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Abstract
Objective: Neuroimaging uncovers important information about disease in the brain. Yet in 
Alzheimer’s disease (AD), there remains a clear clinical need for reliable tools to extract 
diagnoses from neuroimages. Significant work has been done to develop deep learning (DL) 
networks using neuroimaging for AD diagnosis. However, no particular model has emerged as 
optimal. Due to a lack of direct comparisons and evaluations on independent data, there is no 
consensus on which modality is best for diagnostic models or whether longitudinal information 
enhances performance. The purpose of this work was (1) to develop a generalizable DL model 
to distinguish neuroimaging scans of AD patients from controls and (2) to evaluate the influence 
of imaging modality and longitudinal data on performance.

Approach: We trained a 2-class convolutional neural network (CNN) with and without a 
cascaded recurrent neural network (RNN). We used datasets of 772 (NAD=364, Ncontrol=408) 3D 
18F-FDG PET scans and 780 (NAD=280, Ncontrol=500) T1-weighted volumetric-3D MR images 
(containing 131 and 144 patients with multiple timepoints) from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), plus an independent set of 104 (NAD=63, NNC=41) 18F-FDG PET 
scans (one per patient) for validation.

Main Results: ROC analysis showed that PET-trained models outperformed MRI-trained, 
achieving maximum AUC with the CNN+RNN model of 0.93 ± 0.08, with accuracy 82.5±8.9%. 
Adding longitudinal information offered significant improvement to performance on 18F-FDG 
PET, but not on T1-MRI. CNN model validation with an independent 18F-FDG PET dataset 
achieved AUC of 0.99. Layer-wise Relevance Propagation heatmaps added CNN interpretability.

Significance: The development of a high-performing tool for AD diagnosis, with the direct 
evaluation of key influences, reveals the advantage of using 18F-FDG PET and longitudinal data 
over MRI and single timepoint analysis. This has significant implications for the potential of 
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neuroimaging for future research on AD diagnosis and clinical management of suspected AD 
patients.

Keywords: 
Alzheimer’s disease, deep learning, 18F-FDG PET, MRI, longitudinal, neuroimaging
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1. Introduction
Alzheimer’s disease (AD) is the sixth leading cause of death in the United States, affecting an 
estimated 5.5 million people age 65 and older (Association, 2018; Oldan et al., 2021). Correct 
diagnosis of AD is essential for proper care of patients and for the development of interventions 
and therapies. Models estimate that early and accurate AD diagnosis could save up to $7.9 
trillion in medical and care costs (Association, 2018). At present, as many as 12% to 23% of AD 
diagnoses are not confirmed at autopsy (Świetlik & Białowąs, 2019). Diagnosing AD at an early 
stage is hampered by the variability of the clinical symptoms and the subtleties of early brain 
changes, resulting in low sensitivity (71%-87%) and specificity (44%-71%) (Beach et al., 2012; 
Rathore et al., 2017; Świetlik & Białowąs, 2019). Current methods for early diagnosis are 
improving, but are often costly (e.g. amyloid PET scans) and invasive (lumbar puncture for 
cerebrospinal fluid (CSF) analysis). Despite a clear clinical need and significant efforts, there is 
currently a lack of a reliable, generalizable, affordable, and non-invasive tool for the diagnosis 
of AD.

Neuroimaging can reveal important information for AD diagnosis, but there is no consensus on 
which imaging modality is best. Both structural MRI and 18F-FDG PET are widely accessible, non-
invasive, and less expensive than more complex imaging. In neuroimaging-based classification 
studies of AD, structural MRI is the most frequently used, is included in most standard of care 
for AD, and has widespread availability (Ding et al., 2019; Martí-Juan et al., 2020; Rathore et al., 
2017). However, 18F-FDG PET is increasingly popular as it illustrates metabolic changes related 
to AD occurring prior to the onset of structural changes, allowing for earlier diagnosis relative to 
MRI and clinical symptoms (Femminella et al., 2018; Reiman & Jagust, 2012; Smailagic et al., 
2015). MRI is still recommended by clinical guidelines as the first choice for initial AD diagnosis 
(Moonis et al., 2020), yet in some cases 18F-FDG PET may be more appropriate. Other more 
complex imaging modalities such as amyloid PET are also widely used. While a negative amyloid 
scan rules out AD, the presence of amyloid alone does not confirm AD. In addition, 18F-FDG PET 
correlates better with patients’ cognitive performance (Khosravi et al., 2019) and reveals more 
about the stage of the neurodegeneration. Amyloid and other complex imaging modalities are 
also much more expensive and not available to everyone. Thus, 18F-FDG PET and MRI remain 
the most commonly used neuroimaging modalities in diagnosis/follow up of AD. 
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In general, the sensitivity of AD diagnosis by visual inspection of images is found to be slightly 
better (7-11%) for 18F-FDG PET over MR (Bloudek et al., 2011; Femminella et al., 2018; Johnson 
et al., 2013). However, a 2017 review across various methods of predicting AD found discordant 
results regarding which imaging modality is superior (A Sanchez-Catasus et al., 2017).

Significant work has been done to develop deep learning (DL) neural networks with 
neuroimaging inputs for AD diagnosis and staging. Convolutional neural networks (CNNs) have 
been frequently employed, often with very promising classification accuracy (Billones et al., 
2016; Choi et al., 2019; Choi et al., 2018; Ding et al., 2019; Jo et al., 2019; Kazemi & Houghten, 
2018; Spasov et al., 2019; Wang et al., 2019; Zhang et al., 2019; Świetlik & Białowąs, 2019). 
Deep neural networks with feature extraction(Lu et al., 2018), visual-based classifiers (Wood et 
al., 2019), and recurrent neural networks (RNNs) (Cui et al., 2019; Liu et al., 2018) have also 
been explored.

Despite a wealth of attempts, no particular model has yet emerged as the optimal diagnostic 
method. The performance of various DL approaches is difficult to compare objectively due to 
the large number of factors affecting model performance. It is still not well understood which 
features or inputs make one model more advantageous than another. In particular, 
neuroimaging modalities are rarely isolated and compared directly as inputs to the same DL 
model. Thus their influence on model performance is not well understood. In machine learning 
classification specifically, 18F-FDG PET has been shown to outperform MR in a few cases, though 
most state-of-the-art DL models do not directly compare their performance. Those that have 
objectively compared these modalities are mainly simpler ML classifiers such as Support vector 
machines (SVM) (Dukart et al., 2011; Samper-González et al., 2018), networks that require 
feature extraction (Lu et al., 2018), and recently a straightforward CNN (Huang et al., 2019). The 
influence of imaging modality on complex DL model performance remains an active and 
underexplored factor in the use of DL for AD diagnosis and is the focus of this work.

Another important feature to consider in order to determine the advantages of a particular 
model is the inclusion of longitudinal information. Most current studies in AD diagnosis, and 
particularly DL models, are limited to single timepoint images (Martí-Juan et al., 2020). 
However, the incorporation of longitudinal data has been shown to improve classification 
performance in several statistical analyses and classical image analysis methods (Gray et al., 
2012; Rodrigues & Silveira, 2014; Sun et al., 2017; Zhang et al., 2012; Zhang et al., 2019). In the 
clinic, it has been shown that repeating an FDG PET scan can greatly clarify equivocal diagnoses 
and improve disease management. For example, in a retrospective study, Bergeron et al. 
demonstrated that conducting a second FDG PET scan reduced the number of unclear 
diagnoses from 80% to 34%, and led to diagnostic change in 24% of cases and treatment 
modification in 22% of patients (Bergeron et al., 2016). Recent DL analyses have demonstrated 
success using RNNs to incorporate longitudinal data from neuroimages using varying levels of 
image pre-processing, from limited feature extraction (Lee et al., 2019) to CNN feature maps 
(Cui et al., 2019; Gao et al., 2018). 

Page 3 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



4

An additional important consideration for DL models, especially for clinical translation, is 
generalizability, or the ability of the model to perform well on independent, unseen patient 
data (Rathore et al., 2017). Despite a growing consensus in the field of DL for medical imaging 
that models should include external validation from an independent dataset wherever possible, 
models with state-of-the-art performance are rarely validated in such a manner to demonstrate 
their generalizability. 

