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A B S T R A C T

Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great
variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a
specific type of studies, using predictive models on the edge weights of functional connectomes, for which we
highlight the best modeling choices. We systematically study the prediction performances of models in 6 different
cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress
disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psycho-
logical trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps:
defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical
choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures
to build functional connectomes from the extracted time-series, and 10 classification models to compare func-
tional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline
modeling choices that show consistent prediction performances in spite of variations in the populations and sites.
We find that regions defined from functional data work best; that it is beneficial to capture between-region in-
teractions with tangent-based parametrization of covariances, a midway between correlations and partial cor-
relation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step
forward to establishing reproducible imaging-based biomarkers for clinical settings.
1. Introduction

Resting-state functional Magnetic Resonance Imaging (rest-fMRI),
based on the analysis of brain activity without specific task, has become a
tool of choice to probe human brain function in healthy and diseased
populations. As it can easily be acquired in many different individuals,
rest-fMRI is a promising candidate for markers of brain function (Biswal
et al., 2010; Greicius, 2008). This has lead to the rise of large-scale
rest-fMRI data collections, such as the human connectome project (Van
Essen et al., 2013) or ABIDE (Di Martino et al., 2014). Larger datasets
bring increased statistical power (Elliott et al., 2008), and many
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population-imaging studies use rest-fMRI to relate brain imaging to
neuropathologies or other behavior and population phenotypes (Miller
et al., 2016; Dubois and Adolphs, 2016). These efforts build biomarkers
from rest-fMRI with predictive models (Woo et al., 2017).

A functional connectome – characterizing the network structure of the
brain (Sporns et al., 2005)– can be extracted from functional interactions
in rest-fMRI data (Varoquaux and Craddock, 2013). The weights of the
corresponding brain functional connectome are used to characterize in-
dividual subjects behavior, cognition, andmental health (Craddock et al.,
2009; Richiardi et al., 2010; Milazzo et al., 2014; Smith et al., 2015;
Miller et al., 2016; Colclough et al., 2017; Dubois et al., 2018), aging
.
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Fig. 1. Functional connectome-prediction pipeline with three main steps: 1) Definition of brain regions (ROIs) from rest-fMRI images or using already defined
reference atlases, 2) quantifying functional interactions from time series signals extracted from these ROIs and 3) comparisons of functional interactions across subjects
using supervised learning.

2 We used the term ball rather a sphere. From a mathematical standpoint, A
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(Liem et al., 2017) as well as brain pathologies (Drysdale et al., 2016;
Abraham et al., 2017; Ng et al., 2017).

Machine-learning pipelines are key to turning functional connectomes
into biomarkers that predict the phenotype of interest (Woo et al., 2017).On
rest-fMRI, such a pipeline typically comprises of 3 crucial steps as depicted
in Fig. 1, linking functional connectomes to the target phenotype (Varo-
quaux and Craddock, 2013; Craddock et al., 2015). Yet, there exist many
variations of this prototypical pipeline, even for classification from
edge-weights of brain functional connectomes, as revealedby reviewsof the
field (Wolfers et al., 2015; Arbabshirani et al., 2017; Brown andHamarneh,
2016). These various choices have a sizable impact on the accuracy of
population studies, and are seldomdiscussed (Carp, 2012). The cost of such
analytical variation is twofold. First, it puts the burdenon the practitioner to
explore many options and make choices without systematic guidance.
Second, methods variations create researchers degrees of freedom (Sim-
mons et al., 2011) that can compromise the measure of the prediction ac-
curacy of biomarkers (Varoquaux, 2017). Guidelines on optimal modeling
choices are thus of great value for rest-fMRI biomarker research.

Here, we perform a systematic benchmark of common choices for the
different steps of the functional connectome-based classification pipe-
line. To outline the preferable strategies, we analyze the prediction ac-
curacy across 6 different cohorts, with different clinical questions and
one psychological trait, different sample sizes, and prediction problems
of different difficulties. While best model choice may vary depending on
the prediction task, our benchmarks outline some trends. Specifically, we
explore the following analytical choices:

� How should nodes be chosen: via pre-defined atlases, or data-driven
approaches? How many nodes are needed for brain-imaging based
diagnosis? Should nodes be distributed brain networks or regions of
interest (ROIs)?

� How should weights of brain functional connectomes be represented:
via correlations, partial correlation, or more complex models
capturing the geometry of covariance matrices?

� What classifiers should be used for machine learning on weights of
brain functional connectomes? Should linear or non-linear models be
preferred? Should sparse or non-sparse models be used? With or
without feature selection?

Besides these main questions, we did additional experiments on
preprocessing strategies —studying the effect of band-pass filtering and
global signal regression— and on covariance estimators, by comparing
sparsity-inducing to classical shrinkage.

The paper is organized as follows: we first review current practices
and methods used to-date for prediction of psychiatric diseases from
weights of brain functional connectomes. Then, we present the different
choices that we benchmark for the steps of classification pipelines and
describe these methods. Finally, we report our experimental results and
the trends that they reveal.

2. Methods: functional connectome-classification pipeline

Fig. 1 shows the standard rest-fMRI classification pipeline that we
consider.
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2.1. A brief review of current practices: functional connectome-based
predictive methods

We first survey methods used for prediction studies based on three
extensive reviews: Wolfers et al. (2015); Arbabshirani et al. (2017);
Brown and Hamarneh (2016). From these reviews, 27 studies used
rest-fMRI and gave good classification scores. Below, we briefly outline
the choices in the different pipeline step used (see Table A2 in the ap-
pendix for the full list).

Definition of brain ROIs.Studies define ROIs to extract signals with a
variety of approaches:

� balls2 of radius varying from 5mm to 10mm centered at coordinates
from the literature (Dosenbach et al., 2010; Power et al., 2011);

� reference anatomical atlases such as AAL (Tzourio-Mazoyer et al.,
2002), sulci-based atlases (Perrot et al., 2009; Desikan et al., 2006), or
connectivity-based cortical landmarks (Zhu et al., 2013);

� data-driven approaches based on k-means or Ward clustering, as well
as Independent Component Analysis (ICA) approaches (Calhoun
et al., 2001; Beckmann and Smith, 2004) or dictionary learning
(Abraham et al., 2013).

The number of nodes used was typically around 100, but ranged from
dozens to several hundreds.

Representation of brain functional connectomes. Studies define func-
tional interactions from second-order statistics –based on signal cova-
riance– using Pearson's correlation or partial correlations estimated
mostly either with themaximum-likelihood formula for the covariance or
the Ledoit-Wolf shrinkage covariance estimator (Ledoit and Wolf, 2004;
Varoquaux and Craddock, 2013; Brier et al., 2015). Partial correlation
between nodes is useful to rule out indirect effects in the correlation
structure, but calls for shrunk estimates (Smith et al., 2011; Varoquaux
et al., 2010b). Mathematical arguments have also led to representations
tailored to the manifold-structure of covariance matrices (Varoquaux
et al., 2010a; Ng et al., 2014; Dodero et al., 2015; Colclough et al., 2017).
We benchmark the simplest of these, a tangent representation of the
manifold which underlies the more complex developments (see Appen-
dix A for a quick introduction to this formalism).

Classifiers used for prediction. Many different classifiers have been
used, whether linear or non-linear, sparse or non-sparse, optionally with
prior feature selection. See Table A2 for the comprehensive list of clas-
sifiers used in these studies. Finally, beyond the prototypical pipeline
exposed above, some studies employ complex-graph network modeling
approaches –e.g. network modularity or centrality (Rubinov and Sporns,
2011)– (Wolfers et al., 2015; Arbabshirani et al., 2017; Brown and
Hamarneh, 2016) These approaches are seldom combined with super-
vised learning. Indeed, graph-theory metrics capture well global aspects
of brain connectivity, but do not lend themselves well to tuning to con-
nections in specific subnetworks (Hallquist and Hillary, 2018). Here, we
focus on machine-learning methods that extract discriminant connec-
tions; as such we do not study graph-theoretical approaches.
“ball” is the inside of a sphere.
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The current practice is very diverse, without standard modeling
choices. To open the way toward informed decisions, we explore popular
variants of the classic machine-learning pipeline to predict on con-
nectomes. We measure the impact of choices at each step on prediction
for diverse targets across multiple datasets. We detail below the specific
modeling choices included in our benchmarks.
2.2. Definition of brain regions of interest (ROIs)

For functional connectomes, the hypothesis is that the Definition of
ROIs should capture well the relevant functional units (Smith et al.,
2011). We study both anatomically and functionally defined reference
brain atlases, as well as data-driven methods that define ROIs from the
data at hand. ROI selection is a difficult choice, as the optimal may vary
for different conditions or pathologies.

