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ABSTRACT

Objective: New preclinical Alzheimer disease (AD) diagnostic criteria have been developed using
biomarkers in cognitively normal (CN) adults. We implemented these criteria using an MRI bio-
marker previously associated with AD dementia, testing the hypothesis that individuals at high
risk for preclinical AD would be at elevated risk for cognitive decline.

Methods: The Alzheimer’s Disease Neuroimaging Initiative database was interrogated for CN indi-
viduals. MRI data were processed using a published set of a priori regions of interest to derive a
single measure known as the AD signature (ADsig). Each individual was classified as ADsig-low
(�1 SD below the mean: high risk for preclinical AD), ADsig-average (within 1 SD of mean), or
ADsig-high (�1 SD above mean). A 3-year cognitive decline outcome was defined a priori using
change in Clinical Dementia Rating sum of boxes and selected neuropsychological measures.

Results: Individuals at high risk for preclinical AD were more likely to experience cognitive decline,
which developed in 21% compared with 7% of ADsig-average and 0% of ADsig-high groups (p �

0.03). Logistic regression demonstrated that every 1 SD of cortical thinning was associated with
a nearly tripled risk of cognitive decline (p � 0.02). Of those for whom baseline CSF data were
available, 60% of the high risk for preclinical AD group had CSF characteristics consistent with
AD while 36% of the ADsig-average and 19% of the ADsig-high groups had such CSF character-
istics (p � 0.1).

Conclusions: This approach to the detection of individuals at high risk for preclinical AD—
identified in single CN individuals using this quantitative ADsig MRI biomarker—may provide in-
vestigators with a population enriched for AD pathobiology and with a relatively high likelihood of
imminent cognitive decline consistent with prodromal AD. Neurology® 2012;78:84–90

GLOSSARY
AD � Alzheimer disease; ADNI � Alzheimer’s Disease Neuroimaging Initiative; ADsig � AD signature; AVLT � Auditory
Verbal Learning Test; CDR-SB � Clinical Dementia Rating–sum of boxes; CN � cognitively normal; MCI � mild cognitive
impairment; ROI � region of interest.

Although it has been known for years that Alzheimer disease (AD) neuropathology may be
present in individuals who were cognitively normal (CN) prior to death,1–6 this population is
receiving increasing recent attention. In 2010–2011 expert groups published diagnostic crite-
ria for “preclinical” AD that hinge upon biological markers, calling for longitudinal study of
individuals who meet criteria.7,8

Although the core of preclinical AD criteria is molecular biomarker evidence of amyloid-� depo-
sition, abnormalities of brain structure or function topographically consistent with AD-related neu-
rodegeneration are also considered supportive preclinical AD biomarkers.

Here we performed a hypothesis-driven analysis to answer this question: if CN older adults
harbor an MRI biomarker suggestive of early AD neurodegeneration, are they more likely to
develop cognitive decline than CN individuals lacking this marker?
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Based on previous studies, this analysis em-
ployed strong a priori hypotheses to define
both the imaging biomarker and the cognitive
decline outcome. The imaging biomarker
used here was the AD signature (ADsig) of
regional cortical thinning, a reliable and valid
marker of mild AD dementia,9 useful for pre-
diction of AD dementia in individuals with
mild cognitive impairment (MCI),10 and de-
tectable in CN individuals with brain
amyloid-� measured with PET.9 We also re-
cently found that it is detectable in CN adults
who later develop AD dementia; individuals
who express this marker have a 3-fold in-
creased risk for AD dementia over the next
decade.11 Here we used the previously pub-
lished cutoff to operationalize this MRI bio-
marker in a manner consistent with subtle
neurodegeneration predicted to occur in pre-
clinical AD.

METHODS Participants. Data used in preparation of this

article were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The

ADNI was launched in 2003 by the National Institute on Aging,

National Institute of Biomedical Imaging and Bioengineering,

Food and Drug Administration, private pharmaceutical compa-

nies, and nonprofit organizations, as a $60-million, 5-year pub-

lic–private partnership. The primary goal of ADNI has been to

test whether imaging measures, biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of MCI and early AD.

For the current analysis, we selected CN individuals (con-

trols) at baseline with a 1.5-T MRI of adequate quality to obtain

morphometric measures (n � 159). Detailed diagnostic, inclu-

sion, and exclusion criteria are described on the ADNI Web site

(http://www.adni-info.org/).

