 The RnBeads package was also used to extract

GRN promoter methylation b-values, which were com-

puted by averaging the b-values of all 10 probes from

1.5 kb upstream to 0.5 kb downstream of the transcrip-

tion start site. RNBeads was similarly used to extract gene

body methylation, again by averaging the b-values of all

10 probes from the transcription start site to the end of

the gene.

Results

Demographic and diagnostic determinants
of GRN expression

General characteristics of all processed cohorts (postqual-

ity control and confounder stratification) are described in

Table 1. We first analyzed the UCSF-MAC cohort

(n = 508).

First, we assessed the relationship between gene expres-

sion, sex, and age, after ensuring no confounding between

our predictors. We verified no collinearity between sex and

diagnosis in our dataset (G-test, G-statistic(2) = 1.3,
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P = 0.52) nor between age and diagnosis (F2,505 = 2.04,

P = 0.13). We next fit a linear model for our covariates.

We observed that GRN mRNA expression levels were sig-

nificantly higher in males than in females (log2 fold-change

[log2FC] = 0.09, corresponding to a 6% increase, T-

statistic = 6.26, P = 0.013, Fig. 1A) across diagnostic cate-

gories, and that age was significantly but trivially correlated

with progranulin mRNA levels (Pearson’s r2 = 0.008,

P = 0.04; Fig. 1B) consistent with previous reports.11 We

next compared GRN levels between diagnostic categories

(F2,505 = 10.41, P = 3.7*10�5). Patients diagnosed with AD

had a statistically significant increase (log2FC = 0.17, corre-

sponding to +13%, Tukey’s test P = 0.00019) in GRN

mRNA expression compared with controls. We also

observed a similar increase (log2FC = 0.17, P = 0.0012) in

the MCI group compared with controls (Fig. 1C). We

observed no significant differences in GRN mRNA levels

between AD and MCI. When we modeled interactions

between sex and diagnosis, as well as age and diagnosis, we

did not observe significant effects, arguing against a syner-

gistic relationship between these covariates.

We next sought to replicate our findings. We first ana-

lyzed the AddNeuroMed Cohort (n = 274; Table 1). We

initially observed collinearity between age and diagnosis

(F2,305 = 5.81, P = 0.003) and therefore stratified and dis-

carded 34 samples until collinearity was no longer signifi-

cant (F2,271 = 3.0, P = 0.051). Sex remained independent

after stratification (G(2) = 4.38, P = 0.11). We again fit a

linear model with all covariates and relevant interaction

terms. Progranulin mRNA expression again was higher in

males compared with females (log2FC = 0.12, +9%,

T-statistic = 4.4, P = 0.037), but age was no longer predic-

tive (T-statistic = 2.3, P = 0.13). We observed a significant

effect based on diagnosis (F2,271 = 17.9, P = 4.8*10�8) but

no interaction effects. Similar to the UCSF-MAC cohort,

we observed a significant increase (log2FC = 0.28, corre-

sponding to +21%, TukeyHSD; P = 5.6*10�6) in progran-

ulin mRNA expression for AD patients compared with

controls, and an increase (log2FC = 0.35, +27%,

P = 6.4*10�7) for MCI patients compared to controls

(Fig. 1D).

We next validated these sex and age findings in a third

dataset, the San Antonio Family Heart Study cohort (di-

agnosis was not relevant for this dataset). After stratifying

to correct for collinearity between sex and smoking status,

we excluded all samples under 30 years of age to more

appropriately match mean cohort age with our other

cohorts while still maintaining statistical power (n = 543,

mean age = 49.7 years). We ensured no collinearity

between age (T-statistic = 1.06, P = 0.3) or smoking sta-

tus (G(2) = 4.48, P = 0.08) and sex and fit a linear model.

We again found that progranulin was higher in males

than females (log2FC = 0.07, +5%, T-statistic = 4.8,

P = 0.03) and found no correlation with age

(T-statistic = 0.04, P = 0.8). Interestingly, smoking status

was an independent predictor of blood progranulin

mRNA expression in this cohort, with a 6% GRN increase

in smokers (log2FC = 0.08, T-statistic = 4.5, P = 0.03).