A selection of pre-defined atlases. We consider four standard atlases, of
which two are structural atlases: i) Automated Anatomical Labeling
(AAL) (Tzourio-Mazoyer et al., 2002), a structural atlas with 116 ROIs
defined from the anatomy of a reference subject, ii) Harvard Oxford
(Desikan et al., 2006), a probabilistic atlas of anatomical structures,
contains of 48 cortical & 11 sub-cortical ROIs in each hemisphere, ie 118
ROIs in total. We also include two functional atlases: iii) Bootstrap
Analysis of Stable Clusters (BASC) (Bellec et al., 2010), a multi-scale
functional atlas built with clustering on rest-fMRI, coming with
different f36;64;122;197;325;444g numbers of ROIs; iv) Power, a
coordinate-based atlas consisting of 264 coordinates used to position
balls of 5mm radius (Power et al., 2011). For an additional set of
benchmarks, on larger data, we use only pre-computed regions. For a
pre-computed functional atlas with dictionary learning, we use an atlas3

computed by Mensch et al. (2016a) with a very scalable sparse
dictionary-learning algorithm on the HCP900 dataset (Van Essen et al.,
2012). This algorithm, MODL (massive online dictionary learning), sol-
ves the ℓ1 dictionary-learning problem with an algorithm fast on very
large datasets that converges to the same solution as standard on-line
solvers (Mensch et al., 2018).

A selection of data-driven methods. We consider four popular data-
driven methods to extract brain ROIs from intrinsic brain activity (Yeo
et al., 2011; Kahnt et al., 2012; Thirion et al., 2014; Calhoun et al., 2001;
Beckmann and Smith, 2004; Abraham et al., 2013). We choose to define
ROIs using two clustering methods: i) K-Means (Hastie et al., 2009), and
ii) hierarchical agglomerative clustering using Wards algorithm (Ward,
1963) with spatial connectivity constraints (Michel et al., 2012); and two
linear decomposition methods: iii) Canonical Independent Component
Analysis (GroupICA or CanICA) (Varoquaux et al., 2010c), iv) Dictio-
nary Learning - ℓ1 (DictLearn) (Mensch et al., 2016b).

Dimension selection in data-driven atlases. For clustering methods, we
extract brain atlases with a varying number of ROIs in dim ¼ f40; 60; 80;
100; 120; 150; 200; 300g. With linear decomposition methods i.e.
CanICA and DictLearn, we explore the following number of components:
dim ¼ f40; 60; 80; 100; 120g.4

For each data-driven method, we learn brain ROIs on the training set
only, to avoid possible overfit (Abraham et al., 2017). In a
cross-validation loop, for each split, we define the brain ROIs on a
training set and use the atlases to learn connectivity patterns for pre-
diction. We also applied additional Gaussian smoothing of 6mm on
3 Pre-computed sparse dictionaries with the MODL approach of Mensch et al.
(2016a) are available from https://team.inria.fr/parietal/files/2018/10/MODL
_rois.zip.
4 We also investigated higher dimensionality (150, 200 and 300) on some of

the datasets, but could not do a systematic study above 300 because of high
computational costs. These preliminary results showed no improvements in
prediction accuracy compared to lower dimensionalities. It should be noted that
the resulting components typically encompass several brain regions, which ex-
plains the dimension difference.
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preprocessed rest-fMRI datasets for all data-driven methods prior to
learning brain ROIs to enhance the region extraction step.

Nodes formed local regions or distributed networks? Current practices in
functional connectomics includes defining nodes as local regions of the
brain (Shirer et al., 2012; Craddock et al., 2012), or as full distributed
functional networks that may include several regions (Smith et al., 2015;
Yeo et al., 2011). We consider both approaches: using the distributed
networks, or breaking them up in regions with a segmentation step to
separate out regions (Abraham et al., 2014a). For example, a
bi-hemispheric brain networks is separated into regions, one in each
hemisphere.

We use a Random-Walker based extraction of regions from the brain
networks obtained by CanICA and DictLearn as proposed in Abraham
et al. (2014a). By contrast, for K-Means and BASC, we simply break out
clusters in their connected components. During this procedure, we
remove spurious regions of size < 1500mm3. Fig. 2 shows an example of
the set of brain regions obtained from the various data-driven methods
on the ADNI rest-fMRI data.

2.3. Connectivity parametrization

We extract representative time series for each node. For signal
extraction, we explored several denoising strategies to account for non-
neural artifacts: with or without low-pass filtering or global signal
mean regression (details in Appendix B). To estimate functional con-
nectomes efficiently, we use the Ledoit-Wolf regularized shrinkage esti-
mator (Ledoit and Wolf, 2004; Varoquaux and Craddock, 2013; Brier
et al., 2015), which gives a closed form expression for the shrinkage
parameter. This estimator yields well-conditioned estimators despite the
variation in length of time series across rest-fMRI datasets. We also
explored non-regularized and sparse estimator for the covariance (see
Appendix H.2). With this covariance structure, we study three different
parametrizations of functional interactions: full correlation, partial
correlation (Smith et al., 2011; Varoquaux and Craddock, 2013) and the
tangent space of covariance matrices. The latter is less frequently used
but has solid mathematical foundations and a variety of groups have
reported good decoding performances with this framework (Varoquaux
et al., 2010a; Barachant et al., 2013; Ng et al., 2014; Dodero et al., 2015;
Qiu et al., 2015; Rahim et al., 2017; Wong et al., 2018). We compared
two variants, using as a reference point the Euclidean mean (Varoquaux
et al., 2010a) or the geometric mean (Ng et al., 2014); in both cases we
rely on Nilearn implementation (Abraham et al., 2014b). Note that
computing partial correlation or tangent space require inverting covari-
ance matrices, hence these must be well conditioned. Non regularized
covariance estimation is thus not useable for these parametrizations.

For each parametrization, we vectorize the functional connectome,
Fig. 2. Brain regions extracted with ICA, DictLearn, KMeans, and Ward For
ICA and dictionary learning, the dimensionality is of 80 and 60 resting-state
networks – which are then broken up into more regions – yielding 150 re-
gions, and 120 for KMeans and Ward clustering. Colors are arbitrary.

https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip
https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip


Table 1
Datasets and prediction tasks, as well as the number of subjects in each group.
COBRE - 142 subjects, ADNI - 136 subjects, ADNIDOD - 167 subjects, ACPI - 126
subjects, ABIDE - 866 subjects, HCP - 443. IQ represents fluid intelligence; 788
subjects had an IQ score in the HCP900 release. The acquisition parameters of
each dataset are summarized in Table A3.

Dataset Prediction task Groups

COBRE Schizophrenia vs Control 65=77
ADNI AD vs MCI 40=96
ADNIDOD PTSD vs Control 89=78
ACPI Marijuana use vs Control 62=64
ABIDE Autism vs Control 402=464
HCP High IQ vs Low IQ 213=230
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using the lower triangular part of the connectomes matrix for classifi-
cation. Additionally, on the ACPI dataset, we considered the ADHD status
of the subjects as a variable of non interest and regressed it out in this
second-level analysis, as we were interested in predicting the consump-
tion of Marijuana.
2.4. Supervised learning: classifiers

The final step of our pipeline predicts a binary phenotypic status from
connectivity features extracted from previous step. We consider several
linear and non-linear classifiers for prediction i.e. both sparse and non-
sparse methods. For non-linear methods, we consider Nearest Neigh-
bors (K-NN) (Cover and Hart, 1967) with K¼ 1 and Euclidean distance
metric, Gaussian Naïve Bayes (GNB) and Random Forests Classifier
(RF) (Breiman, 2001). For linear classifiers we consider sparse ℓ1 regu-
larization5 for Support Vector Classification (SVC), and Logistic
Regression (Hastie et al., 2009). For non-sparse linear classifiers –i.e. ℓ2

regularization– we consider Ridge classification, SVC, Logistic
regression. For SVC, we also considered 10% feature screening with
univariate ANOVA. With regards to the regularization parameter (eg soft
margin parameter in SVC), we use the default C ¼ 1 or α ¼ 1, which has
been found to be a good default (Varoquaux et al., 2017).

3. Experimental study

To benchmark the various predictive-modeling choices, we apply the
functional connectome-classification pipeline on five publicly-available
rest-fMRI datasets. We study prediction from functional connectomes
of various clinical outcomes –neuro-degenerative and neuro-psychiatric
disorders, drug abuse impact, fluid intelligence. We focus on binary
classification problems, predicting a phenotypic target between two
groups. We use the following datasets, summarized in Table 1:

1. COBRE, Center for Biomedical Research Excellence,6 comprising rest-
fMRI data to study schizophrenia and bipolar disorder (Calhoun et al.,
2012). We focus on predicting schizophrenia diagnosis versus normal
control.

2. ADNI, the Alzheimer's Disease Neuroimaging Initiative7 database
studies neuro-degenerative diseases (Mueller et al., 2005). We focus on
using rest-fMRI to discriminate individuals with Mild Cognitive
Impairment (MCI) from individuals diagnosedwithAlzheimer's Disease
(AD).