The purpose of this work was to develop and evaluate a novel deep learning model with and 
without longitudinal imaging data to distinguish patients with AD from normal controls based 
on their metabolic and structural neuroimaging scans. For this purpose, we developed a model 
consisting of a convolutional neural network (CNN) run either with or without a cascaded 
recurrent neural network (RNN) for binary classification. Our primary objective was to 
investigate the influence of imaging modality on model performance. Our secondary objectives 
were (1) to explore the impact of adding longitudinal data to the model and (2) to determine 
how well the model generalizes to new, external data. 

2. Data

2.1 ADNI Dataset
Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as 
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. For up-to-
date information, see www.adni-info.org. Data was obtained from the ADNI database in 
November of 2019 (18F-FDG PET dataset) and October of 2020 (MRI dataset). 

In this work, “patients with AD” were considered to be all those with a clinical AD diagnosis as 
long as no CSF biomarker evidence contradicted this status. Specifically, all patients with CSF 
biomarkers reported in ADNI were evaluated to confirm biological AD pathology. The CSF 
biomarkers were evaluated according to the NIA-AA research framework and classified into 
categories according to their amyloid (A), tau (T) and neurodegeneration (N) status, in a so 
called AT(N) classification (Jack Jr et al., 2018). Cutoff values of 980 pg/ml for Aβ, 21.6 pg/mL for 
p-tau, and 0.077 for Aβ42/40 were used. All patients with contradictory clinical and AT(N) 
diagnoses were excluded from the dataset. For instance, any patient with a clinical diagnosis of 
AD but belonging to an AT(N) biomarker category of normal or non-AD pathology were 
excluded, i.e. A-/T±/N±. Likewise, any patient with a clinical diagnosis of normal control (NC) 
belonging to an AT(N) biomarker category in the AD continuum, i.e. A+/T±/N±, was also 
excluded. While A+ is common in cognitively normal elderly subjects, these patients were 
excluded for two reasons. One, studies have shown that even cognitively unimpaired subjects 
with positive amyloid biomarkers are at greater risk of subsequent development of cognitive 
impairment (Ebenau et al., 2020). Two, studies have also shown that hypometabolic changes 
can be observed prior to the appearance of the first symptoms (Gordon et al., 2018). Therefore, 
to exclude the possibility that presence of amyloid in the brain of clinically healthy subject 
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would cause changes in brain metabolism, normal control subjects with brain amyloidosis were 
not included in our reference group.

A total of 77 scans were excluded by this process. Of the AD diagnosed patients in our datasets, 
190 18F-FDG PET images and 266 T1-MR images did not have CSF measurements at or within 4 
years of the time of the scan (Mattsson et al., 2012). In accordance with most standard practice 
for the ADNI dataset, these patients were still included with the assumption of correct clinical 
diagnosis in order to maintain a large enough dataset for the DL model.
18F-FDG PET scans were downloaded from ADNI with the minimum pre-processing available. 
For dynamically-acquired images, the final five minute frame was obtained. For the static 
PET/CT-acquired images, the whole 30 minute frame was obtained. Each 18F-FDG PET scan was 
then pre-processed in 4 stages using SPM12: (1) brain extraction, (2) rigid registration to a 
custom 18F-FDG template (Della Rosa et al., 2014), (3) spatial normalization to Montreal 
Neurological Institute (MNI) space (voxel size = 2x2x2mm), and (4) intensity normalization by 
the global mean. Pre-processing with fewer steps (e.g. no normalization) and more steps (i.e. 
adding smoothing with a 3D Gaussian kernel) was also performed. Performance of the DL 
model was evaluated for each variation of pre-processed data using receiver operating curve 
(ROC) analysis, while the amount of overfitting was evaluated using learning curves. The 
dataset with the four steps described was found to give the best performance based on area 
under the ROC curve (AUC) while maintaining minimal overfitting. Examples of pre-processed 
18F-FDG PET scans for an AD and NC subject are shown in the top row of Figure 1.

All T1-weighted 3D MR scans with Magnetization Prepared Rapid Gradient-Echo (MP-RAGE) 
sequencing (Mugler III & Brookeman, 1990) were downloaded from ADNI. These scans have 
undergone grad-warping, intensity correction, and scaling for gradient drift using phantom 
data. The MR scans were then additionally pre-processed in two steps: (1) brain extraction, (2) 
rigid registration to a custom MRI template, so that both the MR and the 18F-FDG PET scans all 
had similar levels of pre-processing, namely, each had brain extraction, rigid registration, and 
spatial and intensity normalization. Examples of pre-processed MR scans for an AD and NC 
subject are shown in the bottom row of Figure 1.
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Figure 1. Example 18F-FDG PET and MRI scans from the ADNI database after pre-processing for both AD and NC subjects. 

After pre-processing, data quality assurance (QA) checks were performed. All PET scans which 
used 3D Filtered Back Projection reconstruction were removed from the dataset due its distinct 
noise pattern (N=99). In addition, any scans with poor segmentation, artifacts, motion, or other 
major visual issues were removed (N=83). To further maximize the reliability of the diagnosis, 
all patients with fluctuating disease status were eliminated (e.g. a patient who is classified as 
AD, then NC, then AD again at sequential timepoints).

A total of 772 (NAD=364, Ncontrol=408) 3D 18F-FDG PET scans and 780 (NAD=280, Ncontrol=500) T1-
weighted volumetric-3D MR images met all above criteria. See Table 1 for summaries. Data was 
shuffled randomly for each run and classes were balanced before input to the network. 
Balancing was done in an effort to give equal priority to each class during model training. 
Balancing classes in DL problems has been shown to improve accuracy and prevent the 
penalizing of minority samples. It also adds reliability to ROC analysis (Johnson & Khoshgoftaar, 
2019). Thus for the CNN, 728 18F-FDG PET scans from 436 patients split evenly between AD 
patients and NC subjects (364 each) were used. Of these, 122 patients (61 each) had scans at 
multiple timepoints within a 2-year range (with time lags of one or two years between scans) 
and were thus used to evaluate the RNN. Similarly, performance was evaluated with 560 MRI 
scans (280 from each class) from 193 patients, 130 of whom (65 each) have scans at multiple 
timepoints within a 2-year range (with time lags of one or two years between scans).
Table 1. Description of the 18F-FDG PET and T1-MRI datasets obtained from the ADNI database.

ADNI 18F-FDG PET ADNI T1-MRI

AD NC AD NC
TOTAL NUMBER OF SCANS 364 408 280 500

NUMBER OF PATIENTS WITH 2-3 SCANS 61 70 65 79
AVERAGE AGE 76.1 77.7 75.6 77.0

GENDER 59.6% male 60.8% male 57.0% male 54.9% male
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2.2 Independent Validation Dataset
Performance of the CNN was also evaluated on an independent dataset obtained from 
University Medical Centre Ljubljana (UMCL) (Perovnik et al., 2022). This dataset consisted of 
18F-FDG PET scans from 104 patients (NAD = 63, NNC = 41), with only one scan per patient. All AD 
patients had a clinical AD diagnosis and CSF-confirmed AT(N) biological diagnosis. More 
specifically, all AD patients in this dataset fulfilled diagnostic criteria for amnestic type dementia 
(McKhann et al., 2011) and had positive Alzheimer CSF biomarkers, defined as Aβ42 < 650 
pg/mL or Aβ42/Aβ40 < 0.077 for amyloid (A+) and p-tau > 60 pg/mL for tau positivity (T+). The 
detailed description of the sample is provided elsewhere (Perovnik et al., 2022). All normal 
controls in this dataset were healthy volunteers recruited from the local community with no 
specific inclusion/exclusion criteria. Each control subject completed a clinical neurological and 
neuropsychological examination for purposes of an earlier research project (Tomše et al., 
2017).

All images were acquired as PET/CT scans with a 30-minute frame duration. In contrast to the 
ADNI dataset, this data was acquired using Time-of-Flight (TOF) PET scanners and Point Spread 
Function (PSF) reconstruction was applied. See Table 2 for a more detailed summary. The data 
was pre-processed in the same way as the ADNI data and pixel dimensions were matched to 
that of the ADNI scans. Image QA was again performed. 
Table 2. Description of the 18F-FDG PET dataset obtained from UMCL.