Finally, we analyzed the ADNI patient cohort (n = 617),

which is divided into asymptomatic controls, early MCI

(eMCI), late MCI (lMCI, with regard to clinical disease

progression), and AD. This cohort was initially confounded

with significant collinearity between age (F3,696 = 10.9,

P = 5*10-7), sex (G(3) = 11.1, P = 0.01) and diagnosis. We

stratified and excluded samples (described in methods)

until age (F3,613 = 2.49, P = 0.06) and sex (G(3) = 5.58,

Table 1. Summary characteristics of four patient cohorts analyzed.

Cohort Diagnosis Sample (n) Male (n) Female (n) Mean Age SD Age

UCSF-MAC Combined 508 240 268 69.8 10.4

Control 204 95 109 70.9 11.2

MCI 118 61 57 69.7 10.1

AD 186 84 102 68.8 9.5

AddNeuroMedd Combined 274 107 167 72.9 5.7

Control 95 38 57 71.8 5.8

MCI 66 32 34 73.1 4.9

AD 113 37 76 73.7 5.9

ADNI Combined 617 326 291 73.8 6.5

Control 240 114 126 74.3 5.6

eMCI 159 91 68 73.7 5.8

lMCI 178 96 82 73.0 7.2

AD 40 25 15 75.6 9.8

SAFHS Combined 543 252 291 49.7 13.5

Smoker 158 85 73 48.1 12.0

Nonsmoker 385 167 218 50.2 13.9
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P = 0.13) were no longer collinear with diagnosis. How-

ever, a plate batch effect remained (G(24) = 38.9, P = 0.03),

which we corrected with the ComBat package. In this

cohort, neither age nor sex were predictive of progranulin

expression, and we did not observe differences in progran-

ulin expression levels between diagnostic categories

(F3,611 = 0.31, P = 0.82, TukeyHSD post hoc P > 0.05 for

all comparisons; Fig. 1E).

Effects of genotype on GRN expression

Next, we genotyped samples from the UCSF-MAC cohort

for the risk-associated rs5848 GRN variant. Homozygotes

for the risk-associated allele (T:T, n = 25) had a 12.3%

decrease in progranulin mRNA expression compared with

C:C carriers (log2FC = �0.19, Wilcoxon Rank sum test,

P = 0.02) supporting an earlier report of decreased GRN

mRNA levels in postmortem brain tissue of T:T genotype

carriers.36 We also found that T-allele carriers had signifi-

cantly lower progranulin levels than C:C homozygotes

(log2FC = �0.1, Welch, T506 = 2.24, P = 0.03; Fig. 2A).

After ensuring there was no collinearity between the

rs5848 genotype and sex (G-statistic1 = 0.21, P = 0.65),

we fit a linear model using sex and haplotype as an inter-

action term, but did not observe any significant interac-

tion in our data. Additionally, using a Fisher’s exact test,

we observed an enrichment of T-genotype carriers in the

AD population compared with controls, which did not

reach statistical significance (OR = 1.46, 95% CI = 0.95–
2.38, P = 0.09). Thus, it is noteworthy that AD patients

on average still have elevated progranulin gene expression

despite the overrepresentation of rs5848 T-allele carriers

(associated with lower progranulin levels) in the AD

patient population.

We also studied the relationship between GRN gene

expression levels and the AD risk-associated APOE haplo-

type.37 We observed a significant effect of the APOE haplo-

type on progranulin levels in the UCSF-MAC cohort

across diagnostic categories, with progranulin mRNA levels

significantly higher in E4 risk allele carriers compared with

E2/E3 haplotypes (log2FC = 0.12, +9%, Welch, T(441) =
2.82 P = 0.005, Fig. 2B). However, there was also

significant collinearity between APOE haplotype and dis-

ease status; the E4 haplotype was significantly enriched in

AD patients (Fisher’s exact test, OR = 4.83,

P = 6.3*10�11) compared with controls, confounding our

results.