3. ADNIDOD, funded by the US Department of Defense (DoD) to study
brain aging in Vietnam War Veterans,8 includes rest-fMRI data of
individuals with post-traumatic stress disorders (PTSD) or brain
5 We also included Lasso as another choice of classifier in the pipeline. We
observed significantly low prediction performance.
6 cobre.mrn.org.
7 www.adni-info.org.
8 www.adni-info.org/DOD.html.
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traumatic injuries. We focus on discriminating PTSD condition from
normal controls.

4. ACPI, Addiction Connectome Preprocessed Initiative,9 a longitudinal
study to investigate the effect of cannabis use among adults with a
childhood diagnosis of ADHD. In particular we use readily-
preprocessed rest-fMRI data from Multimodal treatment study of
Attention Deficit Hyperactivity Disorder (MTA). We attempt to
discriminate whether individuals have consumed marijuana or not.

5. ABIDE, Autism Brain Imaging Data Exchange database investigates the
neural basis of autism (Di Martino et al., 2014). We use the data from
Preprocessed Connectome Project (Craddock et al., 2013) to discrimi-
nate individuals from Autism Spectrum Disorder from normal controls.

6. HCP,10 Human Connectome Project contains imaging and behavioral
data of healthy subjects (Van Essen et al., 2013). We use preprocessed
rest-fMRI data from HCP900 release (Van Essen et al., 2012) to
discriminate individuals from high IQ and low IQ. We used HCP
rs-fMRI datasets to probe a different setting: data with longer acqui-
sitions. Due to the data size, we limit the benchmarks here to
pre-computed atlases.
3.1. Rest-fMRI data processing: softwares and related

Data preprocessing. We preprocess COBRE, ADNI, and ADNIDOD. We
use a standard protocol that includes: motion correction, fMRI co-
registration to T1-MRI, normalization to the MNI template using
SPM12,11 Gaussian spatial smoothing (FWHM ¼ 5mm). The SPM based
preprocessing pipeline is implemented through pypreprocess12- Python
scripts relying on Nipype interface (Gorgolewski et al., 2011). All sub-
jects were visually inspected and excluded from the analysis if they have
severe scanner artifacts or head movements with amplitude larger than
2mm. Since pre-processed rest-fMRI subjects from ABIDE and ACPI are
available, we choose images pre-processed using C-PAC pipeline (Crad-
dock et al. 2013,), without global signal regression. For ACPI, we choose
linearly registered images using (Advanced Normalization Tools) ANTS
and without motion scrubbing and no global signal regression. For
already available preprocessed rest-fMRI subjects, we select the protocols
such that it matches with the standard protocol we use. We have not done
any additional preprocessing steps on ABIDE and ACPI.

Exclusion criteria. We not only exclude subjects based on visual in-
spection of preprocessed data, but also subjects that do not fall into bi-
nary classification groups, eg we removed subjects who had both bipolar
disorder and schizoaffective groups from COBRE samples. For HCP, we
select the subjects with single session and phase encoding in a left-to-
right (LR) direction. Out of these selected subjects, we discriminate the
low IQ from the high IQ individuals, where the data are split in 3 ac-
cording to quantiles 0.333 and 0.666, and the subjects in the middle
group are excluded to make the prediction easier in a binary classifica-
tion setup (see Table 1 for numbers of subjects included in the analysis).

Cross validation and error measure. We perform cross-validation (CV)
by randomly shuffling and splitting each dataset over 100 folds, forming
two sets of subjects: 75% for training the classifier and learning brain
atlases with data-driven models and the remaining 25% for testing on
unseen data (Varoquaux et al., 2017). We create stratified folds, preser-
ving the ratio of samples between groups. For each split, we measure the
Area Under the Curve (AUC) from the Receiver Operating Characteristics
(ROC) curve: 1 is a perfect prediction and .5 is chance. The final pre-
diction scores in AUC (> 120k scores) are used to measure the impact of
9 http://fcon_1000.projects.nitrc.org/indi/ACPI/html/.
10 We perform some additional experiments on the Human Connectome Proj-
ect (HCP) data, to assess that our experimental results still hold when using
high-quality datasets like HCP.
11 www.fil.ion.ucl.ac.uk/spm/.
12 https://github.com/neurospin/pypreprocess.
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various choices in our prediction pipeline outlined below in results
section.

Computations and implementation. Our experimental study consists of
more than 240 types of pipelines (8 atlases � 3 connectivity mea-
sures� 10 classifiers, plus some variants such as 3 filtering options and 3
covariance estimator options). These pipelines were run on each of 5
datasets for 100 CV folds. As a result, there are more than 500 000
pipeline fits, from the raw data to the supervised step, a heavy compu-
tational load. Technically, we rely on efficient implementations open-
source scientific computing packages using Python 2.7: Nilearn v0.3
(Abraham et al., 2014b) to define brain atlases, extract representative
timeseries and timeseries confounds regression, and build connectivity
measures. All machine-learning methods used for prediction i.e., classi-
fiers and cross-validation are implemented with scikit-learn v0.18.1
(Pedregosa et al., 2011). For visualization, we rely on Nilearn for
brain-related figures while matplotlib is used (Hunter, 2007) for gener-
ating other figures.

4. Results: benchmarks of pipeline choices

We now outline whichmodeling choices have an important impact on
predicting over diverse phenotypes from all rest-fMRI datasets.

We report in Table 2 the AUC scores obtained for all rest-fMRI
datasets. The scores reported in the table are simplified to the optimal
choice selection at each step in the pipeline which showed significant
impact. These optimal choice of steps are discussed in following sections.

Impact of methodological choices.We study the prediction score of each
pipeline relative to the mean across pipelines on each fold. This relative
measure discards the variance in scores due to folds or datasets. From
these relative prediction scores, we study the impact of the choice of each
step in the prediction pipeline: choice of classifiers, connectivity pa-
rametrizations, and brain atlases. This is a multifactorial set of choices
and there are two points of view on the impact of a choice for a given
step. First, the impact of the choice for one step may be considered when
the other steps are optimal, or close to optimal. Second, the impact of one
step may be considered for all other choices for the other steps
–marginally on the choice of other steps. Empirically, the two scenario
lead to similar conclusions. In the following figures, we study the first
situation, focusing on “good choices”: given a choice for one step, we
report data for top third highest performing scores (quantiles 0.666) for
the choices in the other steps. Appendix C gives results for all scores,
hence studying one choice, marginally upon the others.
4.1. Choice of classifier

Fig. 3 summarizes the performances of classifiers on prediction scores
for all rest-fMRI datasets. The results display a certain amount of variance
across folds and datasets (i.e., prediction targets). However, they show
that non-sparse (l2-regularized) linear classifiers perform better, with a
slight lead for logistic-l2. Using non-linear classifiers does not appear
useful; neither does sparsity. The results in Fig. 3 are conditional on a
Table 2
5th percentile, median and 95th percentile of accuracy scores in AUC over
cross-validation folds (n ¼ 100) for all five rest-fMRI datasets. Accuracy
scores reported correspond to optimal choices in functional connectivity pre-
diction pipeline: brain regions defined with regions using DictLearn, connectivity
matrices parametrized by their tangent-space representation, and an l2-regular-
ized logistic regression as a classifier, as discussed below. Best prediction is
achieved with schizophrenia vs control discrimination task on COBRE dataset at
86:2% (median).

Accuracy COBRE ADNIDOD ADNI ABIDE ACPI

5th percentile 75:5% 69:9% 57:8% 66% 42:5%
Median 86:2% 79:5% 72:5% 71:1% 55:4%
95th percentile 95% 90:6% 84:5% 75:6% 68:7%
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good choice for the other steps of the pipeline. The marginal perfor-
mances of the different choices of classifiers –i.e. cconsidering all other
choices in the pipeline– are shown in Figure A2. They show similar
trends, leading to preferring l2-regularized linear classifiers.

4.2. Choice of connectivity parameterization

Fig. 4 summarizes the impact of covariance matrix parametrization
on the relative prediction scores for all rest-fMRI datasets. Tangent-space
parametrization tends to outperform full correlations or partial correla-
tions. Indeed, it performs better on average, but also has less variance
across datasets (prediction targets) or folds. Results are similar for
simpler variant of the tangent-space parametrization relying on a simple
Euclidean mean rather than the full geometric (Riemannian) –see Ap-
pendix A for more details. While scores in Fig. 4 are conditional on a good
choice for other pipeline parameters, Figure A3 gives results marginal to
all choices. In both settings, connectivity matrices built with tangent
space parametrization give an improvement compared to full or partial
correlations.