LJU 18F-FDG PET DATASET AD NC

TOTAL NUMBER OF SCANS 63 41
NUMBER OF PATIENTS WITH 2-3 SCANS 0 0

AVERAGE AGE 73.0 65.3
GENDER 57.1% male 31.7% male

2.3 Consideration of Bias in the Longitudinal Cohort
For the use of longitudinal data, we considered the potential for bias due to selective dropout, 
or non-random loss of participants from a study (Chatfield et al., 2005). Comparisons of age, 
Mini-Mental State Exam (MMSE) score, and gender proportion were evaluated between the 
cohort of patients with multiple scans (used to evaluate the RNN) and the cohort of patients 
used for only single timepoint analysis (used to evaluate the CNN) to determine the level of bias 
in our datasets. Note that there is a significant overlap of patients across the two cohorts, since 
all patients with multiple scans were included in the single timepoint analysis as well.

Table 3 summarizes key demographics of our datasets. The average of each metric for the 
single timepoint cohort was compared to that of both the average value at the time of the 
initial scan for the longitudinal cohort as well as the overall average values from all three 
timepoints in the longitudinal cohort. This comparison was performed within each of the class 
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cohorts (AD and NC) and for both classes overall. The full dataset was considered in addition to 
each class separately in order to mimic the type of bias analysis performed in most of the 
studies cited in a large review of selective dropout bias (Chatfield et al., 2005), where bias 
analysis was performed over an entire dataset, without separating by any specific disease 
classes or subject type. Two sample t-tests were used with a p-value cutoff of 0.05. Histograms 
were examined to evaluate the normality of the data. The distributions of age are clearly 
approximately normally distributed. While the MMSE score distributions are less normal, the 
large sample size and conservative p-value cutoff allow the assumption of t-test validity. The 
only significant differences (denoted by the red text in Table 3) were found for overall MMSE 
score in the 18F-FDG PET data and for starting AD MMSE score in the MR data. Thus it was 
concluded that our cohorts were not so different as to cause a significant bias in the analyses.
Table 3. Average values for age and cognitive score and percentage of male subjects in each sub-cohort for the 18F-FDG PET 
(left) and T1-MRI (right) datasets. Red numbers indicate those that are significantly different (p-value < 0.05) from the single 
timepoint values.

18F-FDG PET T1-MRI

AD NC Overall AD NC Overall
AGE
SINGLE TIMEPOINT 75.7 78.0 77.0 74.6 76.5 75.7
LONGITUDINAL STARTING 75.0 77.9 76.6 74.5 76.4 75.5
LONGITUDINAL OVERALL 76.0 78.5 77.3 74.6 76.6 75.7
MMSE SCORE
SINGLE TIMEPOINT 20.1 29.1 26.9 22.1 29.0 26.5
LONGITUDINAL STARTING 21.2 29.1 28.1 23.6 29.2 26.6
LONGITUDINAL OVERALL 19.6 29.2 25.7 21.8 29.1 25.9
% MALE
SINGLE TIMEPOINT 54.9 59.5 57.6 52.1 47.2 49.0
LONGITUDINAL STARTING 56.5 57.7 57.1 51.4 48.9 50.0

3. Methods

3.1 DL Model Overview
A binary classifier 3D CNN was trained both with and without a cascaded RNN. A schematic 
overview of the model is shown in Figure 2. The CNN inputs included brain images and clinical 
data (age, gender). The CNN evaluates spatial information from single timepoint scans and 
outputs class predictions. The feature maps from the second-to-last layer of the CNN are then 
input into the RNN for all patients with multiple scans. The RNN evaluates temporal information 
across 3 timepoints with 1-year gaps.
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The DL model was built with the Keras library using TensorFlow as backend. All experiments 
were run on Python version 3.6. The model was trained in a workstation with an NVIDIA RTX 
Titan GPU with 24GB of memory. A single epoch of the CNN takes ~20 seconds to train over the 
entire training set, while each epoch of the RNN takes ~5 seconds.

Figure 2. Schematic representation of the deep learning model setup.

The ADNI datasets were shuffled randomly and divided into training (60%), validation (20%), 
and test set (20%) splits. No data augmentation was performed. The resulting balanced number 
of scans in each set for the CNN can be found in Table 4 for the 18F-FDG PET and T1-MRI 
datasets. The scans were then arranged by patient and by timepoint. If a patient had at least 
two scans spaced one to two years apart, they were included in the dataset for the RNN. Up to 
three scans with 1-year gaps between each scan were included for each patient. The resulting 
number of patients, each now with 2-3 scans, can be found in Table 4 for the 18F-FDG PET and 
MRI datasets.

The models were run five times each with shuffled ADNI data. Performance was assessed using 
ROC analysis. Area under the curve (AUC) along with accuracy, sensitivity, and specificity at the 
optimal threshold (upper leftmost point, determined during training) were assessed for model 
comparison. Note that this threshold was determined by the ROC curve of the ADNI validation 
dataset (not the test set) in order to best preserve the generalizability of the model. Also note 
that this threshold (and the corresponding accuracy, sensitivity, and specificity) can be adjusted 
to prioritize true positive rate or false positive rate for optimized translation to the clinic, where 
the AUC provides a metric for how well the classes can be separated across all thresholds. Thus 
AUC values were used to optimize model parameters and to compare performance across 
models.
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Table 4. Number of single timepoint scans used in the CNN and number of patients with 2-3 scans at multiple timepoints used in 
the RNN in the train/validation/test datasets for each imaging modality

18F-FDG PET T1-MRI
CNN Scans RNN Patients CNN Scans RNN Patients

AD NC Total AD NC Total AD NC Total AD NC Total
TRAINING 234 234 468 40 40 80 180 180 360 42 42 84

VALIDATION 58 58 116 9 9 18 44 44 88 10 10 20
TESTING 72 72 144 12 12 24 56 56 112 13 13 26

TOTAL 364 364 728 61 61 122 280 280 560 65 65 130

3.2 Convolutional Neural Network (CNN)
The 3D-CNN used here was adapted from previous work by Spasov et al. (Spasov et al., 2019) 
The CNN model architecture, shown in Figure 3, employs 3D separable convolutional layers 
along with several fully connected layers. The formulation of this model architecture is 
explained in depth in Spasov et al. The version employed here is slightly simplified from its 
original use in that it only performs a single task and takes in a single imaging modality as input 
along with the clinical data. The number of parameters was also increased in each layer to 
improve performance based on a sensitivity study of model width using the 18F-FDG PET 
dataset. In this sensitivity study, the number of parameters in each convolutional layer was 
tested systematically by doubling the number of features until overfitting was clear on the 
learning curves. The size of the final dense layer before the output was also varied from 2 to 
100 and the value resulting in optimal performance in ROC analysis was chosen. The final model 
width still allows for a highly parameter-efficient model due to the use of separable and 
grouped convolutions.

Generally, the model uses three types of operational blocks (described in the inset of Figure 3), 
each following a similar pattern of reused layers: a convolutional or dense layer followed by 
batch normalization, an Exponential Linear Unit (ELU) activation function, and dropout. The 
convolutional blocks also utilize 3D max pooling to decrease the input image dimensionality. 

Both the separable and grouped convolutions allow for more parameter-efficient image 
processing than traditional convolutions. The separable convolutional layers reformulate 
standard convolutions by separately performing depth-wise and then point-wise operations. 
This significantly reduces the number of parameters required. The model also employs grouped 
convolution. After the separable convolutional blocks, the feature maps are split into two 
groups along the channel axis and evaluated separately, requiring only half the parameters as 
only half of the channels are used to produce a single output feature map. This allows a 
reduction in the dimensionality of the activation maps and thus a more parameter-efficient 
model.

A skip, or residual, connection was also added such that the output from the last separable 
convolutional block is summed element-wise with the activation maps from the second 
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convolutional block, indicated by the circled plus sign in Figure 3. Residual connections have 
been shown to facilitate training as the neural net depth increases (Chollet, 2017; He et al., 
2015).

The clinical data were processed in two sequential fully connected blocks with 64 and 20 units, 
respectively. The clinical features and flattened image embeddings were concatenated and 
processed by two dense layers, with the final layer providing two outputs for the binary 
prediction. To consider the influence of the inclusion of this clinical data, the model was also 
run without this clinical data included. ROC analysis indicates that the CNN performed 
consistently both with and without the clinical data included. The AUC and accuracy are well 
within the standard deviation for both the 18F-FDG PET dataset and the MRI dataset. ROC 
curves, AUC values, and accuracy values of this supplementary experiment can be found in 
Figure A.1, Table A.1, and 

Table A.2 in the Appendix.