Therefore, we attempted to estimate the independent

relationship between APOE haplotype and GRN expres-

sion. After removing the effects of diagnosis as a con-

found using a parametric empirical Bayesian estimator

(ComBat), we still observed significantly higher progran-

ulin gene expression levels in ApoE4 haplotype carriers

(log2FC = 0.08, Welch T-test, P = 0.04), suggesting that

APOE4 genotype might function as a trans expression

quantitative trait locus (eQTL) controlling GRN expres-

sion. We validated this finding in the Genotype-Tissue

Expression consortium dataset (GTEx).38 Analysis of

rs429358 SNP (minor C-allele tags the APOE4 haplotype)

and RNA-seq data from 328 samples revealed a significant

association between expression and genotype (effect

size = 0.12, P = 0.004) in whole blood. We checked the

relationship between APOE4 carrier status and GRN

expression in the ADNI dataset but failed to detect a dif-

ference in GRN expression between APOE4 carriers and

controls (T(613) = 1.43, P = 0.15). We also performed the

converse analysis in the UCSF-MAC cohort. Using

ComBat to remove the effect of APOE haplotype, we then

modeled the effect of diagnosis on progranulin expres-

sion. We found that AD samples still had signifi-

cantly higher progranulin expression (log2FC = 0.17,

T(450) = 3.9, P = 0.0001) compared with controls suggest-

ing that diagnosis predicts progranulin expression inde-

pendent of APOE4 sample overrepresentation.

GRN protein levels in CSF and plasma

We next utilized ELISA to quantify progranulin protein

levels in plasma (n = 266) and CSF (n = 80) in a subset

of patients from the UCSF-MAC cohort. After ensuring

no collinearity with age (F2,263 = 1.84, P = 0.16) and sex

(G-statistic2 = 2.32, P=0.31), we observed no correlation

between plasma progranulin protein and gene expression

in peripheral blood (Pearson’s r = 0.065, df = 206,

Figure 1. Effect of demographic characteristics and disease status on peripheral blood GRN gene expression. (A) Progranulin gene expression is

higher in males than females. UCSF-MAC cohort, Welch’s t-test. (B) Progranulin gene expression increases with age across diagnostic categories.

UCSF-MAC cohort, linear regression. (C) Progranulin expression is higher in AD and MCI patients compared with controls. UCSF-MAC cohort, F-

test and analysis of variance (AOV) with Tukey’s post hoc test. (D) same as (C) in the AddNeuroMed cohort. (E) lack of difference in progranulin

expression in AD, early MCI (EMCI), and later MCI (LMCI) patients compared with controls. ADNI cohort, F-test and aov with Tukey’s post hoc

test. General cohort characteristics are described in Table 1. (A, C, D, E) standard boxplot representing median and interquartile range (IQR),

whiskers represent 1.5 IQR greater or less than the upper and lower quartile. (B) scatterplot with line of best-fit. *P < 0.05, ***P < 0.001, n.s.

P > 0.05.
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P = 0.35; Fig. 3A). However, we observed a sex dimor-

phism in our plasma data, with females across diagnostic

categories having significantly higher progranulin protein

levels than males (fold-change = 0.07, Welch’s T264 =
2.14, P = 0.03, Fig. 3B) which recapitulates an earlier

study,16 and is the opposite finding from our gene expres-

sion data, where males had higher GRN mRNA expres-

sion. We identified no correlation between age and

plasma GRN protein levels (Pearson’s r = 0.09, df = 264,

P = 0.16). We next assessed the relationship between dis-

ease status and progranulin protein levels. In plasma, we

found no difference between GRN protein levels across all

disease categories (F2,263 = 1.72, P = 0.18, Tukey’s post

hoc P > 0.05 all comparisons; Fig. 3C) again replicating

previous findings.16 We observed no correlation between

progranulin levels in the CSF and in plasma (Pearson’s

r = 0.13, df = 63, P = 0.31; Fig. 3E). AD patients had sta-

tistically lower CSF progranulin levels than control sub-

jects (F2,66 = 3.45, P = 0.04, TukeyHSD P = 0.03 for AD

vs. Control, Fig. 3D), confirming an earlier report.39 We

observed no relationship between age or sex and progran-

ulin levels in CSF.

