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a b s t r a c t 

Deformable image registration and regression are important tasks in medical image analysis. However, 

they are computationally expensive, especially when analyzing large-scale datasets that contain thou- 

sands of images. Hence, cluster computing is typically used, making the approaches dependent on such 

computational infrastructure. Even larger computational resources are required as study sizes increase. 

This limits the use of deformable image registration and regression for clinical applications and as com- 

ponent algorithms for other image analysis approaches. We therefore propose using a fast predictive ap- 

proach to perform image registrations. In particular, we employ these fast registration predictions to ap- 

proximate a simplified geodesic regression model to capture longitudinal brain changes. The resulting 

method is orders of magnitude faster than the standard optimization-based regression model and hence 

facilitates large-scale analysis on a single graphics processing unit (GPU). We evaluate our results on 3D 

brain magnetic resonance images (MRI) from the ADNI datasets. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Longitudinal image data provides us with a wealth of informa-

ion to study aging processes, brain development and disease pro-

ression. Such studies, for example ADNI ( Jack et al., 2015 ) and

he Rotterdam study ( Ikram et al., 2015 ), involve analyzing thou-

ands of images. In fact, even larger studies will be available in

he near future. For example, the UK Biobank bio targets on the

rder of 10 0,0 0 0 images once completed. With the number of im-

ges increasing, large-scale image analysis typically resorts to using

ompute clusters for parallel processing. While this is, in princi-

le, a viable solution, increasingly larger compute clusters will be-

ome necessary for such studies. Alternatively, more efficient algo-

ithms can reduce computational requirements, which then facili-
∗ Corresponding author. 

E-mail addresses: zp-ding@cs.unc.edu (Z. Ding), greg.nli10me@gmail.com 

(G. Fleishman), xy@cs.unc.edu (X. Yang), pthomp@usc.edu (P. Thompson), 

oland.kwitt@gmail.com (R. Kwitt), mn@cs.unc.edu (M. Niethammer). 
1 Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database ( adni.loni.usc.edu ). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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ates computations on individual computers or much smaller com-

ute clusters, interactive (e.g., clinical) applications, efficient algo-

ithm development, and use of these efficient algorithms as com-

onents in more sophisticated analysis approaches (which may use

hem as part of iterative processes). 

Image registration is a key task in medical image analysis

o study deformations between images. Building on image regis-

ration approaches, image regression models ( Niethammer et al.,

011; Hong et al., 2012b; 2012a; Singh et al., 2013; Fletcher, 2013;

ong et al., 2014b; Singh and Niethammer, 2014; Hong et al.,

014a; Singh et al., 2015; Hong et al., 2016 ) have been devel-

ped to analyze deformation trends in longitudinal imaging stud-

es. One such approach is geodesic regression (GR) ( Niethammer

t al., 2011; Singh et al., 2013; Fletcher, 2013 ) which (for images)

uilds on the large displacement diffeomorphic metric mapping

odel (LDDMM) ( Beg et al., 2005 ). In general, GR generalizes linear

egression to Riemannian manifolds. When applied to longitudi-

al image data, it can compactly express spatial image transforma-

ions over time. However, the solution to the underlying optimiza-

ion problem is computationally expensive. Hence, a simplified, ap-

roximate, GR approach has been proposed ( Hong et al., 2012c )

SGR) to decouple the computation of the regression geodesic

nto pairwise image registrations. However, even such a simpli-

ed GR approach would require months of computation time on

https://doi.org/10.1016/j.media.2019.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.06.003&domain=pdf
mailto:zp-ding@cs.unc.edu
mailto:greg.nli10me@gmail.com
mailto:xy@cs.unc.edu
mailto:pthomp@usc.edu
mailto:roland.kwitt@gmail.com
mailto:mn@cs.unc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.media.2019.06.003
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a single graphics processing unit (GPU) to process thousands of

3D image registrations for large-scale imaging studies such as

ADNI ( Jack et al., 2015 ). The primary computational bottleneck for

SGR is the optimization required to compute pair-wise registra-

tions. 

Recently, efficient approaches have been proposed for de-

formable image registration ( Cao et al., 2017; Miao et al., 2016;

Sokooti et al., 2017; Yang et al., 2016; 2017; Zhang et al., 2017 ).

In particular, for LDDMM, which is the basis of GR approaches for

images, registrations can be dramatically sped up, by either work-

ing with finite-dimensional Lie algebras ( Zhang and Fletcher, 2015 )

and frequency diffeomorphisms ( Zhang et al., 2017 ), or by fast

predictive image registration (FPIR) ( Yang et al., 2016; 2017 ). FPIR

predicts the initial conditions (specifically, the initial momentum)

of LDDMM, which fully characterize the geodesic and the spa-

tial transformation using a learned patch-based deep regression

model. Because numerical optimization of standard LDDMM reg-

istration is replaced by a single prediction step, followed by op-

tional correction steps ( Yang et al., 2017 ), FPIR is dramatically

faster than optimization-based LDDMM without compromising

registration accuracy, as measured on several registration bench-

marks ( Klein et al., 2009 ). 

Besides FPIR, other predictive image registration approaches

have been proposed. Dosovitskiy et al. ( Dosovitskiy et al., 2015 )

use a convolutional neural network (CNN) to directly predict op-

tical flow. Liu et al. ( Liu et al., 2017 ) use an encoder-decoder net-

work to synthesize video frames. Schuster et al. ( Schuster et al.,

2016 ) investigate strategies to improve optical flow prediction

via a CNN. Cao et al. ( Cao et al., 2017 ) use a sampling strat-

egy and CNN regression to directly learn the mapping from mov-

ing and target image pairs to the final deformation field. Miao

et al. ( Miao et al., 2016 ) use CNN regression for 2D/3D rigid reg-

istration. Sokooti et al.( Sokooti et al., 2017 ) use CNNs to directly

predict a 3D displacement vector field from input image pairs. An

end-to-end approach for image registration was proposed by de

Vos et al. ( de Vos et al., 2017 ); here, the loss function is the im-

age similarity measure between images themselves and a defor-

mation is parameterized via a spatial transformer (which essen-

tially amounts to a parameterized model of deformation in image

registration) which generates the sought-for displacement vector

field. Hong et al. (2017) employ a low-dimensional band-limited

representation of velocity fields in Fourier space ( Zhang and

Fletcher, 2015 ) to speed up SGR ( Hong et al., 2012c ) for population-

based image analysis. 

In this work, we will build on FPIR, as it is a desirable ap-

proach for brain image registration for the following reasons: First ,

FPIR predicts the initial momentum of LDDMM and therefore in-

herits the theoretical properties of LDDMM. Consequently, FPIR re-

sults in diffeomorphic transformations and a geodesic path, even

though predictions are computed in a patch-by-patch manner; this

can not be guaranteed by most other prediction methods. Second ,

patch-wise prediction allows for training of the prediction models

based on a very small number of images, containing a large num-

ber of patches. Third , by using a patch-wise approach, even high-

resolution image volumes can be processed without running into

memory issues on a GPU. Fourth , none of the existing predictive

methods address longitudinal data. However, as both FPIR and SGR

are based on LDDMM, they naturally integrate and hence result in

our proposed fast predictive simple geodesic regression (FPSGR) ap-

proach. 

Our contributions can be summarized as follows: 

Predictive geodesic regression. We use a fast predictive reg-

istration approach for image geodesic regression. Different

from ( Yang et al., 2017 ), we specifically validate that our ap-

proach can indeed capture the frequently subtle deformation

trends of longitudinal image data. 
Large-scale dataset capability. Our predictive regression ap-

proach (FPSGR) facilitates large-scale image regression

within a short amount of time on a single GPU, instead

of requiring months of computation time for standard

optimization-based methods on a single computer, or the

use of a compute cluster. 

Accuracy. We assess the accuracy of FPSGR by (1) studying lin-

ear models of atrophy scores (which are derived from the

nonlinear SGR model) over time, as well as (2) correlations

between atrophy scores and various diagnostic groups. 

Validation. We demonstrate the performance of FPSGR by ana-

lyzing > 6, 0 0 0 images of the ADNI-1 / ADNI-2 datasets.

For comparison, we also perform SGR using numerical

optimization for the registrations, again on the complete

ADNI-1 / ADNI-2 datasets. Due to imaging protocol differ-

ences in ADNI-1 and ADNI-2 , we separately analyze these

two datasets. 

This work is an extension of a recent conference pa-

er ( Ding et al., 2017 ). All our experiments are now in 3D. We also

dded significantly more results to further explore the behavior of

PSGR in comparison to optimization-based SGR. In particular, we

dded (a) a comparison with pairwise registration ( Section 4.2 );

b) a more in-depth analysis of atrophy scores correlated with

linical variables ( Section 4.2 ); (c) correlations within diagnos-

ic groups ( Section 4.2 ); (d) an example to visualize the perfor-

ance of regression models and associated quantitative compar-

sons ( Section 4.3 ); (e) experiments on extrapolation on unseen

ata ( Section 4.4, Section 4.3 ) ; (f) and more detailed atrophy as-

essments ( Section 4.5 ). 

Organization. The remainder of this article is organized as

ollows: Section 2 describes FPSGR, Section 3 discusses the ex-

erimental setup and the training of the prediction models. In

ection 4 , we present experimental results for 3D MR brain im-

ges. The paper concludes with a summary and an outlook on fu-

ure work. 