4.3. Choice of regions definition method

To find the preferred approaches to define brain regions, we proceed
in two steps. First, for each method, we find the dimensionality that gives
the best prediction. This holds for the BASC atlas, that comes in various
dimensionalities, and for data-driven region-Definition methods, for
which we vary the dimensionality. Second, we study the prediction ac-
curacy for each approach at the optimal dimensionality.

Best approach. Fig. 5 summarizes the relative prediction performance
of all choices of region-Definition methods. While the systematic effects
are small compared to the variance over the folds and the datasets, the
general trend is that regions defined from functional data lead to better
prediction than regions defined from anatomy. Using ℓ1 dictionary
learning to define regions from rest-fMRI data appears to be the best
Fig. 3. Impact of classifier choices on prediction accuracy, for all rest-fMRI
datasets and all folds. For each classifier choice, only the top third highest
performing scores are represented when varying the modeling choices for other
steps in the pipeline: brain-region Definition and connectivity parametrization.
Figure A2 gives all the data points, not limited to good choices in the overall
pipeline. Overall, l2-regularized linear classifiers perform better, with a slight
lead for ℓ2 logistic regression. The box plot gives the distribution across folds
(n¼ 100) and datasets (denoted by markers) of prediction score for a given
choice (classifier) relative to the mean across all choices (regions-definition and
connectivity parametrizations, classifiers). The box displays the median and
quartiles, while the whiskers give the 5th and 95th percentiles.



Fig. 4. Impact of connectivity parameterization on prediction accuracy,
for all rest-fMRI datasets and folds. For each parametrization choice, only the
top third highest performing scores are represented when varying the modeling
choices for other steps in the pipeline: brain-region Definition and classifier.
Figure A3 gives all the data points, not limited to good choices in the overall
pipeline. Prediction using tangent space based connectivity parameterization
displays higher accuracy with relatively lower variance than using full or partial
correlation. The box displays the median and quartiles, while the whiskers give
the 5th and 95th percentiles.

Fig. 5. Impact of region-Definition method on prediction accuracy, for all
rest-fMRI datasets and folds. For each region-definition choice, only the top
third highest performing scores are represented when varying the modeling
choices for other steps in the pipeline: classifier and connectivity parametriza-
tion. Figure A4 gives all the data points, not limited to good choices in the
overall pipeline. Learning atlases from rest-fMRI data tends the prediction for all
tasks. By contrast anatomical atlases perform poorly over diverse tasks. The box
displays the median and quartiles, while the whiskers give the 5th and 95th

percentiles.
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method, closely followed by ICA, which is also based on a linear
decomposition model. Interestingly, BASC, an atlas pre-defined on un-
related rest-fMRI datasets using data-driven clustering technique, per-
forms almost as well as the best regions-extraction method applied to the
rest-fMRI data of interest. Unlike other pre-defined atlases, like Harvard
Oxford or AAL, that lack some crucial functional regions. The BASC atlas
(Bellec et al., 2010) is readily available online, and is thus easy to apply to
data. Fig. 5 shows the impact of region-definition approach conditional
on good choices in the other steps of the pipeline, however studying the
impact of region-definition independently of other choices (Figure A4).
Both comparisons highlight that defining regions from functional data
gives the best-performing pipelines, and that linear-decomposition
methods are to be preferred.

Optimal dimensionality. The choice of the best dimensionality for each
approach paints a less clear picture (Fig. 6): a range of dimensionalities lead
for good prediction for each method.13 We find that there is a very soft
optimum: prediction reaches a plateau as the number of extracted networks
increases, and then slowly decreases for some methods. To favor the most
parsimoniousmodel, in this paperwechoose toworkat the lower endof the
plateau (red arrow on Fig. 6): simpler models for better stability and sta-
tistical control. While this choice is not clear cut, the curves also suggest
that, in a reasonable range, it does not have a large impact on prediction
accuracy. Note that the dimensionality here corresponds to the number of
networks, these are then broken up into separate regions. We find that the
typical number of regions at the optimal is around 150 (Appendix E).

Localized regions or distributed networks. Nodes of the functional con-
nectomes may be defined from localized regions, or the distributed
13 Note that, these curves are shown for the optimal choices found above: an l2-
penalized logistic regression as a classifier, and tangent-space parametrization to
clarify the interpretation.
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networks that naturally arise from approaches such as ICA or dictionary
learning. The choice of one over the other has little impact over predic-
tion, though there is slight, non significant, benefit to using regions
(Figure A5).

4.4. Larger datasets and pre-computed atlases

To investigate the consistency of analytics choices for higher-quality
datasets, we perform extra benchmarks including the HCP data. As this
data comprises much longer time-series, we restrict our analysis to pre-
computed atlases, that alleviate computational costs. We share the
resulting time-series and scripts to reproduce our analysis.14

Fig. 7 summarizes the impact of method choice on the prediction
accuracy for all six different cohorts. This experiment outline similar
tradeoffs as the others: functional atlas pre-computed with dictionary
learning (here MODL, from Mensch et al. (2016a)), tangent-space
parametrization, and l2-regularized classifiers are preferable. This
experiment is not as systematic as the other, as a very large dataset like
HCP would require much more computing power to study region
extraction.15 Yet, even for region-Definition methods, it outlines similar
trends than when tuning the regions to the data at hand.

4.5. Filtering, global signal, and covariance estimation

When extracting functional signal for connectivity modeling, there
are many options to reject confounds, including temporal filtering or
14 github.com/KamalakerDadi/benchmark_rsfMRI_prediction
15 To ensure a correct nested cross-validation and avoid circularity (over-
fitting), data-driven region-extraction methods must be run on each fold, hence
several hundred time for each pipeline configuration.



Fig. 6. Impact of the number of regions in atlases on prediction accuracy. The figure shows the distribution of the relative accuracy AUC scores across methods
on the five rest-fMRI datasets, as a function of the number of regions. Horizontal bars (black) represent the median of the relative scores for the given number of
regions. The chosen dimensionality for each method is indicated by a red arrow and was selected as the one with lowest variance in the error, and a median
above zero.
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global signal mean regression (Fox et al., 2009; Murphy et al., 2009;
Power et al., 2012). Also, to extract a structure reflecting well brain
connectivity, it has been show that careful covariance estimation is useful
and that sparse inverse covariance methods perform well (Smith et al.,
2011; Varoquaux et al., 2010b). For both of these steps, our experiments
for predictive modeling applications do not reveal clear preferences.

Different time-series filtering approaches (band-pass or global-signal
regression) make no visible differences on prediction accuracy
(Figure A9). A likely reason is that the supervised step can learn a pre-
dictor that is independent of the corresponding noise in the signal.

With regards to covariance estimation, we also investigate the
empirical covariance (maximum likelihood estimator) and sparse inverse
covariance (Appendix H). The empirical covariance can only be used to
compute correlations –as partial correlation or tangent parametrization
require an invertible covariance matrix– in which case it performs
similarly as the Ledoit-Wolf estimator (see Figure A11). Sparse inverse
covariance performs as well or worse than the Ledoit-Wolf estimator.
This latter estimator is easier to use, as it is faster and does not require
setting a regularization parameter. Learning discriminant connectivity
patterns across conditions does not seem to require the same regulari-
zation –sparsity– as identifying the brain connectivity structure.

5. Discussion

An increasing amount of studies use predictive models on functional
connectomes, for instance in population-imaging settings to relate brain
activity to psychological traits or to build biomarkers of pathologies.
While the basic steps of a pipeline are fairly universal –Definition of brain
regions, construction of an interaction matrix, and supervised learning–
studies in the literature show many methodological variants (Table A2).
Recommendations on methods that perform well can increase practi-
tioner's productivity and limit vibration effects that risk undermining the
reliability of biomarkers (Varoquaux, 2017). A challenge to such rec-
ommendations is the heterogeneity of prediction settings, for instance
across different acquisition centers or clinical questions.

Here, we investigate methodological choices across 6 databases
covering different clinical questions and behavioral task.We systematically
compare commonly used functional connectome-based prediction
methods. We find that some trends emerge, despite a large variance due to
variability across subjects –visible across the folds– and across cohorts and
clinical questions. Non-sparse linear models, such as logistic regression,
appear as a good default choice of classifier. The lack of success of sparse
approaches suggests that the discriminant signal is distributed across the
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functional connectome for the tasks we study. The tangent-space parame-
trization of functional connectomes brings improvements to prediction
accuracy. With regards to nodes of the functional connectomes, defining
them from rest-fMRI data gives slight benefits in prediction. Linear
decomposition methods, such as dictionary learning or ICA, are good ap-
proaches to define these nodes from the rest-fMRI data at hand. Unlike
clustering methods base on “hard” assignment, they provide a soft assign-
ment to regions, enabling to capture a form of uncertainty in the Definition
of regions. Alternatively, the MODL16 (Mensch et al., 2016a) or BASC
(Bellec et al., 2010) atlases provide good readily-available nodes that
simplify the process and alleviate computational cost. The good analytic
performance of pre-computed atlases is promising and calls for further
study. Establishing standard atlases brings significant computational ben-
efits, as the definition of regions and the extraction of signal is the most
computation-intensive part of the pipeline –in particular when performed
inside a nested cross-validation loop. We found that using around 100
networks (corresponding to150 regions)was sufficient for goodprediction,
though for many region-definition approaches a finer resolution did not
hurt average prediction accuracy but only increased variance.