A training batch size of 10 was used, the dropout rate was set to 0.3, and the L2 regularization 
penalty coefficient was set at 2x10–2. The convolutional kernel weight initialization follows the 
procedure described by He et al. (He et al., 2015). The loss was determined by sparse 
categorical cross entropy and minimized using the Adam optimizer with softmax activation and 
a step decay learning rate: . These hyperparameters were lr =  (1 × 10 ―4) × 0.3epoch/10

chosen to optimize the performance of the validation dataset while minimizing overfitting. The 
model was trained for 30 epochs. A detailed breakdown of the shape and number of 
parameters at each layer in the CNN can be found in Table A.3in the Appendix. Example 
learning curves shown in Figure 4 demonstrate the model’s minimal overfitting during training.

Figure 3. Model architecture of the 3D-CNN used in this work. Adapted from previous work by Spasov et al. (Spasov et al., 
2019). The inset provides a description of each of the 3 types of blocks used in the model architecture. The parameters required 
for each type of layer are listed in italics in the inset, and the corresponding values used in particular blocks are provided for 
each block. If the strides are equal to the default value of 1, they are not listed. The circled plus sign indicates a residual, or skip, 
connection. On the bottom right are listed some key hyperparameters of the final trained model.
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Figure 4. Example learning curves for the CNN training. Both accuracy (left) and loss (right) curves show minimal overfitting over 
the 30 training epochs.

3.3 Recurrent Neural Network (RNN)
The 3-layer RNN used in this work was designed following the example of Cui et al. (Cui et al., 
2019) and is shown in Figure 5. Generally, the RNN relates the feature map from the second-to-
last layer of the CNN at one timepoint to the maps at the timepoints both before and after. The 
CNN and RNN were trained end-to-end in tandem with a shuffled dataset input for each run.

The network is composed of three bidirectional gated recurrent unit (BGRU) blocks, each 
containing six gated recurrent units (GRU), described by the inset in Figure 5. The GRU is a 
specific variant of the long short-term memory (LSTM), which has shown slightly better 
performance and fewer parameters than the traditional LSTM (Chung et al., 2014). GRU layers 
use an update gate to determine what new information to add and a reset gate to determine 
which past information to discard (Cho et al., 2014). Each BGRU block consists of one forward 
and one backward sequence of GRUs, with one GRU per timepoint. In this way, the information 
at each timepoint is related to both its preceding and following timepoint. The output of each 
forward and backward GRU is then concatenated for each timepoint, and this information is fed 
into the next BGRU block. See the inset of Figure 5 for a visual explanation.

The input to the GRU is produced by the last dense layer of the CNN before the final softmax 
classification. A 5-dimensional feature map output is created for each image in the longitudinal 
dataset using the CNN. These maps are then organized sequentially by patient and fed into the 
corresponding GRU. The GRUs handle consistently spaced scans across all patients, so each 
GRU corresponds to one year of time between scans. The setup of three timepoints with 1-year 
gaps was chosen in order to maximize the availability of longitudinal data in the ADNI dataset. 
However, since not all patients have three scans exactly one year apart, a masking layer was 
added to handle missing inputs. The masking layer allows the GRU to recognize a placeholder 
where no scan was input and simply skip that layer, changing no information at either gate.

Three BGRU blocks are stacked to form a deep network, enhancing the longitudinal information 
flow. The outputs of the final block are concatenated to a dense layer with dropout and a 
softmax layer for the binary classification.

A training batch size of 5 was used, the dropout rate was set to 0.1, and the L2 regularization 
penalty coefficient was set at 1x10–6. The loss was determined by sparse categorical cross 
entropy and minimized using the Adam optimizer with softmax activation and a step decay 
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learning rate: . These hyperparameters were chosen to optimize the lr =  0.002 × 0.3epoch/10

performance of the validation dataset while minimizing overfitting. The model was trained for 
30 epochs. Example learning curves shown in Figure 6 demonstrate the model’s minimal 
overfitting during training.

Figure 5. Model architecture of the RNN used in this work. The inset provides a description of each of the BGRU blocks. The same 
number of units (100) was used in each GRU layer. On the right are listed some key hyperparameters of the final trained model.

Figure 6. Example learning curves for the RNN training. Both accuracy (left) and loss (right) curves show minimal overfitting over 
the 30 training epochs.

3.4 Imaging Modality Comparison
The primary objective was to investigate the influence of imaging modality on model 
performance. The ADNI datasets described in Table 4, which produced the plots in Figure 
7Error! Reference source not found., contain unequal numbers of scans for each modality. To 
directly compare the performance of each imaging modality, the size of the 18F-FDG PET dataset 
was restricted in the CNN and the size of the MRI dataset was restricted in the RNN, then the 
models were retrained and compared. This restriction was done by simply dropping scans from 
the end of the larger dataset before splitting into training, validation, and test sets until the 
number of scans was equal between the two modalities. This preserves the class balance 
between AD and NC. Since data was shuffled for each run, a different set of scans is dropped 
from each run.

3.5 Longitudinal Data Evaluation
A secondary objective of this study was to investigate the influence of including longitudinal 
data on model performance, evaluating whether adding the RNN to the model makes a 
significant difference. The ADNI datasets described in Table 4 which produced the plots in 
Figure 7Error! Reference source not found. contain unequal numbers of scans between the 
two model types. To directly evaluate the influence of longitudinal data, the number of scans 
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used in the CNN only model was restricted, then the models were retrained and compared. This 
restriction was again done by simply dropping scans from the end of the CNN dataset before 
splitting into training, validation, and test sets until the number of scans was equal to the 
number available for the RNN. This preserves the class balance between AD and NC, but means 
that the same exact scans were not necessarily used for both the CNN and the RNN in each run. 
Since data was shuffled for each run, a different set of scans is dropped from each run.

3.6 External Validation
Performance of the CNN was also evaluated on a held-out, independent test set of 104 18F-FDG 
PET scans obtained from UMCL for an external validation test. The model weights for the best 
performing run of the ADNI 18F-FDG PET data trained CNN model were re-loaded and class 
predictions were made for each scan in the UMCL dataset. Performance was assessed using 
ROC analysis, and accuracy was evaluated at the same threshold as was deemed to be optimal 
for the original ADNI validation set during training. 

3.7 Interpretability
Layer-wise Relevance Propagation (LRP) was employed to visualize the CNN decision-making. 
LRP creates a class-discriminative attention heatmap which indicates the relevance of each 
voxel to the final classification outcome. It operates by propagating the prediction backward in 
the neural network, using a set of purposely designed propagation rules (Montavon et al., 
2019). LRP decomposes the network's output score into the individual contributions of the 
input neurons while keeping the total amount of relevance constant across layers. The heatmap 
does not rely on gradients, as with many other attention heatmap methods, but considers 
model weights and neuron activations (Bach et al., 2015; Samek et al., 2016). Final heatmaps 
show the average relevance of each voxel for contributing to the AD score (Böhle et al., 2019).

LRP was implemented using code from Bohle et al. (Böhle et al., 2019). The LRP-α1β0 
propagation rule was employed (Bach et al., 2015), which is equivalent to LRP-γ where γ→∞ 
and Excitation-Backpropagation (Montavon et al., 2019; Zhang et al., 2018). Employing LRP with 
a β value of zero allows only positive contributions to be shown in the heatmap, and 
highlights all positive contributions, regardless of their surroundings (Montavon et al., 2019). 

In order to identify the most relevant regions for AD classification, an average heatmap was 
computed across all the correctly classified AD patients in the test set. This interpretability 
testing was performed on the best performing run of the CNN model for both 18F-FDG PET and 
MRI.

4. Results
ROC analysis of the four model variations is shown in Figure 7Error! Reference source not 
found.. Corresponding AUC, accuracy at the optimal threshold, and sensitivity and specificity at 
the optimal threshold, are listed in Table 5, Table 6, and Table 7. The CNN+RNN model achieved 
an AUC of 0.93 ± 0.08 with 18F-FDG PET data and 0.65 ± 0.12 for T1-MRI data, while the CNN 
only model achieved an AUC of 0.92 ± 0.01 with 18F-FDG PET and 0.72 ± 0.10 with T1-MRI.
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Figure 7. ROC curves for the CNN predictions (top row) and CNN+RNN predictions (bottom row) for both the 18F-FDG PET (left) 
and MRI (right) datasets. The bold line indicates the average ROC curve over 5 runs and the shading indicates the uncertainty. 
The operating points corresponding to the optimal thresholds of the validation dataset are noted by the square markers.