Standard protocol approvals, registrations, and patient
consents. Each participant gave written informed consent in

accordance with institutional Human Subjects Research Com-

mittee guidelines.

MRI and analysis. MRI scans were collected on a 1.5-T scan-

ner using a standardized magnetization-prepared rapid gradient

echo protocol: sagittal plane, repetition time/echo time/inver-

sion time, 2,400/3/1,000 msec, flip angle 8°, 24 cm field of view,

192 � 192 in-plane matrix, 1.2-mm slice thickness.12

T1 image volumes were examined quantitatively by a cortical

surface-based reconstruction and analysis of cortical thickness,

using a hypothesis-driven approach as described in multiple pre-

vious publications.9,10,13,14 Briefly, we utilized 9 regions of interest

(ROIs; see figure 1) previously determined to be associated with

AD, the “cortical signature” of AD.9,10

For the purposes of this study, our primary diagnostic

biomarker was a single summary “AD-signature measure,” the

average thickness of all 9 ROIs. We calculated individual Z

scores as follows where x is AD-signature thickness for each

individual, �sample is the sample mean, and �sample is the
sample SD:

Z � �x � �sample�/�sample

Using this measure, each individual was classified as “ADsig-
low” (�1 SD below the mean), “ADsig-average” (within 1 SD of
the mean), or “ADsig-high” (�1 SD above the mean). Individu-
als in the former group, ADsig-low, were considered to have
evidence of early neurodegeneration consistent with AD, and
were thus classified as high risk for preclinical AD. Since the new
diagnostic criteria7 require the presence of a marker of amyloid-�
to define stage 1 preclinical AD and a structural or functional
neuroimaging marker suggestive of AD in the setting of evidence
of amyloid-� to define stage 2 preclinical AD, these individuals
would not fulfill preclinical AD criteria since we do not know
their amyloid- � status.

In addition, for comparison purposes, we analyzed ento-
rhinal cortical thickness using the measure provided by the
automated parcellation from FreeSurfer; this is meant to pro-
vide a relatively widely used MRI biomarker thought to be
sensitive to early AD pathology for comparison with the AD-
signature biomarker.

Baseline neuropsychological, genetic, and CSF measures. The
groups were compared with respect to performance on neuropsy-
chological tests and frequency of the APOE �4 allele (carriers).
Also, the frequencies of individuals with CSF amyloid-� values
consistent with those of autopsy-proven AD (�19215) were com-
pared between the groups.

Figure 1 The cortical signature of Alzheimer
disease (AD)

A priori regions of interest composing the “AD signature” in
which consistent thinning has been previously observed in
multiple samples of patients with mild AD dementia. The
MRI biomarker used in the present study is an average of
the thickness of the cerebral cortex in all 9 of these regions
of interest, obtained from each individual subject.

Neurology 78 January 10, 2012 85

http://www.adni-info.org/


Three-year longitudinal cognitive outcomes. ADNI par-
ticipants were followed longitudinally for at least 3 years. Since
CN subjects are expected to have relatively subtle if any cognitive
decline over 3 years, we defined a 3-year cognitive decline out-
come measure using a method similar to one we have used in
previous independent studies which is sensitive to subtle early
symptoms and signs of cognitive decline consistent with AD.16–18

Specifically, we operationalized cognitive decline as a significant
decline in both Clinical Dementia Rating–sum of boxes (CDR-
SB) and psychometric performance, classifying individuals who
met these criteria at 3 years as CN-decliners and those who did
not as CN-stable. Significant decline in CDR-SB, representing
the development of new cognitive symptoms in daily life in
comparison to the individual’s previous baseline,19 was de-
fined as an increase of �1.0 on CDR-SB, a criterion we have
used previously.16 –18 Significant decline in psychometric test
performance was defined as a decline of �1.0 SD on at least 1
of 3 neuropsychological measures that we and others have
previously shown to be sensitive to presymptomatic and pro-
dromal AD16,20,21: 1) Total Word List Learning (Rey Auditory
Verbal Learning Test [AVLT]), 2) 30-minute AVLT Delayed
Free Recall, and 3) Trail Making Test Part B (time in sec-
onds). These change measures were obtained by calculating a
Z score for each individual at baseline and a separate Z score
at 3-year follow-up as follows where x is test performance for
an individual, �sample is the sample mean from the same time-
point, and �sample is the sample SD:

Znp � �x � �sample�/�sample

For each test for each individual, the change score was calcu-
lated as the difference between the 2 Z scores.

