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25 April 2012WHAT IS ALREADY KNOWN ABOUT

THIS SUBJECT
• Amnestic mild cognitive impairment MCI)

represents the prodromal stage of
Alzheimer’s dementia and this disease
progresses in a non-linear fashion.

• Disease progression depends on a variety of
demographic, biochemical, genetic and
cognitive factors.

WHAT THIS STUDY ADDS
• Baseline CSF biomarkers carry information

about disease pathology and critical
thresholds for these markers (Ab and
p-tau181P) have been identified that allow
segregation of the population into MCI
progressers and non-progressers.

AIM
The objective is to develop a semi-mechanistic disease progression
model for mild cognitive impairment (MCI) subjects. The model aims to
describe the longitudinal progression of ADAS-cog scores from the
Alzheimer’s disease neuroimaging initiative trial that had data from
198 MCI subjects with cerebrospinal fluid (CSF) information who were
followed for 3 years.

METHOD
Various covariates were tested on disease progression parameters and
these variables fell into six categories: imaging volumetrics,
biochemical, genetic, demographic, cognitive tests and CSF biomarkers.

RESULTS
CSF biomarkers were associated with both baseline disease score and
disease progression rate in subjects with MCI. Baseline disease score
was also correlated with atrophy measured using hippocampal volume.
Progression rate was also predicted by executive functioning as
measured by the Trail B-test.

CONCLUSION
CSF biomarkers have the ability to discriminate MCI subjects into
sub-populations that exhibit markedly different rates of disease
progression on the ADAS-cog scale. These biomarkers can therefore be
utilized for designing clinical trials enriched with subjects that carry the
underlying disease pathology.
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Introduction

It is believed that by the time Alzheimer’s disease (AD) is
diagnosed, sufficient neuronal injury has occurred that
reversal of the disease is perhaps unlikely [1]. This has
therefore raised considerable interest in the prodromal
stage of AD involving subjects with mild cognitive impair-
ment (MCI) who are in the pre-dementia stage of cognitive
dysfunction and therefore could be targeted for therapies
that could potentially provide beneficial effects.The preva-
lence rate for MCI around the world is in the range of
14–18% in individuals � 70 years of age [2]. In clinical trials
and epidemiologic studies the annual rate of conversion of
MCI subjects to dementia is in the range of 6–15%, which is
much higher than the incidence rate of dementia of 1–2%
seen in the general population [2]. MCI represents an inter-
mediate state of cognitive impairment that is greater than
the level expected for a subject’s education level and age
[3] but does not meet criteria for dementia and does not
compromise activities of daily living. The diagnosis of MCI
is characterized by heterogeneity, varying severity and the
inability to predict disease progression i.e. not all MCI sub-
jects have underlying AD neuropathology [2]. Indeed, not
all cases of MCI progress to AD and a small fraction of
subjects revert back to normal status. However, the clinical
phenotype of amnestic MCI, in which only the domain of
memory is affected, is thought to be degenerative in
nature and these subjects have a high probability of pro-
gression to AD [1].

Neuropsychological assessments are a key component
of detecting and tracking disease progression in clinical
trials because they provide standardized evaluation of
memory and cognitive impairments which are central fea-
tures of MCI. The cognitive component of the AD Assess-
ment Scale (ADAS-cog) has been utilized in the majority of
large scale pharmacologic and naturalistic studies of MCI.
During the past decade several MCI clinical trials have
tested the current pharmacologic agents used in the treat-
ment of AD. None of these clinical trials has achieved their
expected therapeutic end points and therefore there are
no approved treatments for MCI [2]. These results have
caused some concerns about the insufficient sensitivity of
the ADAS-cog scale in mapping and tracking the early
stages of the disease [4].

From the published CSF biomarkers total tau, phospho-
rylated tau at the threonine 181 position (p-tau181p), and
CSF amyloid beta 1 to 42 peptide (Ab1–42) are considered
as promising markers for inclusion in clinical trials and in
the revised AD diagnostic criteria [5, 6]. The utility of these
biomarkers is further supported by the newly released
National Institute on Aging/Alzheimer’s Association Diag-
nostic Guidelines for AD that recommend inclusion of
these specific markers for use in research settings, includ-
ing MCI clinical trials [7]. Recent reports from the AD neu-
roimaging initiative (ADNI) trial have shown that MCI
subjects exhibit bimodal distributions with respect to their

baseline concentrations of Ab1–42 and p-tau181P [5]. These
biomarkers (low CSF Ab1–42 and high p-tau181P) are
thought to reflect the pathologic features associated with
AD. CSF biomarkers have the potential to provide informa-
tion about the probability of disease progression to AD for
an individual MCI patient and the likelihood that this pro-
gression will occur within a defined period. The CSF biom-
arkers considered in the current analysis represent a small
subset of the large number of related biomarkers [6].
However, the CSF biomarkers have a fairly large body of
literature evidence in MCI [8–12] and are therefore consid-
ered as a reasonable starting point. CSF biomarkers were
captured in only 50% of subjects in the ADNI trial and the
current analysis will focus on only those ADNI MCI subjects
who have baseline CSF data available for Ab1–42 and tau
proteins.