Table 5. AUC values for the ROC curves in Figure 7Error! Reference source not found. for the CNN model with and without the 
cascaded RNN when trained with 18F-FDG PET data or T1-MR images from the ADNI database.

AUC 18F-FDG PET T1-MRI

CNN ONLY 0.92 ± 0.01 0.72 ± 0.10
CNN + RNN 0.93 ± 0.08 0.65 ± 0.12

Table 6. Accuracy values for the CNN model with and without the cascaded RNN when trained with 18F-FDG PET data or T1-MR 
images. Accuracy was calculated at the optimal threshold for the ADNI validation set.

ACCURACY 18F-FDG PET T1-MRI

CNN ONLY  86.7 ± 2.1%  66.6 ± 10.9%
CNN + RNN  82.5 ± 8.9%  58.4 ± 7.5%

Table 7. Sensitivity and specificity values for the CNN model with and without the cascaded RNN when trained with 18F-FDG PET 
data or T1-MR images. Metrics were calculated at the optimal threshold for the ADNI validation set.

SENSITIVITY 18F-FDG PET T1-MRI SPECIFICITY 18F-FDG PET T1-MRI

CNN ONLY  87.8 ± 4.5%  65.4 ± 21.4% CNN Only  90.3 ± 2.8%  67.8 ± 17.3%
CNN + RNN 76.6 ± 16.2%  52.3 ± 32.8% CNN + RNN  88.3 ± 11.3%  63.1 ± 38.1%

Following this successful development of a deep learning model for clinical AD diagnosis, the 
specific influences of various factors on the model were investigated.
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4.1 Imaging Modality Comparison
The restricted ADNI datasets used to investigate the influence of imaging modality and the 
resulting ROC curves are shown in Figure 8 and the corresponding AUC values are listed in Table 
8. 

Figure 8. Roc curves comparing the performance of the two imaging modalities in both the CNN only (left) and the CNN+RNN 
models (right). The bold lines indicate the average ROC curve over 5 runs and the shading indicates the uncertainty. The dataset 
on the far left shows the total number of scans and patients used in each case, where bold indicates the datasets that were 
restricted to match the amount of data across the two modalities. “Max” indicates the dataset where the maximum number of 
scans was used, while “matched” indicates the dataset which was restricted to match the number of scans in the other.

Table 8. AUC values from the ROC curves in Figure 8  for the CNN model with and without the cascaded RNN when trained with 
equal numbers of 18F-FDG PET scans and T1-MR images.

AUC
18F-FDG 

PET T1-MRI

CNN ONLY 0.88 ± 0.04 0.72 ± 0.10
CNN + RNN 0.93 ± 0.08 0.71 ± 0.09

4.2 Longitudinal Data Evaluation
The restricted ADNI datasets used to investigate the influence of longitudinal data and the 
resulting ROC curves are shown in Figure 9 and corresponding AUC values are listed in Table 9.

Figure 9. ROC curves comparing the performance of the model with and without the RNN and longitudinal data using both the 
18F-FDG PET data (left) and the MRI data (right). The bold lines indicate the average ROC curve over 5 runs and the shading 
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indicates the uncertainty. The dataset on the far left shows the total number of scans and patients used in each case, where bold 
indicates the datasets that were restricted to match the amount of data across the two model types. “Max” indicates the 
dataset where the maximum number of scans was used, while “matched” indicates the dataset which was restricted to match 
the number of scans in the other.

Table 9. AUC values from the ROC curves in Figure 9 for the CNN model with and without the cascaded RNN when trained with 
equal numbers of FDG PET scans and T1-MR images between the two model types.

AUC
18F-FDG 

PET T1-MRI

CNN ONLY 0.58 ± 0.08 0.63 ± 0.06
CNN + RNN 0.93 ± 0.08 0.65 ± 0.12
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4.3 External Validation
ROC curves for the best performing run of the ADNI 18F-FDG PET data trained CNN model tested 
with both ADNI data and the UMCL external validation dataset are shown in Figure 10Error! 
Reference source not found..  The resulting AUC and accuracy at the optimal threshold are 

shown in 

Figure 10. ROC curves for the ADNI 18F-FDG PET test set (purple) and the external validation test 
set from LJU (blue) for the best performing run of the CNN model trained with the ADNI 
dataset. The operating points corresponding to the optimal thresholds of the ADNI validation 
dataset are noted by the square markers.

Table 10. 

For this run, the model achieved an AUC on the ADNI test set of 0.97 and an accuracy at the 
optimal threshold of 91.7%. The external validation test set achieved an AUC of 0.99 with an 
accuracy (calculated at the same threshold) of 67.3%. At its own optimal threshold, the 
accuracy of the external validation set reaches 95.2%.

Figure 10. ROC curves for the ADNI 18F-FDG PET test set (purple) and the external validation test set from LJU (blue) for the best 
performing run of the CNN model trained with the ADNI dataset. The operating points corresponding to the optimal thresholds 
of the ADNI validation dataset are noted by the square markers.

Table 10. Performance results for the ADNI test set and the external validation test set for the best performing run of the CNN 
model trained with the ADNI dataset. Accuracy is calculated at the optimal threshold of the ADNI validation set.

AUC ACCURACY

ORGINAL DATASET (ADNI TEST SET) 0.97 93.1%
EXTERNAL VALIDATION SET (LJU TEST SET) 0.99 67.3%
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4.4 Interpretability
The LRP algorithm produced heatmaps highlighting the most important voxels for the CNN 
decision. Figure 11 shows the average LRP heatmaps across the correctly classified (true 
positive) AD scans and the correctly classified NC scans (true negative) for both 18F-FDG PET and 
MRI from the ADNI dataset

Figure 11. Average Layer-wise Relevance Propagation (LRP) heatmaps of the true positive (top row) scans of Alzheimer’s 
patients and the true negative (bottom row) scans of normal controls for both 18F-FDG PET (left) and T1-MRI (right).

5. Discussion
According to the metric of AUC, the best performing variation of the model presented here is 
the CNN+RNN model trained with 18F-FDG PET data, producing an AUC of 0.93 ± 0.08 and an 
accuracy of 82.5 ± 8.9% with sensitivity and specificity of 76.6 ± 16.2% and 88.3 ± 11.3%, 
respectively. A higher accuracy of 86.7 ± 2.1% (with a similar AUC of 0.92 ± 0.08, sensitivity of 
87.8 ± 4.5%, and specificity of 90.3 ± 2.8%) was achieved by the CNN only model also trained 
with 18F-FDG PET data. Note that the choice of threshold (and corresponding accuracy) is only 
meant to give an idea of the potential of the model. This threshold can be optimized at 
translation based on allowable levels of false positive and false negative rates in the clinic. The 
AUC provides a metric for how well the classes can be separated across all thresholds.

The ROC curves demonstrate a high performing model with AUC approaching state of the art 
performance for an AD diagnostic tool, especially for models using 18F-FDG PET data. While 
higher performing models have been presented, particularly using MR images, this model has 
specific advantages which allow it to act as the groundwork for further optimization as a 
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diagnostic tool. These advantages include that it does not rely on many clinical variables (such 
as neuropsychological test scores), is trained on a balanced dataset, requires minimal pre-
processing of the input images, and generalizes well to an independent dataset. The dataset 
used for training also offers an advantage in that it has been scrubbed to exclude any 
contradictions between clinical AD diagnosis and biological AD pathology. This increases the 
accuracy and decreases the uncertainty in the ground truth diagnosis, allowing for more 
optimized model training.

5.1 Influence of Imaging Modality
When the 18F-FDG PET data is limited to the equivalent number of scans as the number of MR 
images (560 total, balanced between classes), the PET-trained model significantly outperforms 
the MRI-trained model in both the CNN only and the CNN+RNN case. This outcome 
corroborates the findings of several other previously mentioned studies comparing the 
performance of 18F-FDG PET and MRI on various AD diagnostic tasks using other types of ML 
classifiers and CNNs (Dukart et al., 2011; Huang et al., 2019; Lu et al., 2018; Samper-González et 
al., 2018). One hypothesis to explain this is that T1-MR images tend to vary more from one 
another than 18F-FDG PET images. Thus using T1-MR images to diagnose AD with this model 
may require a larger or more harmonized dataset in order to see the same performance as 
18F-FDG PET.