. Fast predictive simple geodesic regression 

Our fast predictive simple geodesic regression approach is a

ombination of two methods: First , fast predictive image registra-

ion (FPIR) and, second , integration of FPIR with simple geodesic

egression (SGR). Both FPIR and SGR are based on the shooting

ariant of LDDMM ( Singh et al., 2013 ); Fig. 1 illustrates our overall

pproach. The individual components are described in the follow-

ng. 

.1. LDDMM 

Shooting-based LDDMM and geodesic regression minimize 

(I 0 , m 0 ) = 

1 

2 

〈 m 0 , Km 0 〉 + 

1 

σ 2 

∑ 

i 

d 2 (I(t i ) , Y 
i ) , (1)

.t. m t + ad 

∗
v m = 0 , I t + ∇I T v = 0 , m − L v = 0 , 

m (t 0 ) = m 0 , I(t 0 ) = I 0 , (2)

here I 0 is the initial image (known for image-to-image registra-

ion and to be determined for geodesic regression), m 0 is the ini-

ial momentum, K is a smoothing operator that connects velocity v

nd momentum m as v = Km and m = L v with K = L −1 , σ > 0 is a

eight, Y i is the measured image at time t i (there will be only one

uch image for image-to-image registration at t = 1 ), and d 2 ( I 1 , I 2 )

enotes the image similarity measure between I 1 and I 2 (for exam-

le L 2 or geodesic distance); ad 

∗ is the dual of the negative Jacobi-

ie bracket of vector fields: ad v w = −[ v , w ] = D v w − Dw v and D
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Fig. 1. Principle of fast predictive simple geodesic regression (FPSGR). In the encoder-decoder network (middle), the inputs are patches from the moving image and the 

target image at the same spatial location; the outputs are the predicted initial momenta (i.e., m 1 , . . . , m n ) of the corresponding patches. Conv : Convolutional layer; Conv T : 
transpose of convolutional layer. In the simple geodesic regression (SGR) part, all the pairwise initial momenta are averaged according to Eq. (3) to produce the initial 

momentum of the regression geodesic (marked red ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 2. Architecture of the prediction + correction network. Here, we use 2D images and the momentum in the x -direction for illustration. All images are 3D in our 

experiments. (1) Predict the initial momentum m p and the corresponding backward deformation, �; (2) Predict a correction of the initial momentum, m c , based on the 

difference between the moving image and the warped-back target image. The final momentum is m = m p + m c . The correction network is trained based on the moving 

images and the warped-back target images of the training dataset. 
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enotes the Jacobian. The deformation of the source image I 0 ◦
−1 can be computed by solving �−1 

t + D �−1 v = 0 , �−1 (t 0 ) = id ,

here id denotes the identity map. 

.2. FPIR 

Fast predictive image registration ( Yang et al., 2016; 2017 ) aims

t predicting the initial momentum, m 0 , between a source and a

arget image patch-by-patch. Specifically, we use a deep encoder-

ecoder network to predict the patch-wise momentum. As shown

n Fig. 1 , in 3D the inputs are two layers of 15 × 15 × 15 image

atches (15 × 15 in 2D), where the two layers are from the source

nd target images respectively. Two patches are taken at the same

osition by two parallel encoders, which learn features indepen-

ently. The learned features are then concatenated to form the in-

ut to the decoder. The output is the predicted initial momentum

n the x, y and z directions (obtained by numerical optimization

n the training samples). We use an l 1 loss to train the network.

asically, the network is split into an encoder and a decoder part.

n encoder consists of 2 blocks of three 3 × 3 × 3 convolutional

ayers with PReLU activations, followed by another 2 × 2 × 2

onvolution + PReLU with a stride of two, serving as a “pooling” op-

ration. The number of features in the first convolutional layer is

4 and increases to 128 in the second. In the decoder , three par-

llel decoders share the same input generated from the encoder.
ach decoder is the inverse of the encoder except for using 3D

ransposed convolution layers with a stride of two to perform “un-

ooling”, and no non-linearity at the end. To speed up computa-

ions, we use patch pruning (i.e., for brain imaging, e.g., patches

utside the brain are not predicted as the momentum is expected

o be zero there) and a large pixel stride (e.g., 14 for 15 × 15 × 15

atches) for the sliding window of the predicted patches. 

.3. Correction network 

We follow Yang et al. (2017) and use a two-step approach

o improve overall prediction accuracy. An additional correction

tep, i.e., a correction network , corrects the prediction of the initial

rediction network. Fig. 2 illustrates this two-step approach graph-

cally. The correction network has the same structure as the pre-

iction network. Only the inputs and outputs differ. For the pre-

iction network, the inputs are the original moving image and the

riginal target image; output is the predicted initial momentum.

or the correction network, the inputs are the original moving im-

ge and the warped target image; the output is the momentum

ifference. Quantitative statistical results about deformation errors

or such networks (with and without correction) can be found

n Yang et al. (2017) . Specifically, comparisons between defor-

ations from the prediction models and the ones derived via
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Table 1 

Overview of the trained prediction models. 

ADNI-1 Pred-1 Model v1 (no corr.) 

ADNI-1 Pred + Corr-1 Model v1 + 1x corr. step 

ADNI-1 Pred-2 Model v2 (no corr.) 

ADNI-1 Pred + Corr-2 Model v2 + 1x corr. step 

ADNI-2 Pred-1 Model v1 (no corr.) 

ADNI-2 Pred + Corr-1 Model v1 + 1x corr. step 

ADNI-2 Pred-2 Model v2 (no corr.) 

ADNI-2 Pred + Corr-2 Model v2 + 1x corr. step 
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optimization showed good performance of the prediction models

for diffeomorphic image registration on four different datasets. 

2.4. SGR 

Determining the initial image, I 0 , and the initial momen-

tum, m 0 , of Eq. (1) is computationally costly. However, in simple

geodesic regression, the initial image is fixed to the first image of

a subject’s longitudinal image set (left-most part of Fig. 1 ). Fur-

thermore, the similarity measure d ( · , · ) is chosen as the geodesic

distance between images and approximated so that the geodesic

regression problem can be solved by computing pair-wise image

registrations with respect to the first image. The approximated op-

timal m 0 of the energy functional in Eq. (1) for a fixed I 0 is then 

m ≈
∑ 

i (t i − t 0 ) 
2 m i ∑ 

i (t i − t 0 ) 2 
= 

∑ 

i (t i − t 0 ) ̃  m i ∑ 

i (t i − t 0 ) 2 
, (3)

where ˜ m i is obtained by registering I 0 to Y i in unit time followed

by a rescaling of the momentum to account for the original time

duration: m i = 

1 
t i −t 0 ̃

 m i . See Appendix A for details. 

3. Setup / training 

All experiments use 3D images from the ADNI dataset 2 which

consists of 6471 3D MR brain images of size 220 × 220 × 220 vox-

els (a voxel is of size 1 mm × 1 mm × 1 mm ). In particular, ADNI-1
contains 3479 images from 833 subjects and ADNI-2 contains

2992 images from 823 subjects. Images belong to various types

of diagnostic categories which we will discuss later. We prepro-

cessed all images. Specifically, images are a) brain extracted us-

ing ROBEX ( Iglesias et al., 2011 ) and b) affinely registered us-

ing FSL-FLIRT ( Jenkinson et al., 2002; Jenkinson and Smith, 2001;

Greve and Fischl, 2009 ) to a common atlas (ICBM brain tem-

plate ( Mazziotta et al., 1995 )). Further, their c) intensities are nor-

malized to a mean intensity of 1.0 within the brain. Since the pa-

tients in ADNI-1 / ADNI-2 were imaged at different time points

(see Appendix B for details) and acquired with different acquisition

protocols, we treat them as two separate datasets . Consequently, we

evaluate them separately in what follows. 

In particular, we perform two types of studies: 

Registration. We assess our hypothesis that training FPIR on

longitudinal data for longitudinal registrations is preferred

over training using cross-subject data. Vice versa, training

FPIR on cross-subject data for cross-subject registrations is

preferred over training using longitudinal data. Comparisons

are with respect to registration results obtained by numeri-

cal optimization (i.e., LDDMM). 

Regression. For regression, we compare linear models fitted

to atrophy scores over time, where scores are either ob-

tained from FPSGR or optimization-based SGR. Additionally,

we study correlations between atrophy scores and diagnostic

groups. Our hypothesis is that FPSGR is accurate enough to

achieve comparable performance to optimization-based SGR,
at much lower computational cost, in both situations. 

2 Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative ( ADNI ) database ( http://www.adni.loni.usc.edu ). 

ADNI was launched in 2003 as a public-private partnership, led by Principal In- 

vestigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography 

(PET), other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD). 

w  

p  

s  

s  

o

/

.1. Training of the prediction models 

We use a randomly selected set of 120 patients’ MRI images

rom ADNI for training the prediction models and to test the per-

ormance of FPIR. We use all of the ADNI data for our regression

xperiments. 

Training for registration. We randomly selected 120 subjects

rom ADNI-1 and registered their baseline images to their 24

onth follow-up images. We used the first 100 subjects for train-

ng and the remaining 20 subjects for testing. For longitudinal train-

ng , we registered the baseline image of a subject to the subject’s

4-month image. For cross-subject training , we registered a sub-

ect’s baseline image to another subject’s 24-month image. To as-

ess the performance of prediction models trained on these two

ypes of paired data, we (1) perform the same type of registrations

n the held-out 20 subjects and (2) compare the 2-norm of the de-

ormation error computed from the output of the prediction mod-

ls with respect to the result obtained by numerical optimization

f LDDMM 

3 (which serves as the “ground-truth”). 