Analysis of GRN methylation status

Finally, we analyzed DNA methylation at the GRN locus

in a subset of subjects (AD patients [n=128] and controls

[n=227]) from the UCSF-MAC cohort. We found no cor-

relation between GRN promoter CpG methylation and

GRN expression (T(91) = 0.16, r = 0.02, P = 0.8) nor

GRN gene body methylation and GRN gene expression

(T(91) = 1.52, r = �0.16, P = 0.13). We next fit a linear

model predicting methylation status, using all relevant

predictors. Males had lower GRN promoter CpG methyla-

tion than females (Log2FC = 0.004, T(351) = 7.32,

P = 0.007; Fig. 4C) but no differences in gene body

methylation T(351) = 1.06, P = 0.3). Conversely, there was

a negative correlation between age and GRN gene body

methylation; methylation decreased significantly with age

(T(351) = 62.8, r = -0.39, P = 3*10�14; Fig. 4D). We identi-

fied no correlation between GRN promoter methylation and

age (T(351) = 1.11, r = 0.05, P = 0.29) in agreement with

Galimberti and colleagues.40 We identified no significant

difference in methylation b-values for either the GRN pro-

moter (T(351) = 0.07, P = 0.79) or gene body (T(351) = 0.17,

P = 0.67) between AD and control patients (Fig. 4A,B).

Discussion

We present here data indicating that patients with spo-

radic Alzheimer’s disease have significantly increased

progranulin mRNA in peripheral blood compared with

controls. Additionally, we find that progranulin expres-

sion is significantly increased in patients with mild

cognitive impairment. While we have replicated these

findings in an independent patient cohort (AddNeur-

oMed), we failed to replicate them in the ADNI

cohort. Of note, both our cohort and the AddNeur-

oMed cohort used Illumina microarray platforms while

the ADNI gene expression data was run on an Affyme-

trix platform. We therefore hypothesize that this dis-

crepancy may be a feature of Affymetrix probes, which

may not sensitively or reliably detect changes in pro-

granulin expression levels. This is supported by our

additional failure to detect any correlation between

progranulin expression and age, sex, or genotype in

the ADNI dataset.

While we identified differences in mean progranulin

expression between groups, our results indicate that pro-

granulin cannot be used on its own as a sensitive or

specific biomarker of disease. However, our results sug-

gest that it should be possible to identify further differen-

tially expressed genes that could perhaps then be

incorporated into a diagnostic panel. Because peripheral

blood can be drawn from living patients in the most basic

clinical settings, this has broader clinical utility. Most sali-

ently, this study represents the first association between

peripheral progranulin expression and MCI to our knowl-

edge, suggesting that progranulin may play an early role

in AD pathogenesis.

Previous studies in mouse models of AD have found

that the artificial increase in progranulin levels can slow

disease progression including disrupting Ab plaque depo-

sition and neurotoxicity.14 Furthermore, loss-of-function

mutations in the progranulin gene are risk factors for

developing AD as well as other neurodegenerative disor-

ders.4,6,8 Together these findings suggest that progranulin

plays a primarily neuroprotective role, reactively modify-

ing or guarding against neurodegenerative processes. Our

data support this hypothesis. The small subset of patients

with the rs5848 (T:T) haplotype had significantly lower

progranulin levels and were also more likely to have AD,

as expected.7,9 However, AD patients in general had

Figure 2. Common AD-associated genetic variants and GRN mRNA expression in peripheral blood. (A) Progranulin gene expression is lower in

rs5848 risk allele carriers (C:T or T:T genotypes) compared with low-risk genotype (C:C). UCSF-MAC cohort, Welch’s t-test. (B) Progranulin gene

expression is higher in APOE risk allele (E4) carriers (homozygote or heterozygote) compared with low-risk haplotypes (E2 or E3 carriers). UCSF-

MAC cohort, Welch’s t-test. (A-B) standard boxplot representing median and IQR, whiskers represent 1.5 IQR greater or less than the upper and

lower quartile. *P < 0.05, **P < 0.01.
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higher progranulin levels, especially when excluding hap-

lotypes that directly lower progranulin expression and

cause disease. This suggests that progranulin expression

might increase as an effect rather than a cause of disease.

It is also conceivable that undiscovered cis or trans

eQTLs that control progranulin expression exist, and

therefore modify risk for AD. For example, we identify

the APOE haplotype as a possible trans eQTL that

influences progranulin expression, independent of AD

diagnosis.