This result also has potential implications in the clinic, suggesting that 18F-FDG PET should be 
strongly considered for inclusion in early Standard-of-Care (SOC) practice for suspected AD 
patients. At present, 18F-FDG PET is not typically ordered until after MRI and other laboratory 
and neuropsychological testing has been performed. Due to the retrospective nature of the 
ADNI dataset, this could have some influence on our results, though the timescales are likely 
too small to capture significant disease advancement. However, the high performance of the 
model with PET data suggests that its inclusion at the outset of suspected AD may be beneficial 
and should at minimum be explored in prospective studies.

5.2 Influence of Longitudinal Data
When the number of scans input to the CNN only is limited to the equivalent number of scans 
as are input to the CNN+RNN (294 total for 18F-FDG PET and 368 total for T1-MRI, balanced 
between classes), CNN+RNN model significantly outperforms the CNN only when using the 
18F-FDG PET scans. Thus, for 18F-FDG PET data, including longitudinal information appears to 
increase the information the model can learn, thus offering significant improvement to model 
performance. However, the same improvement is not seen in models trained with MR images. 
Since there is more data in the MRI dataset, the two modalities might be expected to show 
different performance overall, but that should not be expected to translate to a greater or 
lesser difference between the CNN only and CNN+RNN models. Following the same hypothesis 
as in the comparison of the imaging modalities above, it is possible that the MR scans are too 
varied from one another for the longitudinal change between scans to offer additional distinct 
information to be gleaned by the RNN portion of the model. It is also possible that changes in 
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the structure of the brain, captured by T1-MRI, occur more slowly than the metabolic changes 
captured by 18F-FDG PET. Thus utilizing longitudinal information with T1-MRI may require 
monitoring over longer periods of time.

This result also has potential implications both for future research and in the clinic. Firstly, more 
AD diagnostic tools should explore the incorporation of longitudinal imaging data. This has been 
largely underexplored, particularly in deep learning models, but these results point toward its 
beneficial influence even over relatively short timescales. Secondly, regular 18F-FDG PET follow-
up scans should be considered as an addition to clinical SOC for suspected AD cases as the 
inclusion of this longitudinal information led to a more predictive model.

5.3 External Validation
When the CNN model was tested on an independent 18F-FDG PET dataset, it performed 
extremely well achieving an AUC of 0.99. This is indeed highly promising for the generalizability 
of this model to other unseen data, particularly because (1) most of the 18F-FDG PET scans 
obtained from ADNI were dynamically acquired while all scans in the UMCL independent 
dataset were acquired as static PET/CT and thus with higher signal-to-noise-ratio, (2) all 
patients in the UMCL dataset had their clinical diagnosis confirmed by CSF biomarker data for 
pathological diagnosis, (3) the UMCL dataset was acquired using TOF PET scanners and PSF 
reconstruction was applied, in contrast to the ADNI data. 

The lower accuracy of 67.3% obtained when using the optimal threshold of the ADNI validation 
set indicates the limits of this generalizability, suggesting that the model could still benefit from 
a more robust training dataset. In the absence of more training data, this threshold can be 
tuned for specific clinical cases in one of two ways: (1) to optimize performance on a particular 
dataset (in this case achieving a maximum accuracy of 95.2%) or (2) to optimize performance to 
a particular outcome (i.e. desired sensitivity or specificity). The high AUC value indicates a wide 
range of possible generalizable thresholds for good clinical performance, even in the absence of 
a local dataset.

5.4 Interpretability
The LRP heatmaps shown in Figure 11 highlight regions of importance for the CNN decision-
making towards each class. It appears from these maps that the CNN considers essentially the 
whole brain for its decision, with a focus on a few particular regions. The differences between 
the hot regions on the 18F-FDG PET and T1-MRI suggest that when a patient is experiencing 
decline from AD, different brain regions may be affected structurally while others are affected 
metabolically. 

5.5 Future Work
Future work should include obtaining datasets with increasing variability to explore the 
limitations of the model’s generalizability. It should also include datasets where all patients 
have CSF data available, to increase ground truth diagnosis accuracy and create a tool for 
diagnosis of pathological AD. In addition, this work was limited to only testing the 
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generalizability of the CNN trained with 18F-FDG PET. Future work should also aim to perform a 
similar analysis on an independent dataset of MR images as well as on longitudinal datasets of 
both 18F-FDG PET and MRI to test the generalizability of the RNN. Extensions of the evaluation 
of this model to other imaging modalities, such as T2-MRI, fMRI, amyloid-PET, and tau-PET, 
would also make for interesting future explorations. A future study with multi-modality data 
would also be a very relevant and interesting extension of this work. This model could be easily 
adapted to accept multi-modality inputs, though the ADNI dataset will be significantly restricted 
to include only patients with multiple scan types at similar timepoints in order to incorporate 
the longitudinal aspects. Future studies should also compare the LRP results to other attention 
heatmap methods and to compare to the brain patterns identified using non-DL methods, such 
as PCA (Perovnik et al., 2022). In addition, application of this model to other clinical questions 
such as the differential diagnosis across various types of dementias (e.g. dementia with Lewy 
bodies or frontotemporal dementia), or the study of the preclinical stages of AD and their 
potential for progression/conversion to dementia is an important future expansion of this work.

6. Conclusion
We have successfully developed a deep learning model which can function as a generalizable, 
high-performance tool for AD diagnosis, achieving a maximum AUC with the CNN+RNN model 
of 0.93 ± 0.08. The direct comparison of imaging modality and evaluation of the inclusion of 
longitudinal data reveals the improved performance with 18F-FDG PET data and its longitudinal 
information. These conclusions have significant implications both for future research on AD 
diagnostic models and management of suspected AD patients in the clinic. The CNN model 
generalizes well to a substantial external, independent dataset, showing promise for 
generalizability to other datasets and future translation. The CNN heatmaps move this work 
toward the identification of a quantitative imaging biomarker for AD. 

The experimental results reveal a high-performing, generalizable, novel DL tool for the 
diagnosis of AD. The direct evaluation of these key influences offers insights about the potential 
of 18F-FDG PET and T1-MRI and the changes they capture over time for AD diagnosis.
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Figure A.1. ROC curves for the CNN only model run with (purple) and without (yellow) the clinical data included for the ADNI 18F-
FDG PET dataset (left) and the MRI dataset (right).

Table A.1. AUC values for the ROC curves in Figure A.1Error! Reference source not found. for the CNN model with and without 
the clinical data when trained with 18F-FDG PET data or T1-MR images from the ADNI database.

AUC 18F-FDG PET T1-MRI

CNN WITH CLINICAL DATA 0.92 ± 0.01 0.72 ± 0.10
CNN WITHOUT CLINICAL DATA 0.92 ± 0.03 0.73 ± 0.06

Table A.2. Accuracy values calculated at the optimal threshold of the ROC curves in Figure A.1Error! Reference source not 
found. for the CNN model with and without the clinical data when trained with 18F-FDG PET data or T1-MR images from the 
ADNI database.

ACCURACY 18F-FDG PET T1-MRI

CNN WITH CLINICAL DATA  86.7 ± 2.1%  66.6 ± 10.9%
CNN WITHOUT CLINICAL DATA 87.4 ± 2.6% 67.7 ± 5.1%

Table A.3. Detailed structure of the CNN.