Training for regression. The ADNI-1 dataset contains 228 nor-

al controls, 257 subjects with mild cognitive impairment (MCI),

49 with late mild cognitive impairment (LMCI), as well as 199

ubjects suffering from Alzheimer’s disease (AD). We randomly

icked roughly 1/6 of patients from each diagnostic category to

orm a set of 139 subjects for training in ADNI-1 , i.e., 38 normal

ontrols, 43 MCI, 25 LMCI, as well as 33 AD subjects. The base-

ine images of each subject were registered to all the later time-

oints within the same subject. To maintain the diagnostic ratio,

e randomly picked (out of all registrations) 45 registrations from

he normal group, 50 registrations from the MCI group, 30 regis-

rations from the LMCI group, and 40 registrations from the AD

roup, resulting in 165 longitudinal registration cases for training. 

The same strategy was applied to ADNI-2 . In detail, ADNI-2
ontains 200 normal controls, 111 subjects with significant mem-

ry complaint (SMC), 182 subjects with early mild cognitive im-

airment (EMCI), 175 with late mild cognitive impairment (LMCI),

nd 155 subjects with Alzheimer’s disease (AD). We randomly

icked 150 subjects and 140 longitudinal registrations, consisting

f 35 registrations from the control group, 20 registrations from

he SMC group, 30 registrations from the EMCI group, 30 registra-

ions from the LMCI group, and 25 registrations from the AD group.

ote that there are fewer registrations than subjects (140 vs. 150)

n this setup, as our priority is to maintain the overall diagnostic

atio. 

For both, ADNI-1 and ADNI-2 , the remaining 5/6 of the data is

sed for testing. Training sets within ADNI-1 and ADNI-2 , resp.,

ere not overlapping. We trained four prediction models (i.e., two

rediction models for each dataset in a two-fold cross-validation

etup; denoted as Pred-1/2 , respectively) and their four corre-

ponding correction models, leading to eight prediction models

verall ( Table 1 ). 
3 LDDMM results are generated using a vector momentum formulation: https: 

/bitbucket.org/scicompanat/vectormomentum 

http://www.adni.loni.usc.edu
https://bitbucket.org/scicompanat/vectormomentum
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Fig. 3. Region of Interest (ROI) significantly associated with atrophy in AD used to compute atrophy scores. 
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For our experiments, we created 10 different (dataset / regis-

ration approach) combinations, each combination specifically de-

igned to assess certain properties of our proposed method. The

ombinations are as follows: 

(1) All subjects from the ADNI-1 dataset in combination with

optimization-based LDDMM (to which we refer as SGR LD-

DMM when used for regression). 

(2) Two subgroups of ADNI-1 (i.e., different cross-validation

folds) in combination with FPSGR without a correction net-

work. Denoted as SGR Pred or Pred in short. 

(3) The same two subgroups as in 2), but in combination with

FPSGR with a correction network. Denoted as SGR Pred + Corr

or Pred + Corr in short. 

(4) The same five groups of 1–3, but for ADNI-2 . 

With an additional correction network, the results are generally

etter than using the prediction network alone. Hence, to simplify

he presentation of our results, we only show the prediction + cor-

ection results in the main manuscript. Selected results obtained

hen using the prediction network only (combination 2 above) can

e found in the supplementary material. 

.2. Parameter selection 

We use the regularization kernel 

 = L −1 = (−a ∇ 

2 − b∇(∇·) + c) −2 

ith [ a, b, c ] set to [1, 0, 0.1]. The parameter σ , from equation (1) ,

s set to 0.1. We train our network using ADAM ( Kingma and

a, 2014 ) over 10 epochs with a learning rate of 0.0 0 01. Additional

raining and convergence details can be found in the supplemen-

ary material. 

.3. Efficiency 

Once trained, the prediction models allow fast computations

f registrations. We use a Nvidia TITAN X (Pascal) GPU and

yTorch 4 for our implementation of FPIR. For the 3D ADNI-1
ataset (220 × 220 × 220 MR images), FPSGR took about one day

o predict 2646 pairwise registrations (i.e., 25 [s]/prediction) and

o compute the regression result. SGR LDDMM 

5 would require ≈
0 days of runtime. Runtime for FPIR on ADNI-2 is identical to

DNI-1 as the images have the same spatial dimension. 

Compared to the recent fast geodesic regression model

y Hong et al. (2017) , FPSGR is approximately twice as fast,

hough this comparison is only qualitative as FPSGR is imple-

ented and run on a GPU, whereas Hong et al. (2017) used

 CPU compute cluster. We therefore base our qualitative com-

arisons on the obtained speed-ups. Specifically, the model
4 http://pytorch.org . 
5 Here, we used 300 fixed iterations for each registration. Empirically, 300 iter- 

tions were sufficient for convergence. Note that the optimization-based LDDMM 

lso uses a GPU implementation. 

s

d

t

y Hong et al. (2017) achieves ≈ 16 times speed-up compared with

ptimization-based SGR for the same CPU setting (parallel com-

uting with the same number of cores). In our case, we achieve

ore than 40 times speed-up compared with SGR for the same

PU setting (using a single Nvidia GTX1080 Ti GPU). Note also that

n interesting future direction could be to combine the approach

y Hong et al. (2017) with our prediction approach. This would

ikely yield extremely fast prediction methods for registration and

egression. Additional details on computation times for trainining

nd testing can be found in the supplementary material. 

. Experimental results for 3D ADNI data 

Our general hypothesis is that the prediction models (for

DNI-1/2 ) show similar performance to SGR LDDMM and that

sing the correction network for the predictions improves results.

s using a correction network indeed improved results only these

esults are presented in the main document. See the supplemen-

ary material for results when not using the correction network.

o assess differences, we compare differences in deformations.

pecifically, for every deformation produced by the different ap-

roaches, we compute its local Jacobian determinants (JD). The

Ds are then warped to a common coordinate system for the en-

ire ADNI dataset using existing deformations from Fleishman and

hompson (2017b,a) obtained via LDDMM registration. Each such

patially normalized JD is then averaged within a region where

he rate of atrophy is significantly associated with Alzheimer’s dis-

ase (AD), i.e., within a statistical region of interest (stat-ROI) (see

ig. 3 ). This region was determined in Fleishman and Thomp-

on (2017b) and Fleishman and Thompson (2017a) using a train-

ng dataset of AD subjects and controls and optimization-based

DDMM registration 

6 . Only voxels whose atrophy measurements

ere significantly associated with the AD disease group (vs. con-

rols) after a Bonferroni correction on the number of voxels, were

etained. We prefer this data-driven approach to defining the area

mpacted by AD to using anatomical boundaries. As can be seen

rom Fig. 3 , our statistically derived ROI reassuringly overlaps with

he hippocampus and surrounding grey matter. There are likely de-

ormations over time outside this region, either due to local tis-

ue loss or elastic deformation from non-local tissue loss, but we

conservatively) only study voxels that passed our statistical test.

pecifically, we quantify atrophy as 

 (φ) := 

(
1 − 1 

| ω| 
∫ 
ω 

det (Dφ(x )) dx 

)
× 100 , (4) 

here det( ·) denotes the determinant and | · | the cardinality/size

f a set; ω is the stat-ROI region described above. The resulting

calar value is an estimate of the relative volume change experi-

nced by that region between the baseline and a follow-up image.
6 Less than 5% of the images of the ADNI-1 dataset were used to define this 

tatistical region of interest. This may result in some analysis bias for the ADNI-1 
ataset. The ADNI-2 results are not subject to this possible analysis bias as we use 

he same ADNI-1 -derived stat-ROI for the analysis of the ADNI-2 data. 

http://pytorch.org
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Hence, its sign is positive when the region has lost volume over

time and is negative if the region has gained volume over time. To

estimate atrophy trends for longitudinal data, we compute atrophy

measurements according to Eq. (4) at all measurement timepoints

and then fit them via a linear regression model. For the regression

formulations the measurements are the ones based on the defor-

mations of the regression geodesic at these timepoints. Instead, for

pairwise registrations (LDDMM), atrophy measurements are com-

puted independently for each timepoint. 

We limited our experiments to the applications in Hua et al.

(2013, 2016) , wherein nonlinear registration/regression is used to

quantify atrophy within regions known to be associated to varying

degrees with AD (2), mild cognitive impairment (MCI) (1) (includ-

ing LMCI 7 ), and normal ageing (NC: normal control) (0) in an el-

derly population. These are the diagnostic groups for ADNI-1 . For

ADNI-2 , we use the following three diagnostic categories 8 : normal

ageing (0) (including SMC), mild cognitive impairment (including

EMCI and LMCI) (1), and AD (2). 

Specifically, we investigate the following five aspects: 

1 Prediction Models for Longitudinal Data ( Section 4.1 ) 

Can we learn models for longitudinal image data which predict

optimization-based registration results to high accuracy? 

We show that this is possible. Hence it is appropriate to use

our training and prediction strategy as a component of SGR. 

2 Quantitative Validation ( Section 4.2 ) 

(a) Are regression results more stable and hence capture trends

better than pairwise registrations? 