The primary outcome measure used in the present analysis
was cognitive decline as operationalized above.

Statistical analysis. Tests of group differences were per-
formed using �2 analysis (for frequencies) or analysis of variance
(for continuous measures) with post hoc pairwise comparisons
where relevant; � � 0.05. Since effect sizes were expected to
be subtle and strong a priori hypotheses were being tested, no
multiple comparisons correction procedures were performed.
Cohen d effect sizes were calculated using the standard ap-
proach. In addition to these analyses comparing groups, the
impact of the AD-signature MRI biomarker on clinical out-
come was analyzed using a logistic regression model. The
model was constructed using the dichotomous cognitive de-
cline outcome measure as the dependent variable. Age, gen-
der, education, and APOE genotype (�4 carrier vs noncarrier)
were entered into the model and, in a second block, the effect
of the AD-signature MRI measure (the full continuous mea-
sure without categorization) was tested. Statistical analyses
were performed using SPSS 16.0 (Chicago, IL).

RESULTS Baseline clinical characteristics of entire
sample. At baseline evaluation, the clinical and neu-
ropsychological characteristics of the sample were
consistent with those of a well-educated group of CN
older adults (mean age � 75.5, see table 1). Mean
baseline Mini-Mental State Examination was 29.1
with only 7 of the 159 individuals scoring below 28
on this global cognitive test.

Baseline characteristics of CN individuals classified as
high risk for preclinical AD. Of the 159 CN individu-
als in this sample, 19 were classified as high risk for
preclinical AD using the MRI biomarker described
above. Of the remaining individuals, 116 were classified
as ADsig-average and 24 as ADsig-high. The groups
demonstrated small differences in age, but measures of
global cognition at baseline (Alzheimer’s Disease Assess-
ment Scale–cognitive subscale modified total, Mini-
Mental State Examination, CDR-SB) did not differ
(p � 0.1). As for the neuropsychological measures ex-
amined, the only difference was for Trails B, with the
high risk for preclinical AD group performing more
slowly than the other 2 groups (p � 0.005). There were
similar trends (p � 0.1) for Digit Symbol and Verbal
Fluency (for vegetables). Of the episodic memory per-
formance scores that were examined, none differed
(p � 0.1, see table 1).

High risk for preclinical AD individuals are more
likely to develop cognitive decline. Of the entire sam-
ple of 159 CN individuals, 125 had 3-year outcome
data available for both CDR and neuropsychological
testing (table 2). Nine individuals met the composite
cognitive decline outcome measure (CN-decliners:
CDR-SB increase �1 and decline in performance of
�1.0 SD on at least 1 of the 3 neuropsychological
tests). Comparing the 3 baseline imaging biomarker
groups, cognitive decline developed in 21.4% (3/14)
of the high risk for preclinical AD group, 6.6%

Table 1 Demographic and baseline clinical characteristics of sample

Subject group, n (%)
or mean (SD)

All
(n � 159)

High risk for
preclinical
AD/ADsig-low
(n � 19)

ADsig-average
(n � 116)

ADsig-high
(n � 24)

Age, y 75.5 (5.3) 79.3 (5.1)a 75.6 (5.3)a 72.1 (3.4)a

Male, n (%) 81 (51) 14 (74) 58 (50) 9 (38)

Education, y 16.2 (2.8) 17.0 (3.4) 16.2 (2.7) 15.7 (2.6)

APOE, n (%) �4 carriers 42 (26) 4 (21) 36 (31) 2 (8)

MMSE 29.1 (0.9) 29.1 (1.2) 29.2 (0.9) 29.0 (1.0)

ADAS-cog modified total 9.4 (4.3) 9.9 (4.4) 9.2 (4.3) 9.6 (4.4)

Logical Memory delayed
recall

13.0 (3.5) 11.9 (3.8) 13.1 (3.4) 13.5 (3.6)

Rey Auditory Verbal
Learning Test Total
Learning

44.3 (8.9) 44.7 (8.3) 43.9 (9.4) 45.8 (7.1)