Overall, these results are consistent with the practice of the field.
Preliminary comparisons in Abraham et al. (2017) on a single cohort
revealed similar trends though ICA had performed poorly while here,
with more systematic benchmarking, it appears to be a good solution.
ICA has been used to define functional parcellations or nodes of func-
tional connectomes by many groups (Kiviniemi et al., 2009; Rashid et al.,
2014; Smith et al., 2015; Miller et al., 2016). More generally, it is well
recognized that the nodes should be defined to match functional net-
works (Smith et al., 2011). Logistic regression, or the closely-related
SVM, is the go-to classifier for many. Tangent-space parametrization of
the connectivity matrix is more exotic, probably due to the mathematical
complexity of its original presentation. However, it is gaining traction
outside of methods studies (Colclough et al., 2017; Ng et al., 2017) and is
simple to implement, as summarized in Appendix A.

To enable comparison across different cohorts, we focused on 2-class
classification problems. However, the results in terms of regions Defini-
tion and connectivity parametrization should extend to other supervised
learning settings, such as regression –e.g. for age prediction (Liem et al.,
2017)– multi-output approaches as with Canonical Correlation Analysis
popular in large-scale population imaging settings (Smith et al., 2015;
Miller et al., 2016) for dimensional approaches to psychology.
https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip.

https://team.inria.fr/parietal/files/2018/10/MODL_rois.zip


Fig. 7. Pipelining choices with precomputed regions, across six datasets:
Marginal distribution of relative prediction scores, using only pre-computed
atlases for regions Definition, where MODL is a parcellation built using a form
of Online dictionary learning. Restricting to pre-computed regions and adding a
different dataset (HCP) gives results consistent with Figs. 3–5: best choices are
regions defined functionally, with decomposition methods (MODL) followed by
clustering methods (BASC), tangent-space parametrization of connectivity, and
l2-regularized logistic regression. The box displays the median and quartiles,
while the whiskers give the 5th and 95th percentiles. Table A1 reports the cor-
responding absolute scores.

Table 3
Recommendations for rest-fMRI based prediction pipeline.

Step Recommendation

1: region extraction Functional regions,
eg Dictionary learning or ICA

2: connectivity matrix Tangent-space embedding
3: supervised learning Non-sparse linear model,

eg logistic regression or SVM
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Limitations and Challenges. The main limitation of our study is prob-
ably that we had to make choices and focus on themost popular methods.
Indeed, to study systematically methods avoiding overfit requires
computational-intense nested cross-validation (where the nesting is
required to set the methods’ internal parameters). In particular, we did
not investigate Total-Variation constrained dictionary learning (TV-
MSDL, Abraham et al. (2013)). This approach defines regions by
imposing spatial structure in a linear-decomposition model. In a previous
study, we found it promising (Abraham et al., 2017), but it entailed too
large of a computational cost for this multi-cohort study. Another
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important class of methods that this study did not investigate are bio-
markers based on graph-theoretical approaches. Indeed, we bench-
marked variants of a specific pipeline –region Definition, followed by
construction of a connectivity matrix, and supervised learning on it.
Graph-theoretical approaches are an additional step to add to this pipe-
line. A full study of all options with this additional step would result in a
combinatorial explosion of pipelines and prohibitive computational
costs. We hope that the good choices of regions for edge-level models
outlined in this study is also a good one for graph-theoretical approaches
and that further studies can focus on exploring only a subset of the op-
tions covered here.

With evolving techniques, characteristics of data change, and optimal
choices may evolve. However, the consistency of results on HCP suggest
that our conclusions apply to high-quality datasets using state of the art
techniques. A potential concern is the low accuracy for markers of drug
abuse in subjects from ACPI datasets, possibly because the number of
subjects is small or because ADHD status confounds drug-abuse predictions
even after regressing it out. Nevertheless, our pipelines achieved similar
accuracy as reported in a previous study on the same data (Meszl�enyi et al.,
2016). Finally, the analysis performed here can only outline trends across
datasets. Indeed, the study does not establish that a pipeline choice strictly
dominates others (see notes on statistical analysis in Appendix J), but it
gives expected improvements. In term of expected improvement, the
choice of classifier is the most important, as going from a poor to a good
choice can improve the AUC by more than 0.1. Both choice of region and
choice of parametrization bring smaller expected improvements.

6. Conclusion

Predictive models on rest-fMRI bring the promise of robust and reli-
able biomarkers: given new brain imaging data, they should give accu-
rate predictions of clinics or behavior (Woo et al., 2017). The framework
of the functional connectomes grounds well the analysis of rest-fMRI; yet
instantiating it still calls for many arbitrary choices.

Our study reveals trends that can provide good defaults to practi-
tioners, summarized on Table 3: regions defined from functional data, for
instance with ICA or dictionary learning as in the pre-computed MODL
atlas, representing connectivity with the tangent embedding of covari-
ance matrices, and using a non-sparse linear model, such as a logistic
regression. In particular, good defaults can limit the combinatorial ex-
plosion of analytic pipelines, which decreases the computational cost of
running a study andmakes its conclusionmore robust statistically. Yet, as
it is well known in machine learning (Wolpert, 1996), there cannot be a
one-size-fits-all solution to data analysis: optimal choices will differ on
datasets with very different properties from the datasets studied here.
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IRB. All data were used accordingly to respective usage guidelines.

Data and code availability

The original data can be retrieved from:
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� COBRE http://cobre.mrn.org/
� ADNI & ADNIDOD www.adni-info.org
� ACPI http://fcon_1000.projects.nitrc.org/indi/ACPI/html/
� ABIDE http://preprocessed-connectomes-project.org/abide/index.h
tml

� HCP https://www.humanconnectome.org/study/hcp-young-adult
/document/900-subjects-data-release

Code to reproduce the experiments can be retrieved from: http
s://github.com/KamalakerDadi/benchmark_rsfMRI_prediction.

To facilitate reproduction, we also share time series, though without
labels to comply with original data usage conditions, on https://gith
ub.com/KamalakerDadi/benchmark_rsfMRI_prediction/blob/master/do
wnloader.py.
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Appendix A. Computing the covariance tangent-space

Most of the methods that we study are readily-available in several computing environments, including Matlab and Python with a variety of well-
maintained implementations. However, the only library that provides the tangent-space parametrization of covariance matrices is the Nilearn Py-
thon library.17 To facilitate reproducing our analysis in different environments, we describe here how to compute this parametrization with a few simple
formulas. The computation is made of two step: First a group average covariance matrix Σ⋆ is computed from the covariances of the training subjects:
fΣi; i 2 T raing. Second, it is used to transform covariance matrices, in the train set or the test set.

Fig. A1. Difference between mean of MCI and AD group connectivity matrices: We show the connectivity matrices from the ADNI dataset computed on samples
diagnosed as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). As can be seen, tangent-space parametrized connections are interpretable and positions
in between correlation and partial correlation in terms of connectivity differences. We show the matrices estimated using timeseries extracted with pre-computed
MODL dict. learning atlas of n¼ 64.
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Computing the group average.As with any analysis based on covariance or correlationmatrices, it is preferable to compute individual covariances from
time series with an estimator that ensures well-conditioned matrices. The Ledoit and Wolf (2004) estimator is a good default choice (Varoquaux and
Craddock, 2013; Brier et al., 2015).

Strictly speaking, the group average should be computed according to the geometry of covariance matrices (Varoquaux et al., 2010a; Pennec et al.,
2006). This is a Frechet mean, which is computed by minimizing a cost function for instance using algorithm 3 of Fletcher and Joshi (2007). A simpler
approach relies on using the Euclidean mean, which we found to give almost the same predictive performance. In this case, the formula of the mean is
the standard one:

Euclidean mean : Σ⋆ ¼ 1
ntrain

X
i2T rain

Σi (A.1)

Transforming covariance matrices

Given the group reference covariance matrix Σ⋆, covariance matrices are transformed in the tangent-space representation by whitening them as
follows (Varoquaux et al., 2010a). Computations are easily written with eigenvalues decompositions18: given a subject's covariance matrix Σi,

1. Compute the whitened matrix ~Σi ¼ Σ�1=2
⋆ Σi Σ�1=2

⋆ :

~Σi ← UTΔ�1
2 U Σi UTΔ�1

2U (A.2)

where UTΔ U ¼ Σ⋆ by eigen-value decomposition, and operations on the diagonal matrix Δ are element-wise operation applied to the diagonal.