(b) Are FPSGR atrophy measurements consistent with those de-

rived from deformations via numerical optimization (SGR

LDDMM) which produced the training dataset? 

Our experiments show that SGR is indeed more stable than

pairwise registration and FPSGR results are consistent with re-

sults obtained via numerical optimization. Hence, our predic-

tion approach can reliable replace costly numerical optimiza-

tion. 

3 Visual Validation ( Section 4.3 ) 

Can the prediction models for regression visually capture simi-

lar trends to the regression model obtained by numerical opti-

mization? 

Our visual results show that FPSGR approximates longitudinal

image data well, providing visual confirmation for our quanti-

tative validation results ( S2 ). 

4 Forecasting ( Section 4.4 ) 

Is the predictive power of the regression models strong enough

to forecast deformations for unseen future timepoints? 

We show that FPSGR can capture correlation trends for future

(unseen) images. This is evidence that FPSGR captures trends

which allow for extrapolation in time. 

5 Atrophy Assessment via Transitivity Analysis and Sample Size

Estimates ( Section 4.5 ) 

Does transitivity hold for our atrophy regression results, i.e., do

regression results from A → C agree with results obtained by

regressing from A → B and B → C ? Furthermore, what sample
7 We combine MCI and LMCI mainly because (a) the diagnostic changes avail- 

able on the IDA website ( https://ida.loni.usc.edu/login.jsp ) only provide these 

three diagnostic groups; (b) to be consistent with the experiments conducted 

by Hua et al. (2013) , where only Normal, MCI and AD were used as labels to classify 

ADNI-1 . Hereafter, in all discussions of ADNI-1 , MCI is a combination of MCI and 

LMCI of ADNI-1 
8 Similar to ADNI-1 , a detailed diagnosis for ADNI-2 is only available for the 

baseline images; MR images at later time points are only labeled as NC, MCI, and 

AD. Thus, we combine SMC and NC, as well as EMCI and LMCI to be consistent with 

he diagnostic changes in the ADNI Diagnosis Summary available on the IDA website. 

Hereafter, in all discussions of ADNI-2 , NC includes NC and SMC and MCI includes 

EMCI and LMCI. 
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sizes are required to show differences based on the regressed

atrophy measures? 

Our results show that FPSGR a) shows limited saturation ef-

fects when analyzing transitivity, and b) shows consistent sam-

ple size estimates with SGR LDDMM. 

Aspects S1 - S5 justify the use of FPSGR. In turn, the substan-

ially improved computational efficiency of FPSGR justifies its use

or large-scale imaging studies. Appendix B shows the distributions

f the prediction cases per time-point and the diagnostic groups in

DNI-1 / ADNI-2 , respectively. 

.1. S1 : Prediction models for longitudinal data 

A key aspect to the success of FPSGR for the analysis of lon-

itudinal imaging data is to verify that the predictive registration

omponent of FPSGR can reliably predict longitudinal registration

esults. In particular, this question also relates to how one should

o about training such longitudinal models. Our hypothesis, based

n the prior work in Yang et al. (2017) , was that highly accurate

rediction models can be obtained. Going beyond these results, we

urther hypothesized that training a prediction model on longitu-

inal data yields higher accuracies than training on cross-subject

ata, as the models can then become more data-specific, because

hey are trained on deformations that are expected for longitudi-

al registrations. To test these hypotheses, we trained two differ-

nt prediction models and tested them on longitudinal and cross-

ubject registration tasks. Our training strategy for the different

rediction models is detailed in Section 3.1 . In brief, we trained our

rediction models on data of 100 subjects of the ADNI-1 dataset

nd tested on 20. We trained models only using longitudinal pairs

etween baseline and the 24 month follow-up images, as well as

sing the same time-points but across subjects. Testing was done

n data for a separate set of 20 subjects and compared with re-

pect to results obtained via numerical optimization of LDDMM. 

Table 2 shows the resulting deformation errors and confirms

ur hypotheses. Results with respect to optimization-based LD-

MM are highly accurate with a median deformation error sub-

tantially below a millimeter for the longitudinal registration task

hich is relevant for SGR/FPSGR. Furthermore, training on longitu-

inal image registration pairs is clearly beneficial. Hence, we con-

lude that a prediction model trained on longitudinal data works

ell while allowing much faster computations than optimization-

ased LDDMM. Hence, we use such models for all our following

xperiments. 

.2. S2 : Quantitative validation 

Now that we justified that highly accurate prediction models

or longitudinal data can be trained (see Section 4.1 ), it is impor-

ant to validate the performance of FPSGR. Specifically, we inves-

igate if (1) regression is beneficial for the analysis of longitudinal

ata with more than two timepoints and (2) if FPSGR can perform

s well as SGR LDDMM (i.e., simple geodesic regression via numer-

cal optimization). 

For simple geodesic regression to be a useful model it should

utperform pairwise image registration. The main conceptual dif-

erence is that the regression model will recover an average trend

ased on multiple image time-points, i.e., the resulting regression

eodesic will be a compromise between all the measurements. In

ontrast, for pairwise image registration (which can be considered

 trivial case of geodesic regression with two images only) the de-

ormation will in general be able to match the target image better.

owever, just as in linear regression, this may accentuate the ef-

ects of noise. 

We assess the performance of our models by evaluating bias of

egressed atrophy scores and strength of correlation with respect to

https://ida.loni.usc.edu/login.jsp
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Table 2 

Deformation error of longitudinal and cross-subject models tested on longitudinal and cross-subject data. 2-norm deformation errors in millimeters w.r.t. the ground 

truth deformation obtained by numerical optimization for LDDMM. A prediction model trained with longitudinal registration performs better for longitudinal registrations. 

Conversely, a model trained based on cross-subject registration is preferred for cross-subject registrations. 

3D Longitudinal Test Case Deformation Error [mm] 

Data Percentile 0.3% 5% 25% 50% 75% 95% 99.7% 

Longitudinal Training 0.0156 0.0407 0.0761 0.1098 0.1559 0.2681 0.3238 

Cross-subject Training 0.0544 0.1424 0.2641 0.3723 0.5067 0.7502 0.8425 

3D Cross-subject Test Case Deformation Error [mm] 

Data Percentile 0.3% 5% 25% 50% 75% 95% 99.7% 

Longitudinal Training 0.1694 0.4802 1.0765 1.7649 2.7630 4.8060 5.6826 

Cross-subject Training 0.1123 0.3024 0.5863 0.8737 1.2743 2.2659 2.7836 
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11 The true correlation between ideal noiseless atrophy measures and clinical vari- 

ables is unknown. Validation of dense volumetric image registration is known to be 

a challenging task. In segmentation, automatic segmentations are often compared to 

manual segmentations. However, obtaining a manual gold standard for dense volu- 

metric registration is infeasible. Alternatively, segmentations are frequently used as 

an indirect way of validating registration accuracy. When assessing atrophy over 

time in a region of interest, manual and automated segmentation errors are often 

comparable in magnitude to the expected atrophy ( Shen et al., 2010 ). For example, 

expected annual tissue loss in the hippocampus for an AD subject is around 6%, 

which can be produced by shifting the hippocampal segment boundary by only a 

few voxels along its extent. Hence, segment boundaries are not reliable forms of 
linical measures. A successful model should not exhibit bias and

s expected to result in high correlations comparable to the corre-

ation levels achieved via numerical optimization. 

Bias. Estimates of atrophy are susceptible to bias ( Yushkevich

t al., 2010; Fox et al., 2011 ). We use two bias measures: regres-

ion intercept of the atrophy score and the transitivity of the re-

ression results. In this section, we only assess bias via the atro-

hy regression intercept, as it is a direct assessment of bias when

here is no expected change. We leave the more detailed transi-

ivity analysis and sample size estimates for Section 4.5 . To quan-

itatively assess this potential bias, we separately considered dif-

erent diagnostic groups. Specifically, we considered six diagnostic

hange groups in our experiments: (1) NC for all time points (NC-

C), (2) starting with NC and changing to MCI or AD at a later

ime point (NC-MCI) 9 , (3) MCI for all time points (MCI-MCI), (4)

tarting with MCI and reverting to NC at later time points (MCI-

C), (5) starting with MCI and changing to AD at later time points

MCI-AD), and (6) AD for all the time points (AD-AD) 10 In partic-

lar, we follow Hua et al. (2013) and fit a straight line (i.e., lin-

ar regression) through all atrophy measurements over time, con-

itioned on each diagnostic change category. The intercept term is

n estimate of the atrophy one would measure when registering

wo scans acquired on the same day; hence it should be near zero

nd its 95% confidence interval should contain zero. Quantitatively,

able 3 lists the slopes, intercepts, and 95% confidence intervals

or optimization and prediction results on ADNI-1 and ADNI-2 ,
espectively. Specifically, it shows linear regression results of atro-

hy measures over time as obtained via (1) FPSGR (i.e., using an

PSGR fit over all time-points followed by atrophy computations

ased on the deformations of the regression geodesic) compared

ith atrophy measures obtained by (2) pairwise predictive regis-

ration and (3) SGR LDDMM. The different cross-validation testing

olds are indicated with suffix -1 and -2, e.g., SGR LDDMM-1 and

GR LDDMM-2. Comparisons between approaches should therefore

e within folds. 