Rey Auditory Verbal
Learning Test Delayed
Free Recall

7.7 (3.7) 8.2 (3.7) 7.5 (3.7) 8.1 (3.4)

Trail Making Test
Part B, s

86.4 (39.5) 116.7 (55.8)b 82.9 (37.0) 79.4 (23.8)

Digit Symbol 46.4 (10.4) 41.2 (10.7)c 46.9 (10.7) 48.1 (7.1)

Boston Naming Test 27.5 (2.7) 27.3 (2.8) 27.4 (2.8) 27.8 (2.2)

Vegetable fluency 14.9 (3.9) 13.5 (3.4)c 14.8 (3.7) 16.2 (4.7)

Abbreviations: AD � Alzheimer disease; ADAS-cog � Alzheimer’s Disease Assessment
Scale–cognitive subscale; ADsig � AD signature; MMSE � Mini-Mental State Examination.
a p � 0.05, all groups different from each other.
b p � 0.05, different from both other groups.
c p �0.05, different from ADsig-high group.
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(6/90) of the ADsig-average group, and 0% (0/21) of
the ADsig-high group (n � 125, �2 � 6.8, p �
0.03), as shown in figure 2. The AD-signature corti-
cal thickness of CN-decliners (mean � 2.41 mm,
SD � 0.15) was significantly (0.87 SD) smaller than
that of the CN-stable group (mean � 2.56 mm,
SD � 0.16); Cohen d effect size was large at 0.95.
For comparison purposes, entorhinal thickness
showed a trend-level difference (3.32 mm [0.51] vs

3.50 mm [0.28]) with a small-to-medium Cohen d
effect size of 0.43.

In addition to the primary clinical outcome mea-
sure, we also investigated 2 secondary outcomes. Us-
ing the criterion of a CDR-SB increase �1, decline
developed in 28.5% of the high risk for preclinical
AD group, 9.7% of the ADsig-average group, and
0% of the ADsig-high group (n � 125, �2 � 7.5,
p � 0.02). Based on a decline in at least 1 of the 3
neuropsychologic tests of �1.0 SD, cognitive decline
developed in 50%/35.4%/14.2% of the 3 groups
(n � 131, �2 � 5.3, p � 0.07).

Similarly, the results of the logistic regression
model demonstrated that the value of the baseline
ADsig MRI biomarker was strongly associated with
the likelihood of cognitive decline. After adjustment
for covariates, the likelihood of cognitive decline was
nearly tripled with each 1 SD decrease of baseline
ADsig cortical thickness (odds ratio � 2.95, 95%
confidence interval 1.2–7.5, p � 0.02). Gender, ed-
ucation, and APOE genotype did not contribute to
the model (p � 0.1), while age showed a trend-level
effect (odds ratio � 1.09, 95% confidence interval
0.94–1.3, p � 0.06). A similar model for entorhinal
cortex did not reach significance (p � 0.1).

AD-like CSF is more common in MRI-defined high
risk for preclinical AD group. Of the 84 individuals
with CSF available, the 3 groups differed in CSF am-
yloid-�1–42 levels (F � 5.8, p � 0.004), with the
high risk for preclinical AD group exhibiting lower
levels (mean � 168.2, SD � 46.0, p � 0.01) than
the other 2 groups (ADsig-average group mean �
213.2, SD � 53.1; ADsig-high group mean �
236.3, SD � 36.0). When the amyloid-�1– 42

measure was dichotomized in a manner consistent
with the presence of AD pathology (�192),15 60%
of the high risk for preclinical AD group exhibited
CSF characteristics consistent with AD while 36.2%
of the ADsig-average and 18.8% of the ADsig-high
groups have such CSF characteristics, a trend toward
an overall difference (n � 84, �2 � 4.6, p � 0.1;
linear-by-linear association �2 � 4.5, p � 0.03), as
shown in figure 3.