If progranulin plays a functional role in AD pathogene-

sis, we would expect to ultimately observe changes in
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Figure 4. Analysis of GRN promoter and gene body DNA (CpG) methylation in DNA from peripheral blood. (A–B) lack of difference in promoter

(A) or gene body (B) methylation between AD and control patients. n = 355, Welch’s t-test. (C) GRN promoter methylation is significantly lower

in males compared with females across diagnostics categories. Welch’s t-test. (D) GRN gene body methylation decreases with age. Linear

regression. All analysis performed with the UCSF-MAC cohort. (A-C) standard boxplot representing median and IQR, whiskers represent 1.5 IQR

greater or less than the upper and lower quartile. (D) scatterplot with line of best-fit. **P < 0.01, n.s. P>0.05.

Figure 3. Progranulin protein levels by ELISA in plasma and cerebrospinal fluid (CSF). (A) Plasma progranulin protein levels are not correlated

with gene expression within patients. n = 266, linear regression. (B) Females have significantly higher plasma GRN protein levels than males.

Welch’s t-test. (C) Lack of difference in plasma GRN protein levels between AD, MCI, and control patients. Analysis of variance (AOV), Tukey’s

post hoc test. (D) AD patients have significantly lower CSF GRN protein levels than MCI and control patients. n = 80, AOV, Tukey’s post hoc test.

(E) Lack of correlation between plasma and CSF GRN protein levels. n = 80, linear regression. All analysis performed with the UCSF-MAC cohort.

(B–D) standard boxplot representing median and IQR, whiskers represent 1.5 IQR greater or less than the upper and lower quartile. (A,E)

scatterplot with line of best-fit. *P < 0.05, n.s. P > 0.05.
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protein levels. However, analysis of our ELISA data failed

to show a difference in progranulin protein levels between

AD, MCI, and control patients, consistent with earlier

reports.16 There was also no correlation between progran-

ulin protein levels in plasma and CSF and no correlation

between protein and gene expression.39 Our ELISA find-

ings are entirely consistent with and replicate previous

independent reports, indicating that our results are not

the result of operational error or a technical artifact. One

likely interpretation is that the current ELISA methodol-

ogy fails to accurately detect subtle changes in plasma

progranulin levels. The progranulin protein has complex

posttranslational regulation, including glycosylation and

variable cleavage into a variety of intermediaries as well as

any of 8 final granulin products. These various protein

configurations have myriad and often contradictory func-

tions.41 In fact, the current ELISA used is specific for

unprocessed progranulin.30 Given high antibody speci-

ficity and the diversity of progranulin end products, it is

unlikely that ELISA can sensitively detect overall changes

in specific forms of progranulin being expressed in AD,

MCI, and controls; rather it is likely reflective of a partic-

ular subset of progranulin products.

Additionally, progranulin and granulins undergo com-

plex spatial regulation with progranulin being shuttled to

both the lysosome or excreted into the extracellular space.

As such, the biological fluid and cellular components

assayed have a large impact on progranulin measure-

ments.42 This might explain the sex dimorphism discrep-

ancy between our gene expression and ELISA data in

addition to differences in progranulin cleavage and pro-

cessing. ELISA, which measures extracellular fluid

(plasma), may not be directly comparable to intracellular

gene expression profiles. Nevertheless, the functional sig-

nificance of possibly increased progranulin secretion in

females versus relative intracellular retention in males

requires further study.

Finally, our data suggest that blood progranulin gene

expression is higher overall in males than in females. Our

GRN methylation data also supports this finding, as

males have reduced promoter methylation, suggesting a

derepressed state primed for transcriptional activation.

These data are intriguing considering that progranulin

expression in rat hippocampus was found to be under

the control of estrogen.43 Although there have been

numerous studies describing sex dimorphisms in gene

methylation in peripheral blood, these studies have failed

to specifically identify progranulin.44,45 Nevertheless, it is

especially interesting to consider this sex dimorphism as

women are twice as likely to develop AD as men. If pro-

granulin indeed plays a protective role, increased endoge-

nous progranulin expression in males might partly

explain this phenomenon, and this might be

mechanistically mediated by differences in progranulin

promoter methylation.
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