As shown in Table 3 , FPSGR (i.e., SGR Pred + Corr-1/2) outper-

orms the pairwise registration approach in two aspects: (1) the

stimated intercept of FPSGR is generally closer to zero than for

he pairwise method and the intercept 95% confidence interval is

arrower; (2) 8 out of 24 of the 95% confidence intervals of the

airwise methods show bias to either overestimate or underesti-

ate volume change. None of the FPSGR results show such signif-

cant bias. Both SGR LDDMM and FPSGR show intercepts that are

ear zero relative to the range of changes observed and both in-

ercept confidence intervals contain zero. For all diagnostic change

roups, FPSGR results are more stable than the results for the SGR
9 Very few cases convert from NC to AD in the imaged time-frame. 
10 In ADNI-1 / ADNI-2 , there are two patients who revert from AD to MCI. We 

mitted these cases in our experiments, because the number of such cases is too 

mall. 

g

f

t

t

c

DDMM method, as indicated by the tighter confidence intervals. A

ossible explanation for the tighter confidence intervals is that the

rediction method at the core of FPSGR learns a relatively conser-

ative mapping from images to initial momentum. Hence, it will

void, for example, large outliers (as also observed in the original

uicksilver work of Yang et al. (2017) for image-to-image regis-

ration). Methods based on optimization-based image registration

such as SGR LDDMM) are more sensitive to misregistrations and

mperfections in image pre-processing (e.g., imperfect brain extrac-

ion results, which can be tolerated much more gracefully by a

eep-learning-based registration approach; see Yang et al. (2017) ).

ppendix E visually shows linear regression results for the esti-

ated atrophy scores in ADNI-1/2 for the Pred + Corr-1 model.

oth the data points themselves (i.e., the atrophy scores), as well

s kernel density estimates for the linear trends for each subject

re shown. Additional discussions about disease severity and the

inear regression slope as well as a more in-depth analysis of the

stimation bias can be found in the supplementary material. We

onclude that (1) neither SGR LDDMM optimization nor FPSGR

roduced deformations with significant bias to overestimate or

nderestimate volume change; (2) the pairwise prediction model

uffers from bias while the regression prediction model (FPSGR)

hows little bias. Hence, from the perspective of bias, S2 has been

alidated. 

Correlation. Atrophy estimates are shown to correlate 11 with

linical variables ( Fleishman and Thompson, 2017b ). To quantify

his effect, we com puted the Spearman rank-order correlation 

12 

etween our atrophy estimates and the diagnostic groups (NC =
, MCI = 1, AD = 2), and also between our atrophy estimates and

he scores of the mini-mental state exam (MMSE). We computed

hese measures for FPSGR (SGR Pred + Corr-1/2), for optimization-

ased SGR (SGR LDDMM-1/2) and for pairwise predicted reg-

strations (Pairwise Pred + Corr-1/2). We applied the Benjamini-

ochberg procedure ( Benjamini and Hochberg, 1995 ) for all the
round truth in this setting either. In the absence of reliable alternatives, we there- 

ore hypothesize that tissue loss will correlate with disease severity and then trust 

he measurements that clinicians utilize to measure disease severity, such as cogni- 

ive scores. 
12 We used Spearman rank-order correlation instead of Pearson correlation, be- 

ause the diagnostic groups imply an ordering only. 
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Table 3 

Slope and intercept values for linear regression of volume change over time. Our no- 

tation for slope and intercept indicate [lower bound of 95% C.I., point estimate , up- 

per bound of 95% C.I.]. The interval of intercept estimates all contain zero. The slope 

changes between the different diagnostic groups. C.I. Length is the average 95% con- 

fidence interval length of this linear regression over time. The #data column lists the 

number of data points analyzed. Green indicates that the intercept is closer to zero 

(also, zero is within the 95% confidence interval) for SGR Pred + Corr model; Yellow in- 

dicates that the intercept is closer to zero for pairwise Pred + Corr model; Red indi- 

cates that the point estimate is either biased to overestimate or underestimate volume 

change. FPSGR (SGR Pred + Corr) model performs better than the pairwise Pred + Corr 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

correlation results to account for multiple comparisons. The over-

all false discovery rate was set to 0.01, which resulted in an ef-

fective significance level of α ≈ 0.0093. Detailed results can be

found in Table 4 . FPSGR performs better than the pairwise ap-

proach in 14 out of 18 cases for MMSE and in 17 out of 20 cases for

the diagnostic category. Furthermore, when the pairwise method

is better than FPSGR, the difference is much smaller compared to

the differences observed for the cases where FPSGR is better than

the pairwise method. Also note that the pairwise method shows

better performance in later months compared to earlier months.

This could, for example, be because the deformations are larger

for later time-points and hence the registration result becomes

more stable, or because FPSGR is also heavily influenced by the

last time-point. Furthermore, FPSGR shows statistically significant

improved (higher in magnitude) correlations over the pairwise ap-

proach. Specifically, we tested if the two approaches show different
means based on the correlations reported in Table 4 . Details on the

statistical tests can be found in the Appendix C . 

We observe median correlations for all four FPSGR prediction +
correction models (ADNI1/2 Pred + Corr-1/2) in the range of −0 . 40

to −0 . 75 for MMSE and 0.36 to 0.65 for diagnostic category. Previ-

ous studies reported Pearson correlations between comparable at-

rophy estimates and clinical variables as high as −0 . 7 for MMSE

and 0.5 for diagnostic category for 100 subjects ( Fleishman and

Thompson, 2017b; 2017a ). Our two SGR LDDMM results achieve

median correlations ranging from −0 . 40 to −0 . 76 for MMSE and

0.40 to 0.66 for diagnostic category, which is very similar to the

SGR prediction + correction models. 

In fact, FPSGR with correction network shows similar correla-

tions between atrophy and MMSE/DX to optimization-based SGR

(SGR LDDMM), justifying the use of FPSGR. Statistical testing de-

tails are given in Appendix D . 
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Table 4 

SGR prediction models (FPSGR and SGR LDDMM) compared with pairwise prediction 

model. Results show correlations with clinical variables. The #data column lists the 

number of data points analyzed. Green indicates a stronger correlation for the FPSGR 

(SGR prediction + correction) method; Yellow indicates a stronger correlation for the 

pairwise prediction + correlation model. The p -value column lists p -values for the null- 

hypothesis that there is no correlation. The Benjamini-Hochberg procedure was em- 

ployed to reduce the false discovery rate (FDR). The Purple highlight indicates statis- 

tically significant results after correction for multiple comparisons. In general, FPSGR 

performs better than the pairwise prediction + correction model demonstrating that re- 

gression stabilizes the correlation results. ADNI-2 36mo only has 8 data points and the 

p -value is greater than 0.1, thus we ignore this timepoint in our comparison. 
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In summary, based on the discussions above, FPSGR shows ex-

ellent performance. It shows negligible bias, works better than the

air-wise approach, shows strong correlations with clinical vari-

bles, and works as well, or better, than simple geodesic regression

ia numerical optimization (SGR LDDMM). 

.3. S3 : Visual validation 

Section 4.1 quantitatively assessed the ability of FPIR to predict

ongitudinal deformations. Section 4.2 quantitatively demonstrated

he good performance of FPSGR in relation to a pair-wise predic-

ion approach and SGR via numerical optimization. Here, we qual-
tatively illustrate the behavior of FPSGR via the visualization of

ntensity differences (for completeness these are also quantified in

able 5 ) and Jacobian determinants (JD) for some example image

ata. 

Intensity. Fig. 4 shows an example regression result. In this

pecific case, large changes can be observed around the ventri-

les. To illustrate differences between the methods, Fig. 4 visual-

zes regression results based on optimization-based SGR LDDMM

nd for FPSGR with a correction network. Both methods success-

ully capture the expanding ventricles and generally capture the

mage changes. The difference between SGR LDDMM and FPSGR

s barely noticeable in the 5th row of Fig. 4 . To further illustrate
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Table 5 

Mean + standard deviation of the overlay errors, see Eq. (5) , over 100 patients in ADNI-1 dataset. Prediction + correction model exhibits perfor- 

mance comparable to optimization-based regression results (SGR LDDMM). 

E ov erlay (I 0 ◦ �−1 
t i 

, Y i ) 

Measured Images I 6 mo I 12 mo I 18 mo I 24 mo I 36 mo I 48 mo 

Original 0.0770 ± 0.0212 0.0764 ± 0.0207 0.0890 ± 0.0220 0.0810 ± 0.0223 0.0899 ± 0.0341 0.0940 ± 0.0415 

SGR LDDMM 0.0750 ± 0.0194 0.0686 ± 0.0176 0.0734 ± 0.0190 0.0609 ± 0.0168 0.0628 ± 0.0177 0.0663 ± 0.0221 

SGR Pred + Corr-1 0.0754 ± 0.0211 0.0691 ± 0.0182 0.0734 ± 0.0192 0.0615 ± 0.0166 0.0642 ± 0.0188 0.0688 ± 0.0235 

Fig. 4. Example regression result: one subject with 6 follow-up images from the ADNI-1 dataset. Image intensity range is [0, 2.49]. Top row: Axial slices extracted from 

the 3D MR images at the same axial location for different months. Original: intensity differences between the baseline image and its 6-month, 12-month, etc. follow-up 

images. SGR LDDMM: intensity differences between the acquired images in the top row and optimization-based regression results at each follow-up month(s). Pred + Corr- 

1: intensity differences between the acquired images in the top row and the Pred + Corr-1 regression results at each follow-up month(s). Difference: intensity differences 

between SGR LDDMM and Pred + Corr-1 at each follow-up month(s). Rectangles mark areas of major structural changes. Intensity differences are dramatically reduced, e.g., 

around the ventricles, demonstrating that these structural changes are captured by all three methods. The prediction model (Pred + Corr-1) give very similar results to the 

regression results obtained by numerical optimization (SGR LDDMM). 
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the regression results, we compute the overlay error between mea-

sured images and the images on the geodesic as 

E ov erlay (I 0 ◦ �−1 
t i 

, Y i ) = 

1 

| �| ‖ I 0 ◦ �−1 
t i 

− Y i ‖ L 1 (5)

where � is the brain area, I 0 ◦ �−1 
t i 

is the regressed image at time

t i and Y i is the measured image at time t i . Table 5 shows the

overlay error for a randomly selected population of 100 subjects

of the ADNI-1 dataset. This random set includes all diagnostic

groups. FPSGR obtains results comparable with optimization-based

SGR LDDMM. This justifies the use of the proposed method. 