DISCUSSION For the designation of preclinical AD
to have utility, biomarkers used to identify this state
need to be linked to a clinical outcome of cognitive
decline and, ultimately, AD dementia. Studies of the
full course of this process will likely take longitudinal
follow-up of 5–10 years, possibly more. In the mean-
time, we can employ intermediate clinical markers
that have been established as strong indicators of fu-
ture AD dementia. This was the approach we took in
the present analysis, which demonstrated that indi-
viduals classified as high risk for preclinical AD on

Figure 2 Expression of cortical signature of Alzheimer disease (AD) is
associated with future
cognitive decline

Participants who were cognitively normal at baseline but classified as high risk for pre-
clinical AD on the basis of having low AD-signature cortical thickness were at markedly
elevated risk of meeting the 3-year cognitive decline outcome (composite cognitive de-
cline) as compared with participants with average or high AD-signature cortical thick-
ness. Similar findings were present when the individual CDR–sum of boxes (CDR-SB)
decline outcome or the neuropsychological performance decline outcome were
examined.

Table 2 Primary outcome measures: 3-year change from baseline

Subject group

High risk for
preclinical
AD/ADsig-low
(n � 14)

ADsig-average
(n � 98)

ADsig-high
(n � 21)

Change in CDR-SB 0.7 (1.5)a 0.2 (0.7) 0.05 (0.2)

Change in Rey Auditory Verbal
Learning Test Total Learning
(Z score)

�0.74 (1.1)b �0.36 (0.9) �0.09 (0.6)

Change in Rey Auditory Verbal
Learning Test Delayed Free
Recall (Z score)

�0.64 (1.1)b �0.20 (1.0) 0.01 (0.9)

Change in Trail Making Test
Part B (Z score)

0.26 (0.9) 0.0 (0.9) 0.13 (0.6)

Abbreviations: AD � Alzheimer disease; ADsig � AD signature; CDR-SB � Clinical Demen-
tia Rating–sum of boxes.
a p � 0.05, different from both other groups.
b p � 0.05, different from ADsig-high group.
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the basis of a quantitative MRI biomarker suggestive
of subtle neurodegenerative pathology were more
likely than other older adults to develop clinically
significant cognitive decline over the ensuing 3 years.
We also showed that individuals with this MRI bio-
marker suggestive of preclinical AD were more likely
to harbor abnormal CSF amyloid-� levels, an inde-
pendent marker of AD pathobiology.

Taken together, the present data support our hy-
pothesis that the identification of individuals express-
ing this quantitative ADsig MRI biomarker may
provide investigators with a CN population enriched
for AD pathobiology and at relatively high risk for
imminent cognitive decline consistent with prodro-
mal AD. We will now consider these findings in rela-
tion to prior literature and discuss their implications
for further research and clinical practice.

A few previous studies have scanned individuals
who are CN and followed them over time to investi-
gate whether the subgroup that demonstrates cogni-
tive decline could be, in retrospect, differentiated
from those who remain stable on the basis of baseline
MRI measures. Several of these studies have deter-
mined that, compared to the subgroup remaining
CN over follow-up, the subgroup of CN-decliners
had smaller baseline brain structures, including hip-
pocampal formation and temporoparietal cortical re-
gions.22–26 A few other investigations have reported
MTL and whole brain atrophy in the presymptom-
atic stage of genetically determined early-onset famil-
ial AD, again supporting the concept that atrophy as
measured on MRI, while often subtle, may be pres-

ent for a number of years prior to the development of
AD-related symptoms.27–29 Yet at least one similarly
designed study found that ventricular volume was
predictive of decline, but hippocampal, entorhinal,
or whole brain volume were not.30

None of these prior longitudinal studies investi-
gated other biomarkers of AD pathobiology, in part
because many were carried out before the technolo-
gies to measure brain amyloid-� via imaging or CSF
were widely available. One recent study followed CN
older adults for an average of 2.4 years and deter-
mined that the subgroup exhibiting cognitive decline
also demonstrated imaging evidence for greater
fibrillar brain amyloid-� at baseline assessment as
well as parahippocampal cortical atrophy.31 We
have previously demonstrated that older CN
adults with brain amyloid-� have subtle ADsig
cortical thinning compared to CN older adults
without brain amyloid-�, but these individuals
had not yet been followed longitudinally9; other
investigators have reported smaller whole brain
volume in CN older adults with brain amyloid-�
compared to those without.32

An important strength of the present study is that,
rather than performing a retrospective analysis com-
paring subgroups to each other to demonstrate dif-
ferences between the groups of participants, we
employed the conceptual approach of the newly pro-
posed diagnostic criteria for preclinical AD and ap-
plied it a priori to each individual in the present
sample. That is, using an a priori MRI biomarker
suggestive of early neurodegeneration consistent with
preclinical AD (one element defining stage 2 accord-
ing to the National Institute on Aging–Alzheimer’s
Association criteria7), we classified each individual
CN subject in a manner similar to a hypothetical
design of a prospective clinical research study or in-
tervention trial, and then investigated the likelihood
of subsequent cognitive decline.