2. Compute the matrix logarithm logm ~Σi:

logm
�
~Σi

� ¼ ~U
T
log

 eΔi

!
~U (A.3)

where ~Σi ¼ ~U
T ~Δi ~U and the logarithm is applied to the diagonal elements of ~Δi.

Finally, the resulting matrix is turned to a vector and its entries are used as a features for the classifier.
The motivation from these transformations arises from the fact that covariance matrices –or correlations matrices– form a specific manifold of the

ℝp�p matrices. Their structure is broken by standard additive arithmetic's: the difference of two covariances may create a matrix that does not corre-
spond to the covariance matrix of a signal. Optimal statistical analysis calls for following the structure of the manifold (Pennec et al., 2006). The
tangent-space parametrization is a simple way to approximate this structure by Euclidean geometry, in which standard additions and subtractions can
be used (Varoquaux et al., 2010a).

With regards to statistical analysis, the structure of covariance matrices appears as constraints, or dependencies, between the coefficients of the
matrix. As a result, these coefficients alone form a poor representation for second-level statistical analysis. The tangent-space approximation yields a
parametrization of the problem in which features are i.i.d. (Varoquaux et al., 2010a). Such a parametrization is optimal for statistical learning. In
addition, as discussed in Varoquaux et al. (2010a), this parametrization also gives good edge-level tests for instance see Figure A1. Hence, the weight
vectors of the classifiers can be interpreted as edge-level weights.

Appendix B. Time-series signals extraction

In this appendix, we give more details on time-series extraction, to complement subsection 2.3. After defining brain ROIs, we extract a representative
time-series for each ROI in each subject. For atlases composed of non-overlapping ROIs as can be seen in Fig. 2 (bottom row), we simply compute the
weighted average of the fMRI time series signals over all voxels within that specific region. For fuzzy overlapping ROIs, such as the atlases driven by
CanICA and DictLearn as shown in Fig. 2 (top row), we use ordinary least squares regression to unmix the signal in each voxel as the additive decomposition
of signals over several overlapping ROIs. This is the same procedure as in (Abraham et al., 2017). Let Y 2 ℝn�p be the subject-specific signals, written as p
voxels by n timepoints, and V 2 ℝk�p the atlas of k maps supported on p voxels. We estimate U 2 ℝn�k, the set of time series for each ROI, using:

bU ¼ argmin
U

Y� UV2

At the signal-extraction level, we regress out confounds or non-neural information (Varoquaux and Craddock, 2013). As confounding time-series we
use: 10 CompCor (Behzadi et al., 2007) on the whole brain and 6motion related.We removemotion-related signal only for COBRE, ADNI and ADNIDOD
as they are provided as raw data. We have not done any additional preprocessing steps on already preprocessed public datasets like ABIDE,19 ACPI20.
The signal of each region is also then normalized, detrended and bandpass-filtered between 0.01 and 0.1 Hz. All these steps are done with Nilearn v0.3.

Investigating filtering choices. At signal extraction level, we perform additional experiments to assess the impact of filtering strategies (low-pass
filtering, global signal regression) on prediction accuracy. Overall, we observe no significant differences between filtering strategies —low-pass filter
and no global signal regression, low-pass filter and global signal regression, no low-pass filter and no global signal regression. See Appendix F for
18 All covariance matrices are symmetric definite positive, and well-conditioned if estimated with the Ledoit-Wolf approach.
19 http://preprocessed-connectomes-project.org/abide/.
20 http://fcon_1000.projects.nitrc.org/indi/ACPI/html/.
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complete comparisons.
Appendix C. Comparing each step marginally on the others

The figures in the main part of the paper summarize the impact of one modeling choice in the pipeline conditionally on nearly-optimal choices for
the other steps. Here we compare the modeling choices at each step marginally on all other choices, i.e. considering all results and including well
performing and poorly performing pipelines. This approach studies each step of the method independently from the other steps. The results are overall
similar to performing the conditional analysis, however the variance is larger, as the plots pool together pipelines that perform well and pipelines that
perform poorly.
Appendix C.1Step:3 Choice of classifiers

Figure A2 shows the relative impact of classifier choices on prediction accuracy. All ℓ2 regularized classifiers are performing markedly better than
other considered classifiers, with a logistic regression as the best performer.

Fig. A2. Impact of classifiers on prediction accuracy: Marginal distribution of the relative prediction accuracy of all classification choices for all rest-fMRI datasets.
The results are obtained covering all the choices for the remaining steps i.e., atlases and connectivity parametrizations. Non-sparse linear models perform well and l2-
regularized logistic regression appears as the best choice.
Appendix C.2Step 2: Choices of connectivity parametrizations

Figure A3 shows the relative impact of connectivity parametrization on prediction accuracy when considering all choices for the other pipeline steps.
The tangent-space parametrization performs better than correlation or partial correlation and gives less variance.

Fig. A3. Impact of connectivity parametrization on prediction accuracy: Marginal distribution of relative prediction accuracies for all rest-fMRI datasets,
considering all pipelining options. Tangent space parametrization displays the highest accuracy and smallest variation across all datasets and folds.
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Fig. A4. Impact of regions-Definition method on prediction accuracy: Marginal distribution of relative prediction accuracy per region-definition approach across
all rest-fMRI datasets. This is obtained while considering all pipelining options uniformly in all other steps. Among all pre-defined atlases, BASC is best. Among data-
driven based atlases, the best choice is Online dictionary learning.

Fig. A5. Impact of regions-vs network-based representation on prediction accuracy: Each data point represents the difference in relatively mean prediction
scores between regions –i.e. with extraction of connected components– and networks –without such an extraction. Each time, the optimal dimensionality for the
corresponding option is used. Points on the left side indicate that the network representation is better, while points on the right side indicate superior performance of
the region-based representation. Results are shown for each rest-fMRI dataset. Regions-based representations appear better suited, but this effect is not significant.
Note that Ward clustering does not appear in this figure as it extracts connected regions.
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Fig. A6. Impact of the number of regions in data-driven atlases on prediction accuracy. For each method, the distribution of relative prediction accuracy (AUC)
is displayed as a function of the number of regions, across rest-fMRI datasets. The horizontal bar (black) represents the median of the relatively mean scores for each
dimensionality. The whiskers of each data point represent the 95% confidence interval for a given dataset across the folds. The optimal choices (red arrow) are selected
as the minimal variance score with a median close to the maximum. The prediction scores are obtained for the optimal pipeline setting, involving tangent-space
parameterization and logistic regression-l2 classifier.
Appendix C.3Step:1 Choices of region-Definition methods

Figure A4 shows the relative impact of region-Definition choices on prediction accuracy for all choices in remaining steps. Atlases which are
functionally derived lead to good performances. Linear-decomposition methods, appear as the best choice for region-definition methods, in particular,
Online Dictionary Learning.

Appendix D. Additional experiments on region-Definition methods

Here we give additional results related to step 1 of the pipeline: defining nodes, formed of brain regions or brain networks. An important parameter
to chose is the optimal dimensionality dim i.e., how many networks are needed to predict from the rest-fMRI images. Another choice is whether these
networks should be broken up into simply connected regions –with a region-extraction step– or whether distributed networks can be readily used. These
two parameters may be important in the comparison of brain-region Definition, in particular for data-driven approaches such as linear decomposition or
clustering methods. In our study, we found that atlases learned using linear decomposition methods give a good prediction.
Appendix D.1Varying dimensionality without region extraction

While the results in the main part of the manuscript are presented after regions extraction, Figure A6 studies the optimal dimensionality without
region extraction. The optimal choices are not far from what we have observed with region extraction (Fig. 6). As shown with a red arrow, the di-
mensions shown good prediction impact are: ICA and DictLearn - 80 networks, K-Means and Ward - 120 clusters, 122 networks with BASC. As
dimensionality goes higher, we observe that the variance in prediction accuracy increases.
Appendix D.2Defining nodes with regions or networks

One the optimal dimensionality chosen with and without region extraction, we compare for each method whether region-Definition with regions or
networks gives best prediction. Figure A5 summarizes the results but with no obvious clear-cut conclusions. The figure shows the distribution of
differences in prediction scores between regions-based approaches and network-based approaches. There is a very slight tendency to favor region-based
approaches, but the trend is not significant.
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Appendix E. Regions extracted for different network-Definition methods
Fig. A7. Distribution of number of regions extracted on brain maps given the increase in number of dimensions.
Fig. A8. Spurious map obtained using Group ICA method on COBRE dataset (top) and regions extracted from this spurious map outlined with contours
(bottom): This shows a simple example of the degeneracy of the distribution of regions reaching 300 even for low dimensionality such as dim ¼ 80. Full distribution of
regions on various atlases are shown on Figure A7 for comparison.
Data-driven method tend to naturally extract networks rather than regions: ICA and dictionary learning give distributed networks, while KMeans
gives clusters made of different connected components. Only Ward clustering readily gives ROIs as it has connectivity constraints.