Jacobian Determinant (JD). The average JD images qualitatively

agree with prior results ( Hua et al., 2013; 2016 ): severity of vol-

ume change increases with severity of diagnosis and time. Change

is most substantial in the temporal lobes near the hippocampus.

In Fig. 5 , 6 month to 48 month are existing data points; 60 month

to 84 month are forecasting results (i.e., results obtained via ex-

trapolation of the estimated regression geodesic; see upcoming

Section 4.4 for a detailed discussion on how these forecasting re-
ults were computed). Blue indicates volume loss. Red indicates ex-

ansion. Results are consistent with expectations: volume loss in-

reases with time and severity of diagnosis in temporal lobes; vol-

me expansion increases with respect to time and severity of di-

gnosis around the ventricles / cerebrospinal fluid. The forecast re-

ults capture visually sensible volume loss or expansion over time,

ualitatively illustrating the performance of our method. 

.4. S4 : Forecasting 

Another interesting question for SGR and geodesic regression

n general is if SGR is able to forecast unseen future time-points.

pecifically we consider two scenarios: 

(Q1) Extrapolate-clinical: Can we extrapolate the SGR results

into the future (to time-points that do not exist in the ADNI
image dataset, but for the clinical data) while maintaining

strong correlations. 

(Q2) Extrapolate-image: How well can correlations between at-

rophy and clinical measures be predicted for time-points
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Fig. 5. Average Jacobian determinant over time and diagnostic category for ADNI-1 
Prediction + Correction-1 (experiments in ADNI-2 show similar results). A value < 

1 indicates shrinkage and value > 1 indicates expansion. The 60 month - 84 month 

results contained in the purple rectangle are forecasts using the data from 6 month 

- 48 month. Results show consistent volume loss over time near the temporal lobes 

and expansion over time near the ventricles/cerebrospinal fluid. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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when we do or do not use image data at that very time-

point. We artificially leave out image measurements so that

we can compare prediction results to results when we have

access to the image measurement. 

We use different forecasting approaches for the two scenarios.

n the first approach ( Forecast ) we simply compute SGR results

ith the available image time-points and then extrapolate using

he resulting regression geodesic to the desired time-point in the

uture. In the second approach ( Replace ), we artificially impute the

issing image time-points by simply replacing them by the image

t the closest measured time-point. For example, if we have im-

ges at 6, 12, and 18 month, but we want to forecast at 24 month,

e use the 18 month image as the imputed 24 month image and

hen perform SGR on the 6, 12, 18, and the imputed 24 month im-

ges. We then obtain the deformation at 24 months from the SGR

esult. 
ad Q1. Table 6 shows correlations between atrophy and the

linical measures for the Forecast results for 60 month, 72 month

nd 84 month. The resulting correlations of atrophy with diag-

ostic category are all above 0.3 (or below -0.3). Furthermore,

he Forecast correlations show a downward trend with respect

o time, which means that the prediction of “far-away“ points is

ot as accurate as for the “near” future. This indicates that rel-

tive volume change within the ROI may not be accurately de-

cribed by a regression geodesic for later time points. Note that

GR using the 6 month to 48 month time points only results

n correlations around -0.5 for MMSE and 0.5 for DX on aver-

ge. The correlations for the 60 months forecast in Table 6 show

imilar magnitudes. This suggests that the model successfully pre-

icts into the near-future. Overall, our prediction + correction net-

ork performs as well as and sometimes even slightly better

han SGR using optimization-based LDDMM. Fig. 5 shows that

hese forecasting results capture the trends of the changes in

he temporal lobes near the hippocampus and changes in the

entricles. 

ad Q2. Table 7 shows Forecast and Replace results for corre-

ations between atrophy and clinical measures in comparison to

sing all images. Specifically, for the Forecast and Replace results

e did not use the available images at 36 and 48 month so we

ould compare against the results obtained when using these im-

ges. If FPSGR is a good model, it should result in correlations

lose to the correlations when using all images. The Forecast cor-

elations are only slightly weaker (0.02 to 0.05 lower in absolute

alues) than the original correlations using all images illustrating

hat FPSGR can approximately forecast future changes. The overall

orrelations in Table 7 show that the Replace approach performs

etter than the Forecast approach. Thus, both Extrapolate-clinical

nd Extrapolate-image experiments justify the use of FPSGR in

redicting near future longitudinal trends. Besides, Fig. 5 shows the

orecast results for 60 month, 72 month and 84 month. Results il-

ustrate a clear trend extending the existing 6 month to 48 month

eformations. 

.5. S5 : Atrophy assessment via transitivitiy analysis and sample size 

stimates 

Section 4.2 used atrophy score regression results to estab-

ish that FPSGR does not produce deformations with significant

ias to overestimate or underestimate volume change in the an-

lyzed ADNI data. In the following, we investigate bias in more

etail via a transitivity analysis. We also provide sample size

stimates. 

Transitivity analysis ( Fox et al., 2011 ) is a common approach

o test registration bias for atrophy measures derived from im-

ges. As our work is concerned with image regression for multiple

ime-points, rather than pair-wise image registration, we modify

he approach of Fox et al. (2011) for transitivity analysis. Specif-

cally, in Fox et al. (2011) three sequential scans A, B , and C are

sed. Transitivity is then assessed by measuring atrophy when di-

ectly registering A → C versus composing the two registration re-

ults for A → B and B → C . Instead, to assess transitivity effects for

egression, we selected a group of 115 patients from ADNI-1 with

ongitudinal data for five time-points: I 0 , I 1 , I 2 , I 3 and I 4 , with

 0 < t 1 < t 2 < t 3 < t 4 . We then perform three different regressions all

sing FPSGR with a correction network: (1) full FPSGR over all im-

ges, G : I 0 → I 1 → I 2 → I 3 → I 4 ; (2) FPSGR only over the first three

mages, F 1: I 0 → I 1 → I 2 ; and (3) FPSGR over the last three images

 2: I 2 → I 3 → I 4 . To compare with the result of FPSGR over all time-

oints we compose the transformations obtained from F 1 and F 2 
o obtain atrophy measures over the entire time range. We as-

ess atrophy with respect to the baseline at the last timepoint,

 . Fig. 6 shows the resulting atrophy differences. Specifically, we
4 
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Table 6 

Correlations of forecasting results. The #data column lists the number of data points 

analyzed. Green indicates that FPSGR using the prediction + correction network shows 

the strongest correlations; Red indicates that SGR LDDMM shows the strongest corre- 

lations. The Benjamini-Hochberg procedure was employed to reduce the false discovery 

rate (FDR). The Purple highlight indicates statistically significant results after correction 

for multiple comparisons. 

Table 7 

Forecast results which are based on the 6mo and 24mo images compared with results 

obtained when using all available time-points. The #data column lists the number of 

data points analyzed. The Benjamini-Hochberg procedure was employed to reduce the 

false discovery rate (FDR). Purple highlight indicates statistically significant results af- 

ter correcting for multiple comparisons. Forecast results are calculated by using SGR, 

excluding 36mo and 48mo data points, and then predicting 36mo and 48mo correla- 

tions. Results are compared based on the same dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Violin plot of the transitivity analysis. 

o  

o  

T

N  
calculated a relative atrophy score difference 
s F 2 ◦F 1 −s G 

s G 
. Results ar e

mostly centered at zero with a slight shift (a median value of -

7.4% 

13 in the violin plot) observable towards negative values, sug-

gesting saturation effects with time. Overall, the mean shift and

hence the transitivity errors of the approach are relatively small.

This shift might be mitigated by exploring more advanced regres-

sion models in the future (for example, a time-warped variant of

FPSGR as discussed in the future work Section 5 ). Next, we illus-

trate with a simple toy example why saturations may cause such a

negative shift. 

Fig. 7 illustrates our toy atrophy example. Here, atrophy is large

at the beginning and then starts to saturate. Consequentially, from

the perspective of a transitivity check, regressing over all time-

points will overestimate atrophy at the last timepoint (where sat-

uration has already set in). Breaking the regression into two parts

will result in a model that is more faithful to the data and can bet-

ter model the saturation. Hence, the atrophy measure at the last

timepoint will be smaller. Consequentially a negative relative at-

rophy error will result, consistent with what we observed for real

data in Fig. 6 . 