To our knowledge, only one other recent study
has used a similar conceptual approach, employing
baseline CSF amyloid-� to identify CN individuals
with low levels suggestive of preclinical AD. This
group of individuals with low CSF amyloid-� had
higher rates of whole brain atrophy, hippocampal at-
rophy, and ventricular expansion than the group of
individuals with high CSF amyloid-�.33

Here we used a relatively new technique for quan-
titative neuroanatomic measurement (cortical thick-
ness analysis) and employed it using a novel a priori
approach focusing on brain regions known to be
consistently affected early in AD from prior studies.
More importantly, these measures are possible to ob-
tain reliably from single individuals, thus making it
feasible to use Z scores to compare the size of a CN

Figure 3 Expression of cortical signature
of Alzheimer disease (AD) is
associated with AD-like spinal fluid

Cognitively normal participants who were classified as high
risk for preclinical AD on the basis of having low AD-
signature cortical thickness showed a trend toward being
more likely to harbor abnormally low amyloid-� levels in CSF
compared to participants with average or high AD-
signature cortical thickness.
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individual’s ADsig cortical regions to a normative
sample. We previously demonstrated in 2 indepen-
dent samples of CN adults followed over nearly a
decade that such a measure is useful at the individual
level in the assessment of risk of AD dementia.11 In
each sample, a few individuals developed AD demen-
tia over the follow-up period of 7–12 years. The
magnitude of the difference in the thickness of the
cerebral cortex in the ADsig regions at baseline in
CN-AD converters compared to those remaining sta-
ble was remarkably similar in both samples, about a
0.2 mm difference (p � 0.05). Despite this small
absolute difference, Cohen d effect sizes for these dif-
ferences were very large (�1). When those 2 samples
in the prior study were pooled together, 55% of the
11 CN individuals with baseline low ADsig thickness
(�1 SD below cohort mean) developed AD demen-
tia over nearly the next decade, while none of the 9
high ADsig thickness individuals (�1 SD above
mean) developed AD dementia. This specific finding
motivated us to conduct the present analysis in a
strictly a priori hypothesis-driven fashion, based on
the methods and cutoffs previously identified. Here
the ADsig cortical thickness measure differed by 0.15
mm between the CN-decliners and CN-stables (Co-
hen d � 0.95), remarkably similar to our prior re-
sults. In the previous study, the ADsig imaging
biomarker predicted time to diagnosis of AD demen-
tia in a Cox hazards model (HR � 3.4, p � 0.0005);
1 SD of thinning increased dementia risk by 3.4, very
similar to the nearly tripled risk of cognitive decline
we found in the present analysis for those with simi-
larly reduced thickness. The Cox regression model
results from the previous study are powerful in that
they augment the likelihood estimate with an esti-
mate of the potential time to event (in this case, AD
dementia). Estimates of timing may be of particular
importance in the preclinical phase of disease given
the potential for a significant lag between the de-
velopment of biomarker change, such as CSF
amyloid-�, and clinical symptoms, almost certainly
having a major impact on decisions to initiate thera-
pies. Based on the results of the prior study and those
presented here, it appears that this approach may be
useful in a generalizable manner. The present dataset
was underpowered for analyses directly comparing
MRI markers to CSF markers; thus, we were not able
to formally define stage 2 preclinical AD for this
analysis. Further work will be required to determine
how this MRI measure of AD-related neurodegen-
eration could be used in combination with measures
indicative of cerebral amyloidosis, an important
topic for future research.

The major limitations of the present study are the
relatively small numbers of subjects and the short

follow-up interval. The apparently low sensitivity of
the present MRI biomarker to cognitive decline is
likely related in part to the short follow-up interval.
These limitations are also present in prior studies
that resemble the present one. The field is now
primed for larger, prospectively designed studies of
this sort, although many challenges remain in mak-
ing such cumbersome investigations as efficient as
possible. The development of more sensitive meth-
ods to detect very early indicators of the development
of AD-related symptoms seems of particular rele-
vance to increase the efficiency of such studies.
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