Layer Name Details Output Shape Number of 
Parameters

Input Load imaging data (91,109,91) 0

Conv3D_1 Start Conv Block (23,28,23,1) 302,208

Batch_norm_1 (23,28,23,1) 768

elu_1 (23,28,23,1) 0

Max_Pooling3D_1 (12,14,12,1) 0

Dropout_1 (12,14,12,1) 0

Conv3D_2 Start Conv Block (12,14,12,3) 11,059,584

Batch_norm_2 (12,14,12,3) 1,536

elu_2 (12,14,12,3) 0

Max_Pooling3D_2 (6,7,6,384) 0

Dropout_2 (6,7,6,384) 0
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Sep_Conv3D_1 Start Sep Conv Block (6,7,6,384) 158,208

Batch_norm_3 (6,7,6,384) 1,536

elu_3 (6,7,6,384) 0

Dropout_3 (6,7,6,384) 0

Sep_Conv3D_2 Start Sep Conv Block (6,7,6,384) 158,208

Batch_norm_4 (6,7,6,384) 1,536

elu_4 (6,7,6,384) 0

Dropout_4 (6,7,6,384) 0

Sep_Conv3D_3 Start Sep Conv Block (6,7,6,384) 158,208

Batch_norm_5 (6,7,6,384) 1,536

elu_5 (6,7,6,384) 0

Dropout_5 (6,7,6,384) 0

Add_1 Skip Connection (6,7,6,384) 0

elu_6 (6,7,6,384) 0

Lambda_1 (6,7,6,192) 0

Lambda_2 (6,7,6,192) 0

Conv3D_3 Start Group 1 Conv Block (6,7,6,96) 663,648

Conv3D_4 Start Group 2 Conv Block (6,7,6,96) 663,648

Batch_norm_6 (6,7,6,96) 384

Batch_norm_7 (6,7,6,96) 384

elu_7 (6,7,6,96) 0

elu_8 (6,7,6,96) 0

Max_Pooling3D_3 (3,4,3,96) 0

Max_Pooling3D_4 (3,4,3,96) 0

Dropout_6 (3,4,3,96) 0

Dropout_7 (3,4,3,96) 0

Conv3D_5 Start Group 1 Conv Block (3,4,3,48) 165,936

Conv3D_6 Start Group 2 Conv Block (3,4,3,48) 165,936

Batch_norm_8 (3,4,3,48) 192

Batch_norm_9 (3,4,3,48) 192

elu_9 (3,4,3,48) 0

elu_10 (3,4,3,48) 0

Input_xls Load clinical data (2) 0

Max_Pooling3D_3 (2,2,2,48) 0

Max_Pooling3D_4 (2,2,2,48) 0

Dense_1 Start FC Block (64) 192

Dropout_8 (2,2,2,48) 0

Dropout_9 (2,2,2,48) 0
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Batch_norm_10 (64) 256

Concatenate_1 Recombine groups (2,2,2,96) 0

elu_11 (64) 0

Reshape_1 (768) 0

Dropout_10 (64) 0

Dense_3 Start FC Block (imaging) (20) 15,380

Dense_2 Start FC Block (clinical) (20) 1,300

Batch_norm_11 (20) 80

Batch_norm_12 (20) 80

elu_12 (20) 0

elu_13 (20) 0

Dropout_11 (20) 0

Dropout_12 (20) 0

Concatenate_2 Combine imaging and 
clinical data

(40) 0

Dense (5) 205

Class_Output (Dense) Final Softmax Layer (2) 12

Total parameters: 13,521,153
Trainable parameters: 13,516,913

References

A Sanchez-Catasus, C., N Stormezand, G., Jan van Laar, P., P De Deyn, P., Alvarez 
Sanchez, M., & AJO Dierckx, R. (2017). FDG-PET for prediction of AD dementia 
in mild cognitive impairment. A review of the state of the art with particular 
emphasis on the comparison with other neuroimaging modalities (MRI and 
perfusion SPECT). Current Alzheimer Research, 14(2), 127-142. 

Association, A. (2018). 2018 Alzheimer's disease facts and figures. Alzheimer's & 
Dementia, 14(3), 367-429. 

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). 
On pixel-wise explanations for non-linear classifier decisions by layer-wise 
relevance propagation. PloS one, 10(7), e0130140. 

Beach, T. G., Monsell, S. E., Phillips, L. E., & Kukull, W. (2012). Accuracy of the clinical 
diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease 
Centers, 2005–2010. Journal of neuropathology and experimental neurology, 
71(4), 266-273. 

Page 25 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



26

Bergeron, D., Beauregard, J.-M., Guimond, J., Fortin, M.-P., Houde, M., Poulin, S., . . . 
Laforce Jr, R. (2016). Clinical Impact of a Second FDG-PET in Atypical/Unclear 
Dementia Syndromes. Journal of Alzheimer's Disease, 49, 695-705. 
https://doi.org/10.3233/JAD-150302 

Billones, C. D., Demetria, O. J. L. D., Hostallero, D. E. D., & Naval, P. C. (2016). 
DemNet: a convolutional neural network for the detection of Alzheimer's disease 
and mild cognitive impairment. 2016 IEEE region 10 conference (TENCON), 

Bloudek, L. M., Spackman, D. E., Blankenburg, M., & Sullivan, S. D. (2011). Review 
and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease. 
Journal of Alzheimer's Disease, 26(4), 627-645. 

Böhle, M., Eitel, F., Weygandt, M., & Ritter, K. (2019). Layer-wise relevance 
propagation for explaining deep neural network decisions in MRI-based 
Alzheimer's disease classification. Frontiers in aging neuroscience, 11, 194. 

Chatfield, M. D., Brayne, C. E., & Matthews, F. E. (2005). A systematic literature review 
of attrition between waves in longitudinal studies in the elderly shows a 
consistent pattern of dropout between differing studies. Journal of clinical 
epidemiology, 58(1), 13-19. 

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., 
& Bengio, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. 

Choi, H., Ha, S., Kang, H., Lee, H., Lee, D. S., & Initiative, A. s. D. N. (2019). Deep 
learning only by normal brain PET identify unheralded brain anomalies. 
EBioMedicine, 43, 447-453. 

Choi, H., Jin, K. H., & Initiative, A. s. D. N. (2018). Predicting cognitive decline with deep 
learning of brain metabolism and amyloid imaging. Behavioural brain research, 
344, 103-109. 

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. 
Proceedings of the IEEE conference on computer vision and pattern recognition, 

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated 
recurrent neural networks on sequence modeling. arXiv preprint 
arXiv:1412.3555. 

Page 26 of 31AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.3233/JAD-150302


27

Cui, R., Liu, M., & Initiative, A. s. D. N. (2019). RNN-based longitudinal analysis for 
diagnosis of Alzheimer’s disease. Computerized Medical Imaging and Graphics, 
73, 1-10. 

Della Rosa, P. A., Cerami, C., Gallivanone, F., Prestia, A., Caroli, A., Castiglioni, I., . . . 
and the, E.-P. E. T. C. (2014). A Standardized [18F]-FDG-PET Template for 
Spatial Normalization in Statistical Parametric Mapping of Dementia. 
Neuroinformatics, 12(4), 575-593. https://doi.org/10.1007/s12021-014-9235-4 

Ding, Y., Sohn, J. H., Kawczynski, M. G., Trivedi, H., Harnish, R., Jenkins, N. W., . . . 
Mari Aparici, C. (2019). A deep learning model to predict a diagnosis of 
Alzheimer disease by using 18F-FDG PET of the brain. Radiology, 290(2), 456-
464. 

Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Möller, H. E., Villringer, A., . . . 
Schroeter, M. L. (2011). Combined evaluation of FDG-PET and MRI improves 
detection and differentiation of dementia. PloS one, 6(3), e18111. 

Ebenau, J. L., Timmers, T., Wesselman, L. M., Verberk, I. M., Verfaillie, S. C., Slot, R. 
E., . . . Van Den Bosch, K. A. (2020). ATN classification and clinical progression 
in subjective cognitive decline: The SCIENCe project. Neurology, 95(1), e46-e58. 

Femminella, G. D., Thayanandan, T., Calsolaro, V., Komici, K., Rengo, G., Corbi, G., & 
Ferrara, N. (2018). Imaging and molecular mechanisms of Alzheimer’s disease: a 
review. International journal of molecular sciences, 19(12), 3702. 

Gao, L., Pan, H., Liu, F., Xie, X., Zhang, Z., Han, J., & Initiative, A. s. D. N. (2018). Brain 
disease diagnosis using deep learning features from longitudinal MR images. 
Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint 
International Conference on Web and Big Data, 

Gordon, B. A., Blazey, T. M., Su, Y., Hari-Raj, A., Dincer, A., Flores, S., . . . Xiong, C. 
(2018). Spatial patterns of neuroimaging biomarker change in individuals from 
families with autosomal dominant Alzheimer's disease: a longitudinal study. The 
Lancet Neurology, 17(3), 241-250. 

Gray, K. R., Wolz, R., Heckemann, R. A., Aljabar, P., Hammers, A., Rueckert, D., & 
Initiative, A. s. D. N. (2012). Multi-region analysis of longitudinal FDG-PET for the 
classification of Alzheimer's disease. NeuroImage, 60(1), 221-229. 

Page 27 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.1007/s12021-014-9235-4


28

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing 
human-level performance on imagenet classification. Proceedings of the IEEE 
international conference on computer vision, 

Huang, Y., Xu, J., Zhou, Y., Tong, T., Zhuang, X., & Initiative, A. s. D. N. (2019). 
Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural 
network. Frontiers in Neuroscience, 13, 509. 