As suggested by Fox et al. (2011) ; Fleishman and Thomp-

son (2017b) , sample size is a good measure to assess the distri-

bution of atrophy scores within diagnostic groups. Specifically, we

used N80 sample size. N80 sample size is the estimated number
13 The atrophy values range from -4.06 to 18.31 with a median difference value of 

-0.3932. 

H  

d  

d  
f individuals required to detect a 25% reduction in the mean rate

f atrophy, with 80% power, and with 95% confidence in the result.

he formula to calculate N80 is as follows: 

80 = 

2 σ 2 (z 1 −0 . 05 / 2 + z 0 . 8 ) 
2 

(0 . 25 μ) 2 
. (6)

ere, μ is the average atrophy score for a prediction, σ is the stan-

ard deviation, and z α is the value at which the cumulative stan-

ard normal distribution equals α. Numerically evaluating z α re-
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Fig. 7. Toy example to illustrate the transitivity analysis results of Fig. 6 . The green 

line illustrate the two separate regression results ( F 1 , F 2 ) which are composed to 

obtain the deformation and from it the atrophy measure at the last timepoint. 

The yellow line indicates the regression results when using all timepoints at once 

( G ). Because the deformation is fast at the beginning and slows down later, G will 

overestimate atrophy at the last timepoint. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

s  

A  

N  

o  

m  

p  

r  

m  

t  

i

 

s  

m  

m

5

 

t  

p  

2  

t  

a  

m  

n  

w  

t  

A  

e  

(  

R  

d  

s

 

l  

a  

s  

m  

p  

t  

e  

w  

f  

l  

a  

b

 

c  

o  

o  

s  

s  

2  

R  

e  

c

 

n  

i  

s  

s  

a  

o  

c  
ults in N 80 ≈ 250.88 × ( σ / μ) 2 . Table 8 shows the results for the

DNI-1 and ADNI-2 datasets for the three diagnostic categories:

C, MCI, and AD. A lower N80 score indicates a lower variance

f the atrophy score, a higher average atrophy score or both. The

ore severe the disease (NC < MCI < AD), the lower the sam-

le size estimation. Table 8 shows that in general FPSGR (with cor-

ection network) has either similar or lower N80 sample size esti-

ates than optimization-based SGR LDDMM. This is likely due to

he lower variance of FPSGR as supported by the tighter confidence

ntervals of FPSGR shown in Section 4.2 . 

Our results for regression of atrophy score, transitivity analy-

is, and sample size estimates indicate that FPSGR is an effective

ethod to learn a general mapping from images to the initial mo-

entum of an approximate geodesic. 

. Conclusion & future work 

We proposed a fast approach for geodesic regression (FPSGR)

o study longitudinal image data. FPSGR incorporates the recently

roposed FPIR ( Yang et al., 2016; 2017 ) into the SGR ( Hong et al.,
Table 8 

Estimated N80 sample size for ADNI-1 and ADNI-2 . Results for ADNI-1
here for brevity. FPSGR shows similar and for ADNI-2 often smaller samp

SGR LDDMM-1 6mo 12mo 

NC 758 246 

MCI 203 161 

AD 125 101 

ADNI-1 Pred + Corr-1 6mo 12mo 

NC 783 222 

MCI 207 162 

AD 127 104 

SGR LDDMM-2 3mo 6mo 

NC 844 418 

MCI 418 336 

AD 98 60 

ADNI-2 Pred + Corr-1 6mo 12mo 

NC 688 361 

MCI 384 311 

AD 92 59 
012c ) framework, thus leading to a computationally efficient solu-

ion to geodesic regression. Since FPSGR replaces the computation-

lly intensive intermediate step of computing pairwise initial mo-

enta via a deep-learning prediction method, it is orders of mag-

itude faster than existing approaches ( Hong et al., 2012c; 2017 ),

ithout compromising accuracy. Consequently, FPSGR facilitates

he analysis of large-scale imaging studies. Experiments on the

DNI-1 and ADNI-2 datasets demonstrate that FPSGR captures

xpected atrophy trends of normal aging, MCI and AD. It further

1) exhibits negligible bias towards volume changes within stat-

OIs, (2) shows high correlations with clinical variables (MMSE and

iagnosis) and (3) produces consistent forecasting results on un-

een data. 

Several limitations should be acknowledged: 

Firstly , the model is relatively simple and attempts to model

ongitudinal changes via an approximated geodesic, combined with

 linear regression model on the estimated atrophy scores. While

uch simple models are a desirable first step (as they simplify esti-

ations) they, of course, may be too simplistic to model, for exam-

le, atrophies saturating over time (where large changes can ini-

ially be observed, but changes diminish later on). Such saturation

ffects may explain decreases in correlations for predicted months

hen predicting further ahead (see Table 6 ). Additional evidence

or such saturation effects is given by Table 7 , where the corre-

ations of the Replace approach are higher than for the Forecast

pproach, indicating that stat-ROI deformations show less change

etween later time points than between earlier time points. 

Secondly , correlations with clinical variables are moderate. This

ould, for example, be the case because the stat-ROI we choose

nly provides a very spatially limited view of the development

f AD, or because the specific clinical variables we test are not

trongly correlated with this particular stat-ROI. Though previous

tudies ( Fleishman and Thompson, 2017b; 2017a; Hua et al., 2013;

016 ) have shown the usefulness of such a statistically determined

OI and the studied clinical variables, it would be interesting to

xpand our study to other areas within the brain and to additional

linical variables. 

Thirdly , the proposed framework requires the training of a deep

eural network. Hence, what it captures will depend on the train-

ng data. Specifically, the testing images are required to have the

ame characteristics as the ones during training. Encouraging re-

ults have been obtained in Yang et al. (2017) for cross-dataset

pplications of models (using image intensity normalization), but

ur work only investigated dataset-specific models. Furthermore,

hanging registration parameters would require re-training the
 Pred + Corr-2 and ADNI-2 Pred + Corr-2 are similar and are omitted 

le size estimates compared to optimization-based SGR LDDMM. 

18mo 24mo 36mo 48mo 

204 197 140 

154 146 138 86 

101 

18mo 24mo 36mo 48mo 

198 185 120 

153 145 137 84 

101 

12mo 24mo 36mo 

310 253 87 

304 282 82 

68 27 

18mo 24mo 36mo 

271 231 67 

288 268 80 

67 30 
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network. Note however that the trained model in some sense goes

beyond the original registration model: it captures the statistics of

all the registrations in the training set and hence becomes, for ex-

ample, less susceptible to outliers. 

There are several possible avenues for future work. To address

the possible saturation effects, it would be interesting to explore

alternative models and extensions to FPSGR. A straightforward and

easy to compute extension would be to develop an FPSGR variant

to allow for dynamic time-warping, similar to what has been pro-

posed in Hong et al. (2014b) ; Durrleman et al. (2013) . As the un-

derlying registrations for FPSGR can be computed very fast, such

a time-warped variant could likely also be optimized very quickly

and could address saturations while keeping model complexity at

a minimum. More ambitiously, FPSGR could be extended to a hi-

erarchical model (in the spirit of Singh et al. (2016) ) to jointly

model longitudinal data across patients. The resulting model would

be significantly more complex than FPSGR or its envisioned time-

warped variant, but would be expected to also greatly benefit com-

putationally from replacing costly numerical optimizations to com-

pute registration by approximate regression models. Combinations

with spline models ( Singh et al., 2015 ) to capture an overall pop-

ulation trend are also conceivable, though significantly more com-

plex. 

Finally, as we currently use separate models for ADNI-1 and

ADNI-2 (as these datasets use different image acquisition proto-

cols), it would also be interesting to explore more generic models

that are trained on a set of different datasets and hence can be ap-

plied across a wider range of datasets without retraining them. As

registration settings influence the registration results, it would also

be of great interest to investigate approaches that allow estimating

these parameters from data. Furthermore, end-to-end prediction of

averaged initial momenta would be an interesting future direction,

as this would allow learning representations that characterize the

geodesic path across multiple time-points, instead of focusing on

pair-wise image registrations, as done in FPIR ( Yang et al., 2016;

2017 ). 
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verview of Appendix 

The following sections provide additional analysis re-

ults and explanations for our proposed method. Specifically,

ppendix A provides details on the mathematical formulation

f FPSGR. Appendix B details the data distributions in ADNI-1
nd ADNI-2 . Appendix C shows statistical testing results for the

ifferences in correlation strength between atrophy measures

ith clinical variables between SGR and pairwise registration.

ppendix D lists the corresponding statistical results when com-

aring SGR LDDMM and FPSGR (SGR Prediction + Correction).

astly, Appendix E contains additional visualizations for the es-

imated linear regressions for the atrophy scores and highlights

heir consistency with disease severity. 

ppendix A. Estimating the initial momentum of FPSGR 

This section describes the mathematical formulation of simple

eodesic regression and how it is used for FPSGR. We start by

efining the quadratic distance d 2 in Eq. (1) between two images

 and B as 

 

2 (A, B ) = 

1 

2 

∫ 1 

0 

‖ v ∗‖ 

2 
L dt, (A.1)

here v ∗ = arg min 

v 

1 

2 

∫ 1 

0 

‖ v ‖ 

2 
L dt + 

1 

σ 2 
‖ Q(1) − B ‖ 

2 
2 , 

.t. Q t + ∇Q 

T v = 0 , and Q(0) = A . 