We use a region-extraction procedure to go from networks to regions (Abraham et al., 2014a). Figure A7 shows the distribution of the number of
regions extracted from networks obtained with different approaches for increasing dimensionality. The computational cost is too high to learn spatial
maps for each split using Group ICA and Online Dictionary Learning. Hence we show outcomes for dimensions up to 120. For each method, the dis-
tribution of the number of regions regularly increases with increasing dimensionality: the number of regions is roughly proportional to the number of
networks.

For the optimal choice of dimensionality (dim ¼ 80 for Group ICA and DictLearn and dim ¼ 120 for K-Means as studied in Fig. 6), the average
number of regions lies on average around 150.

The number of regions extracted from ICA network sometimes displays an ill-controlled behavior, for instance for dim ¼ 80;100;120 on COBRE,
where a small number of folds lead to 300 or more regions. We believe that these high number of regions are extracted from an noisy ICA mapwith little
structure as shown in Figure A8. Dictionary learning, which has a criteria on sparsity of the maps, does not create such unstructured maps, and therefore
does not suffer from the same problem.
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In general, it can be expected that increasing the dimensionality of an ICA typically split large-scale networks into smaller regions. Given these noise
components, the picture is slightly more complex. Indeed, as shown by Figure A7, high-dimensional ICA also typically extracts more noise components.

Fig. A9. Temporal signal filtering strategies on prediction accuracy (AUC) for five rs-fMRI datasets: Distribution of relative prediction scores showed no big
differences across three filtering strategies: lowpass filter and no global signal regression, lowpass filter and global signal regression, no lowpass filter and no global
signal regression.

Fig. A10. Comparison between geometric & Euclidean distance metrics on tangent space parametrization of covariances: Distribution of difference in
prediction score (AUC) between these 2 metrics outlined for the dictionary learning atlas. Geometric distance based connectivity parametrization yields higher ac-
curacy than Euclidean distance based parametrization.

Fig. A11. Impact of covariance estimator, for the different connectivity parametrizations: Marginal distribution of relative prediction scores per connectivity
method across covariance structures for all rest-fMRI datasets. This is obtained by considering the good choices in dimensionality as studied in the main figures.
Overall, using empirical covariance instead of Ledoit-Wolf shrinkage yield minor difference in prediction performances; note that partial correlation and tangent
parametrization require the use of shrinkage. Graph lasso tends to perform lower compared with other estimators.

Appendix F. Experiments on filtering time-series

The results in the main part of the paper (eg Figs. 3, Figure 4, Fig. 5) as well as the marginal distribution figures shown on Appendix C, are established
with low-pass filter of the time series and without global signal regression.
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Here, we investigate the impact of filtering strategies on prediction accuracy. We compare three filtering schemes: low-pass filtering and no global
signal regression, low-pass filtering and global signal regression, no low-pass filtering and no global signal regression. Figure A9 shows the outcome for
all of these filtering combinations: there is no significant differences on prediction accuracy across all rs-fMRI datasets.

Appendix G. Tangent-space parametrization: Euclidean versus Geometric mean

We also compare two variants of tangent-space parametrization: using the geometric (Frechet) mean and using the simple Euclidean mean for Σ⋆

(A). Figure A10 highlights the difference between the relative prediction scores for each dataset. We compare between the optimal choices in brain atlas
methods i.e. GroupICA and DictLearn. Geometric mean based parametrization gives a slightly better prediction accuracy than Euclidean mean based
parametrization. Euclidean mean gives a reduced computational cost, but the Geometric mean is better justified in theory.

Appendix H. Covariance estimators: unregularized, l2-regularized

Figure A11 compares different covariance estimators for the three connectivity parametrizations.
Appendix H.1Empirical covariance: unregularized

We considered empirical covariance as our choice of unregularized covariance estimator. Using empirical covariance in the pipelines did not
improve the predictions. We found little difference when compared with Ledoit-Wolf using full correlation as can be seen from Figure A11.

The empirical covariances are ill-conditioned matrices and not invertible, hence they cannot be used for partial correlations or tangent parame-
trization. Ledoit-Wolf shrinkage or sparse inverse covariance estimators overcome such limitations.
Appendix H.2GraphLasso: l2-regularized estimator

Sparse inverse covariance is effective at recovering brain connectivity (Smith et al., 2011; Varoquaux et al., 2010b).Weuse the graphical lasso (Friedman
et al., 2008) to estimate sparse covariance matrices, in order to study full correlation, partial correlation and tangent space parametrization in com-
parison with l2-regularized covariance estimator (Ledoit-Wolf). Such estimator requires the choice of a regularization parameter that sets the amount of
sparsity. A good regularization parameter typically depends on the amount of time points available and the number of nodes. For each dataset and choice of
regions, we used an inner-loop optimization to set the regularization parameter: we test two parameters values, 0.5 and 0.2, where 0 corresponds to a non
regularizedcovarianceand1orabove to fully sparse covariances. For all datasets, 0.5was thebest trade-off asusing0.2gave ill-conditioned results.Note that
parameter selection for the graphical lasso on awide andvarieddataset is challenging as the graphical lasso runs into convergenceproblemswhencovering a
variety of regularization parameters on covariance matrices with different properties. This happens very seldom, but with 100 folds on 1500 subjects, and a
dozen different atlases, the problemmakes automatic parameter selection difficult. The convergence problem iswell understood theoretically: the algorithm
is a primal-dual algorithm and errors can accumulate between the primal and the dual solution (Mazumder and Hastie, 2012).

Figure A11 shows the impact of graph lasso on connectivity parametrizations. Overall, we observed no improvements in the prediction results based
on graph lasso with respect to Ledoit-Wolf.
Table A1

5th percentile, median and 95th percentile of accuracy scores in AUC over cross-validation
folds (n ¼ 100) for all six rest-fMRI datasets including HCP. Accuracy scores reported corre-
spond to optimal choices in functional connectivity prediction pipeline as shown on Fig. 7: pre-
computed atlas defined using massive online dictionary learning (MODL), connectivity matrices
parametrized by their tangent-space representation, and an l2-regularized logistic regression as a
classifier.

Dataset Accuracy
5th percentile
130
Median
 95th percentile
HCP
 62:3%
 67:8%
 74:9%

COBRE
 72:4%
 83:9%
 91:9%

ACPI
 39:8%
 53:7%
 68:7%

ADNI
 57:4%
 72:2%
 85:0%

ADNIDOD
 69:9%
 80:2%
 88:0%

ABIDE
 64:5%
 69:7%
 75:3%
Appendix I. A review of current practices in functional connectome-based classification

Table A2 summarizes about the list of methods used for prediction studies in diverse psychiatric diseases.

Table A2

A comprehensive list of functional connectome-based prediction studies on psychiatric diseases. This table demonstrates the variants of methods in the pre-
diction pipeline for various clinical questions. SVM - Support Vector Machines, NN - Neural Network, ANOVA - Analysis of Variance. * - denotes well performed
classifiers respective to their current study.

Reference Clinical question #Subjects Functional # Nodes Classifier
& Accuracy
 matrix
 (type of nodes)
Nielsen et al. (2013)
 ASD
 964
 Pearson's correlation
 7266
 SVM

60%
 (coordinates)
Abraham et al. (2017)
 ASD
 811
 Covariance: Full & Partial
 84
 Gaussian Naive Bayes,

67%
 correlation, Tangent-space
 (data-driven)
 Random Forests, Ridge*
parametrization
 Lasso, SVM-ℓ1 & ℓ2
�,
ANOVA þ SVM-ℓ2
(continued on next column)
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Table A2 (continued )
Reference
 Clinical question
 #Subjects
 Functional
131
# Nodes
 Classifier
& Accuracy
 matrix
 (type of nodes)
Iidaka (2015)
 ASD
 640
 Pearson's correlation
 90
 Kernel Discriminant

90%
 (anatomical)
 analysis (Neural network)
Dodero et al. (2015)
 ASD
 94
 graph Laplacian
 264
 Kernel SVM-ℓ2
60.76%
 (Riemannian manifold)
 (coordinates)

Wee et al. (2016)
 ASD
 92
 Pearson's correlation
 116
 SVM-ℓ2 & Lasso
71%
 (anatomical)
 SVM-ℓ2 & Lasso

Anderson et al. (2014)
 ADHD
 730
 Network modularity &
 90
 C4.5 decision trees
67%
 centrality
 (data-driven)

Cheng et al. (2012)
 ADHD
 730
 Pearson's: Partial & full
 90
 Kernel SVM-ℓ2
76%
 correlations
 (anatomical)

Rashid et al. (2016)
 Schizo, bipolar
 273
 Covariance: Full correlation
 100
 SVM
59.12%
 (data-driven)