Jack Jr, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., . 
. . Karlawish, J. (2018). NIA‐AA research framework: toward a biological 
definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562. 

Jo, T., Nho, K., & Saykin, A. J. (2019). Deep learning in Alzheimer's disease: diagnostic 
classification and prognostic prediction using neuroimaging data. Frontiers in 
aging neuroscience, 11, 220. 

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class 
imbalance. Journal of Big Data, 6(1), 27. https://doi.org/10.1186/s40537-019-
0192-5 

Johnson, K. A., Sperling, R. A., Gidicsin, C. M., Carmasin, J. S., Maye, J. E., Coleman, 
R. E., . . . Fleisher, A. S. (2013). Florbetapir (F18-AV-45) PET to assess amyloid 
burden in Alzheimer's disease dementia, mild cognitive impairment, and normal 
aging. Alzheimer's & Dementia, 9(5), S72-S83. 

Kazemi, Y., & Houghten, S. (2018). A deep learning pipeline to classify different stages 
of Alzheimer's disease from fMRI data. 2018 IEEE Conference on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB), 

Khosravi, M., Peter, J., Wintering, N. A., Serruya, M., Shamchi, S. P., Werner, T. J., . . . 
Newberg, A. B. (2019). 18F-FDG is a superior indicator of cognitive performance 
compared to 18F-florbetapir in Alzheimer’s disease and mild cognitive 
impairment evaluation: a global quantitative analysis. Journal of Alzheimer's 
Disease, 70(4), 1197-1207. 

Lee, G., Nho, K., Kang, B., Sohn, K.-A., & Kim, D. (2019). Predicting Alzheimer’s 
disease progression using multi-modal deep learning approach. Scientific 
reports, 9(1), 1-12. 

Page 28 of 31AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5


29

Liu, M., Cheng, D., Yan, W., & Initiative, A. s. D. N. (2018). Classification of Alzheimer’s 
disease by combination of convolutional and recurrent neural networks using 
FDG-PET images. Frontiers in neuroinformatics, 12, 35. 

Lu, D., Popuri, K., Ding, G. W., Balachandar, R., & Beg, M. F. (2018). Multimodal and 
multiscale deep neural networks for the early diagnosis of Alzheimer’s disease 
using structural MR and FDG-PET images. Scientific reports, 8(1), 1-13. 

Martí-Juan, G., Sanroma-Guell, G., & Piella, G. (2020). A survey on machine and 
statistical learning for longitudinal analysis of neuroimaging data in Alzheimer’s 
disease. Computer methods and programs in biomedicine, 189, 105348. 

Mattsson, N., Portelius, E., Rolstad, S., Gustavsson, M., Andreasson, U., Stridsberg, 
M., . . . Zetterberg, H. (2012). Longitudinal Cerebrospinal Fluid Biomarkers over 
Four Years in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 30, 
767-778. https://doi.org/10.3233/JAD-2012-120019 

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. 
H., . . . Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s 
disease: Recommendations from the National Institute on Aging-Alzheimer’s 
Association workgroups on diagnostic guidelines for Alzheimer's disease. 
Alzheimer's & Dementia, 7(3), 263-269. 
https://doi.org/https://doi.org/10.1016/j.jalz.2011.03.005 

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K.-R. (2019). Layer-
wise relevance propagation: an overview. Explainable AI: interpreting, explaining 
and visualizing deep learning, 193-209. 

Moonis, G., Subramaniam, R. M., Trofimova, A., Burns, J., Bykowski, J., Chakraborty, 
S., . . . Pannell, J. S. (2020). ACR appropriateness criteria® dementia. Journal of 
the American College of Radiology, 17(5), S100-S112. 

Mugler III, J. P., & Brookeman, J. R. (1990). Three‐dimensional magnetization‐prepared 
rapid gradient‐echo imaging (3D MP RAGE). Magnetic resonance in medicine, 
15(1), 152-157. 

Oldan, J., Jewells, V., Pieper, B., & Wong, T. (2021). Complete Evaluation of Dementia: 
PET and MRI Correlation and Diagnosis for the Neuroradiologist. American 
Journal of Neuroradiology, 42(6), 998-1007. 

Page 29 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.3233/JAD-2012-120019
https://doi.org/https://doi.org/10.1016/j.jalz.2011.03.005


30

Perovnik, M., Tomše, P., Jamšek, J., Emeršič, A., Tang, C., Eidelberg, D., & Trošt, M. 
(2022). Identification and validation of Alzheimer’s disease-related metabolic 
brain pattern in biomarker confirmed Alzheimer’s dementia patients. Scientific 
Reports, 12(1), 11752. https://doi.org/10.1038/s41598-022-15667-9 

Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., & Davatzikos, C. (2017). A review 
on neuroimaging-based classification studies and associated feature extraction 
methods for Alzheimer's disease and its prodromal stages. NeuroImage, 155, 
530-548. 

Reiman, E. M., & Jagust, W. J. (2012). Brain imaging in the study of Alzheimer's 
disease. Neuroimage, 61(2), 505-516. 

Rodrigues, F., & Silveira, M. (2014). Longitudinal FDG-PET features for the 
classification of Alzheimer's disease. 2014 36th Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society, 

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., & Müller, K.-R. (2016). Evaluating 
the visualization of what a deep neural network has learned. IEEE transactions 
on neural networks and learning systems, 28(11), 2660-2673. 

Samper-González, J., Burgos, N., Bottani, S., Fontanella, S., Lu, P., Marcoux, A., . . . 
Wen, J. (2018). Reproducible evaluation of classification methods in Alzheimer's 
disease: Framework and application to MRI and PET data. NeuroImage, 183, 
504-521. 

Smailagic, N., Vacante, M., Hyde, C., Martin, S., Ukoumunne, O., & Sachpekidis, C. 
(2015). 18 F‐FDG PET for the early diagnosis of Alzheimer’s disease dementia 
and other dementias in people with mild cognitive impairment (MCI). Cochrane 
Database of Systematic Reviews(1). 

Spasov, S., Passamonti, L., Duggento, A., Lio, P., Toschi, N., & Initiative, A. s. D. N. 
(2019). A parameter-efficient deep learning approach to predict conversion from 
mild cognitive impairment to Alzheimer's disease. Neuroimage, 189, 276-287. 

Sun, Z., van de Giessen, M., Lelieveldt, B. P., & Staring, M. (2017). Detection of 
conversion from mild cognitive impairment to Alzheimer's disease using 
longitudinal brain MRI. Frontiers in neuroinformatics, 11, 16. 

Page 30 of 31AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.1038/s41598-022-15667-9


31

Tomše, P., Jensterle, L., Grmek, M., Zaletel, K., Pirtošek, Z., Dhawan, V., . . . Trošt, M. 
(2017). Abnormal metabolic brain network associated with Parkinson’s disease: 
replication on a new European sample. Neuroradiology, 59(5), 507-515. 
https://doi.org/10.1007/s00234-017-1821-3 

Wang, H., Shen, Y., Wang, S., Xiao, T., Deng, L., Wang, X., & Zhao, X. (2019). 
Ensemble of 3D densely connected convolutional network for diagnosis of mild 
cognitive impairment and Alzheimer’s disease. Neurocomputing, 333, 145-156. 

Wood, D., Cole, J., & Booth, T. (2019). NEURO-DRAM: a 3D recurrent visual attention 
model for interpretable neuroimaging classification. arXiv preprint 
arXiv:1910.04721. 

Zhang, D., Shen, D., & Initiative, A. s. D. N. (2012). Predicting future clinical changes of 
MCI patients using longitudinal and multimodal biomarkers. PloS one, 7(3), 
e33182. 

Zhang, F., Li, Z., Zhang, B., Du, H., Wang, B., & Zhang, X. (2019). Multi-modal deep 
learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing, 
361, 185-195. 

Zhang, J., Bargal, S. A., Lin, Z., Brandt, J., Shen, X., & Sclaroff, S. (2018). Top-down 
neural attention by excitation backprop. International Journal of Computer Vision, 
126(10), 1084-1102. 

Świetlik, D., & Białowąs, J. (2019). Application of artificial neural networks to identify 
alzheimer’s disease using cerebral perfusion SPECT data. International journal 
of environmental research and public health, 16(7), 1303. 

Page 31 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-113549.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.1007/s00234-017-1821-3