ssume we have an image I ( t 0 ) at time t 0 as well as two images

 ( t i ) and B ( t i ). Further, assume that the spatial transformation �A 

aps A ( t i ) to I ( t 0 ) and �B maps B ( t i ) to I 0 . Then A (t i ) = I(t 0 ) ◦ �−1
A 

nd B (t i ) = I(t 0 ) ◦ �−1 
B 

. Furthermore, assume that � maps A ( t i ) to

 ( t i ), i.e., B (t i ) = A (t i ) ◦ �−1 . Then � = �B ◦ �−1 
A 

. Assuming that

he geodesic between I ( t 0 ) and A ( t i ) is parameterized by the ini-

ial velocity v A and between I ( t 0 ) and B ( t i ) by the initial velocity

 

B and that we travel between I ( t 0 ) and A ( t i ) in time t i − t 0 (and

imilarly for B ( t i )) we can rewrite the map between A ( t i ) and B ( t i )

ased on the exponential map as 

= Exp Id ((t i − t 0 ) v B ) ◦ Exp Id (−(t i − t 0 ) v A ) , (A.2)

hich can be approximated to first order as 

≈ Exp Id ((t i − t 0 )(v B − v A )) . (A.3)

ence, the squared geodesic distance between the two images can

e approximated as 

 

2 (A (t i ) , B (t i )) ≈
1 

2 

(t i − t 0 ) 
2 〈 K(m 

B − m 

A ) , m 

B − m 

A 〉 , (A.4)

here v A = Km 

A and v B = Km 

B . Hence, Eq. (1) becomes 

( I , m ) = 

1 

2 

〈 m , K m 〉 + 

1 

2 σ 2 

∑ 

i 

(t i − t 0 ) 
2 〈 K( m − m i ) , m − m i 〉 , 

(A.5)

here m is the sought-for initial momentum of the regression

eodesic and m i are the initial momenta corresponding to the

eodesic connecting I (the starting image of the geodesic) and the

easurements Y i in time t i − t 0 . Differentiating Eq. (A.5) w.r.t. m

esults in 

 m 

E = K[ m + 

1 

σ 2 

∑ 

i 

(t i − t 0 ) 
2 ( m − m i )] 

! = 0 . (A.6)
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 = 

∑ 

i (t i − t 0 ) 
2 m i 

σ 2 + 

∑ 

i (t i − t 0 ) 2 
. (A.7) 

n practice, σ 2 is very small and can thus be omitted. Further-

ore, m i is obtained by either registering I to Y i in unit time or,

s in our FPSGR approach, by predicting the momenta m i via FPIR,

enoted as ˜ m i . As Eq. A.7 was derived assuming that images are

ransformed into each other in time t i − t 0 instead of unit time,

he obtained unit-time predicted momenta ˜ m i correspond in fact

o the approximation 

˜ m i ≈ (t i − t 0 ) m i . Finally, we obtain the ap-

roximated optimal m of the energy functional in Eq. (1) , for a

xed I = I 0 as 

m ≈
∑ 

i (t i − t 0 ) ̃  m i ∑ 

i (t i − t 0 ) 2 
. (A.8) 

ppendix B. Distribution of diagnostic groups in ADNI-1/2 for 

redictions 

For completeness and to be able to better appreciate the data

e used, this section details the distributions of the diagnostic

roups we used for our prediction experiments. Tables B.1 and B.2

how these distributions for the ADNI-1 and the ADNI-2 datasets

espectively. Diagnostic groups are based on the information on the

DNI website http://www.adni.loni.usc.edu . We combine MCI and

MCI in ADNI-1 , Normal and SMC in ADNI-2 , and EMCI and LMCI

n ADNI-2 , because such detailed diagnoses are only available for

he baseline images. Images at later time points are only labeled as

C, MCI, and AD. This has already been noticed in Section 4 . Each

ase is reflected as a blue point in the visualizations of Appendix E .
Table B.1 

Distribution of Pred/Corr-1 and Pred/Corr-2 cases in 

ADNI-1 . MCI ∗ is the combination of the MCI and LMCI diagnostic 

groups. 

Distribution of prediction cases in ADNI-1 

Pred-1 6mo 12mo 18mo 24mo 36mo 48mo 

NC 182 172 8 151 128 38 

MCI ∗ 274 221 165 122 80 11 

AD 153 173 66 163 69 20 

Total 609 566 239 436 277 69 

Pred-2 6mo 12mo 18mo 24mo 36mo 48mo 

NC 182 168 9 144 119 33 

MCI ∗ 272 224 169 124 70 10 

AD 152 168 64 160 67 22 

Total 606 560 242 428 256 65 

Table B.2 

Distribution of Pred/Corr-1 and Pred/Corr-2 cases 

in ADNI-2 . Normal ∗ denotes the combination of the Nor- 

mal and SMC diagnostic groups; MCI ∗ denotes the com- 

bination of the EMCI and LMCI diagnostic groups. Only a 

small number of images is available for the 36 months 

time point. 

Distribution of prediction cases in ADNI-2 

Pred-1 3mo 6mo 12mo 24mo 36mo 

NC ∗ 173 141 153 119 3 

MCI ∗ 256 232 207 142 4 

AD 93 95 105 66 1 

Total 522 468 465 327 8 

Pred-2 3mo 6mo 12mo 24mo 36mo 

NC ∗ 172 142 159 122 3 

MCI ∗ 257 230 202 149 4 

AD 94 98 101 52 1 

Total 523 470 462 323 8 
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ppendix C. Statistical correlation difference between the 

egression model (FPSGR) and the pairwise model. 

This section relates to Section 4.2 and provides statistical test-

ng details to show that FPSGR shows stronger correlations than

 pairwise registration approach for the clinical measures MMSE

nd DX. The statistical results are based on the correlations re-

orted in Table 4 and tests are for differences in mean. Specifically,

e first checked the normality of the distribution using a Shapiro-

ilk normality test. As can be seen from Table C.1 normality can

Table C.1 

One-sided p -values for a Shapiro-Wilk normality test and Wilcoxon 

signed-rank test on MMSE and DX correlations between the FPSGR 

model and the pairwise prediction model. The null-hypothesis for the 

Shapiro-Wilk normality test is that the difference of two methods is nor- 

mally distributed (at a significance level of 5%). The null-hypothesis for 

the Wilcoxon signed-rank test is that the correlation of pairwise predic- 

tion method is greater than that of FPSGR, i.e. the pairwise prediction 

method is statistically better than the FPSGR prediction method (at a 

significance level of 5%). 

Shapiro-Wilk normality test Wilcoxon signed-rank test 

MMSE 0.03425 0.0 0 07959 

DX 0.03596 0.0 0 01951 

e rejected at a significance level of 5%. Hence, using a paired t -

est would be inappropriate. We therefore used a paired Wilcoxon

igned-rank test to compare these correlations. Results are statisti-

ally significant at a significance level of 5% suggesting that FPSGR

ndeed improves correlation measures over pairwise registrations. 

ppendix D. Statistical correlation differences between 

ptimization-based SGR and FPSGR 

This section relates to Section 4.2 and shows statistical testing

esults for differences in correlations obtained via optimization-

ased SGR (i.e., SGR LDDMM) and FPSGR (i.e., SGR Pred + Corr).

pecifically, we use a paired t -test to compare the correlations be-

ween atrophy and clinical variables for all the months for the

DNI-1 and ADNI-2 datasets in Table 4 . Table D.1 shows the re-

ulting p -values. Note that a t -test was appropriate based on the

esults of a Shapiro-Wilk normality test. We conclude that FPSGR

sing the correction approach works as well as, or better than, SGR

ia LDDMM optimization. This justifies the use of FPSGR for image

egression. 

Table D.1 

Results of a Shapiro-Wilk normality test and a paired t - 

test on MMSE and DX correlations among SGR LDDMM, 

and FPSGR with correction network. The null-hypothesis 

for the Shapiro-Wilk normality test is that the differ- 

ence between the two methods is normally distributed 

(at a significance level of 5%). The null-hypothesis for the 

paired t -test is that the correlation of SGR LDDMM is 

greater than that of FPSGR, i.e. the optimization based SGR 

method is statistically better than the FPSGR method (at a 

significance level 5%). 

Shapiro-Wilk normality test Paired t -test 

MMSE 0.5361 0.0530827 

DX 0.2356 0.0186418 

ppendix E. Linear regression of atrophy scores 

Here, we show graphical illustrations of the linear regres-

ion results over the atrophy scores as presented in Table 3 of

ection 4.2 . Specifically, Fig. E.1 visually shows the linear regres-

ion results of the atrophy scores in ADNI-1 Pred + Corr-1 and

http://www.adni.loni.usc.edu
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Fig. E.1. Linear regression of atrophy scores with respect to time for different diagnostic changes of ADNI-1 Pred + Corr-1 and ADNI-2 Pred + Corr-1 . Red line is the 

estimated regression line. green curves are the lower and upper bounds of the 95% confidence interval. Blue dots indicate actual data points. Bright white / purple images 

indicate kernel density estimations for all real data points illustrating dominant longitudinal trends in the data. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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DNI-2 Pred + Corr-1. The slopes of the linear regressions are con-

istent with disease severity, i.e. NC-NC < NC-MCI, MCI-NC < MCI-

CI < MCI-AD, and NC-NC < MCI-MCI < AD-AD. All 95% confidence

ntervals contain zero, which indicates that FPSGR with correction

id not produce deformations with significant bias to over- or un-

erestimate volume changes. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.media.2019.06.003 . 
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