Bassett et al. (2012)
 Schizo
 58
 Network modularity &
 90
 SVM-ℓ2
75%
 centrality
 (anatomical)

Arbabshirani et al. (2013)
 Schizo
 56
 Pearson's correlation
 9
 Bayes, Fisher, Logistic
96%
 (data-driven)
 Perceptron, SVM,

K-nearest neighbor*, Gaussian

Naive & Quadratic Bayes,

Binary decision trees,

Radial Basis Function-SVM
Shen et al. (2010)
 Schizo
 52
 Pearson's correlation
 116
 C-means

92%
 (anatomical)
Guo et al. (2012)
 MDD
 76
 Network modularity &
 90
 Radial Basis Function-SVM*

79%
 centrality
 (anatomical)
 Neural Network*
C4.5 decision trees

Linear Discriminant Analysis

Logistic Regression
Craddock et al. (2009)
 MDD
 40
 Pearson's correlation
 15
 SVM-ℓ1
95%
 (coordinates)

Rosa et al. (2015)
 MDD
 38
 Inverse covariance
 137
 SVM-ℓ1
85%
 (pre-defined)

Gellerup (2016)
 PD
 45
 Pearson's correlation
 264
 SVM-ℓ2
84%
 (coordinates)

Khazaee et al. (2015)
 AD/MCI/NC
 168
 Network modularity &
 90
 SVM-ℓ2
88%
 centrality
 (pre-defined)

Vanderweyen et al. (2015)
 AD/TBI/NC
 69
 Partial correlations
 264
 SVM-ℓ2 & Lasso
82%
 (coordinates)

Chen et al. (2011)
 AD
 55
 Pearson's correlation
 116
 Linear Discriminant
87%
 (anatomical)
 analysis

Fei et al. (2014)
 MCI
 37
 Frequent sub-network
 116
 Graph-kernel
97%
 mining (gSpan)
 (anatomical)

Jie et al. (2014)
 MCI
 37
 Hyper-network graph
 116
 Multi-kernel SVM-ℓ2
95%
 (anatomical)

Wang et al. (2014)
 MCI
 37
 Local cluster coefficient þ
 116
 Multi-kernel SVM-ℓ2
97%
 Sub-network (gSpan)
 (anatomical)

Zhu et al. (2013)
 MCI
 28
 Pearson's correlation
 358
 SVM-ℓ2
96%
 (coordinates)

Dosenbach et al. (2010)
 Age groups
 122
 Pearson's correlation
 160
 SVM-ℓ2 (regression)
91%
 (meta-analyses)

Pruett et al. (2015)
 Clinical risk
 128
 Pearson's correlation
 230
 SVM-ℓ2
81%
 (meta-analyses)

Qiu et al. (2015)
 Age
 178
 Inverse Covariance
 80
 Linear regression ℓ2
r ¼ 0:59
 (Riemannian manifold)

Ng et al. (2014)
 Before/After
 51
 Pearson's correlation
 78
 SVM-ℓ2
motor learning 98%
 (Riemannian manifold)
 (data-driven)

Colclough et al. (2017)
 Heritability
 820
 Partial & full correlations
 39
 –
(Riemannian manifold)
 (data-driven)
Appendix J. A note of statistical analysis of cross-validation

Cross-validation cannot easily be used to reject null hypotheses when comparing analytic choices as the multiple per-fold values that it gives are not
independent (as discussed in appendices of Varoquaux (2017)). Rather, they are resampling estimates, and therefore give a posterior on the prediction
accuracy: the prediction accuracy is a property of the model fitted on the data at hand –see sec 8.4 Hastie et al. (2009) for the link between resampling
and Bayesian statistics. Comparing distribution of cross-validation accuracy thus cannot establish frequentist p-values –that the differences observed
between models are not due to chance– but it can give posterior predictive distribution, and therefore the expected improvement of one model
compared to another on new data.



K. Dadi et al. NeuroImage 192 (2019) 115–134
Table A3
Parameters used for the acquisition of rs-fMRI datasets. HCP - Human Connectome Project, MTA - Multimodal Treatment of Attention Deficit Hyperactivity Disorder
- the acquisition site of ACPI datasets, CMU - Carnegie Mellon University, KKI - Kennedy Krieger Institute, MaxMun - Ludwig Maximilians University Munich, NYU - New
York University Langone Medical Center, OHSU - Oregon Health and Science University, SDSU - San Diego State University, SBL - Social Brain lab, UCLA - University of
California, Los Angeles, UM - University of Michigan, Pitt - University of Pittsburgh, USM - University of Utah School of Medicine, EPI - Echo planar imaging, TR -
Repetition time, TE - Echo time, FoV - Field of View, y- the number of volumes reported are what have been included in the analysis pipelines.

Dataset Acquisition type Slice thickness FoV Voxel size Matrix size TR TE Flip angle Number of volumesy
132
ðmmÞ
 ðmmÞ
 ðmmÞ
 ðmsecÞ
 ðmsecÞ
 (�)
COBRE
 T2�-weighted
 3.5
 240
 3:75� 3:75� 4:55
 64� 64
 2000
 29
 75
 150

gradient-echo EPI
ADNI
 T2�-weighted
 3.3
 240
 3:31� 3:31� 3:31
 64� 64
 3000
 30
 80
 135

gradient-echo EPI
ADNIDOD
 T2�-weighted
 3.3
 240
 3:28� 3:28� 3:3
 64� 64
 2900
 30
 90
 160

gradient-echo EPI
ACPI
 T2�-weighted
 1.20
 256
 1:0� 1:0� 1:2
 256� 256
 2170
 4.33
 7
 180

(MTA)

ABIDE

Caltech
 T2�-weighted
 3.5
 224
 3:5� 3:5� 3:5
 64� 64
 2000
 30
 75
 146
single-shot EPI

CMU_a
 T2�-weighted
 3.0
 192
 3:0� 3:0� 3:0
 64� 64
 2000
 30
 73
 236

CMU_b
 T2�-weighted
 3.0
 192
 3:0� 3:0� 3:0
 64� 64
 2000
 30
 73
 316

KKI
 T2�-weighted
 3.0
 256
 3:0� 3:0� 3:0
 84� 84
 2500
 30
 75
 152

MaxMun
 T2�-weighted
 4.0
 192
 3:0� 3:0� 4:0
 64� 64
 3000
 30
 80
 116
gradient-echo EPI

NYU
 T2�-weighted
 4.0
 240
 3:0� 3:0� 4:0
 80� 80
 2000
 15
 90
 176

Olin
 T2�-weighted
 4.0
 220
 3:4� 3:4� 4:0
 64� 64
 1500
 27
 60
 206

OHSU
 T2�-weighted
 3.8
 240
 3:8� 3:8� 3:8
 64� 64
 2500
 30
 90
 78

SDSU
 T2�-weighted
 3.4
 220
 3:4� 3:4� 3:4
 64� 64
 2000
 30
 90
 176
gradient-echo EPI

SBL
 T2�-weighted
 2.72
 220
 2:75� 2:75� 2:72
 80� 80
 2200
 30
 80
 196

Stanford
 T2�-weighted
 4.5
 200
 3:125� 3:125� 4:5
 64� 64
 2000
 30
 80
 236

Trinity
 T2�-weighted
 3.5
 240
 3:0� 3:0� 3:5
 80� 80
 2000
 28
 90
 146

UCLA_1
 T2�-weighted
 4.0
 192
 3:0� 3:0� 4:0
 64� 64
 3000
 28
 90
 116

UCLA_2
 T2�-weighted
 4.0
 192
 3:0� 3:0� 4:0
 64� 64
 3000
 28
 90
 116

Leuven_1
 T2�-weighted
 4.0
 230
 3:59� 3:59� 4:0
 64� 64
 1667
 33
 90
 246

Leuven_2
 T2�-weighted
 4.0
 230
 3:59� 3:59� 4:0
 64� 64
 1667
 33
 90
 246

UM_1
 T2�-weighted
 3.0
 220
 3:438� 3:438� 3:0
 64� 64
 2000
 30
 90
 296

UM_2
 T2�-weighted
 3.0
 220
 3:438� 3:438� 3:0
 64� 64
 2000
 30
 90
 296

Pitt
 T2�-weighted
 4.0
 200
 3:1� 3:1� 4:0
 64� 64
 1500
 25
 70
 196

USM
 T2�-weighted
 3.0
 220
 3:4� 3:4� 3:0
 64� 64
 2000
 28
 90
 236

Yale
 T2�-weighted
 4.0
 220
 3:4� 3:4� 4:0
 64� 64
 2000
 25
 60
 196

HCP
 T2�-weighted
 2.0
 208
 2:0� 2:0� 2:0
 104� 90
 720
 33.1
 52
 1200
gradient-echo EPI
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