A disease progression model was previously developed
for patients with AD [13, 14] and since the MCI population
represents a distinctly different sub-group in terms of
biomarker characteristics and rates of cognitive deteriora-
tion [5], the current analysis focuses on this earlier stage of
the disease. The recently developed semi-mechanistic
non-linear AD disease progression model was built to (a)
capture the longitudinal change of ADAS-cog scores and
(b) describe the rate of progression and baseline ADAS-cog
as a function of influential covariates in AD patients [13,
14]. In the model, baseline ADAS-cog was associated with
years since dementia onset, hippocampal volume and ven-
tricular volume. Disease progression rate was dependent
on age, total serum cholesterol, APOE e4 (APOE4) geno-
type, Trail B test, as well as current impairment status mea-
sured by ADAS-cog. Rate of progression was slower for
mild and severe AD patients vs. moderate AD patients who
exhibited a faster rate of disease worsening. One of the
objectives of the current analysis is to assess the applica-
bility of this AD model and its covariate relationships to the
MCI population. In addition, this analysis incorporates CSF
biomarkers known to characterize MCI subjects with AD
pathology. The combination of total tau concentrations
and the p-tau181p : Ab1–42 ratio predicts the categorical
endpoint of conversion to AD with relatively good sensi-
tivity and specificity [5, 10, 11, 15]. The current analysis
focuses on continuous measures of disease progression
such as ADAS-cog rather than the commonly reported cat-
egorical end points such as conversion or time to conver-
sion. The emphasis of this analysis is on the mixing
distribution for ADAS-cog change and that for baseline
CSF biomarkers in MCI subjects. The objective is to assess
the degree of correlation between rate of disease progres-
sion as measured by a continuous scale such as ADAS-cog
and baseline CSF biomarker status. This information could
be utilized to enrich clinical trials and may thus enable
successful clinical trials in MCI subjects. The availability of
richly sampled long term naturalistic MCI progression data
from the ADNI public database (available at https://
www.loni.ucla.edu/ADNI) allows assessment of (a) variabil-
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ity in this disease state, (b) potential covariates affecting
MCI progression and (c) the ability of ADAS-cog to track
disease progression during the MCI stage. We thus aimed
at developing a non-linear mixed effects model with cova-
riates, incorporating neuropsychological assessments and
structural or chemical biomarkers to describe disease pro-
gression in ADNI MCI subjects.

Methods

Study details
Data used in the preparation of this article were obtained
from ADNI database (http://www.loni.ucla.edu/ADNI); for
up-to-date information, see http://www.adni-info.org.All
ADNI subjects had clinical/neuropsychological assess-
ments and 1.5T MRI measurements, while CSF measure-
ments were performed in only 50% of subjects. MCI
subjects were assessed at 0, 6, 12, 18, 24 and 36 months,
while AD subjects were assessed at 0, 6, 12 and
24 months. ADNI allows public access to all accumulating
data. The dataset available on November 9 2010 (http://
www.loni.ucla.edu/ADNI) was utilized in the current
analysis. This recent download of the database contains
1036 ADAS-cog measurements from 198 MCI subjects
with baseline CSF data. 42.4% of these MCI subjects have
converted to AD at the time of the data download. Other
plasma biomarkers of Ab pathology were not assessed in
the current analysis. A recent report based on the ADNI
data shows that plasma Ab shows mild correlation
with other biomarkers of Ab pathology and is rather
insensitive because health conditions other than AD are
also associated with altered concentrations of plasma Ab
[16]. More importantly, plasma Ab has limited value for
disease classification and modest value as a prognostic
factor for clinical progression [16] and is not considered
further.

The database also contained 88 AD subjects with CSF
data. The data from the AD subjects were used only for
exploratory purposes to visualize differences between AD
and MCI subjects.The data from AD subjects were not used
in the current model building exercise. A description of the
objective behind each stage of the modelling procedure
described below is provided in Table S1.

Data analysis software
Data set preparation was performed using SAS® Version
9.1.3 (SAS Institute Inc., Cary, NC, USA). Data set exploration
and visualization were performed using S Plus® 6.0 profes-
sional release 2 software (Insightful Corporation, Seattle,
WA, USA). ADAS-cog and CSF biomarker data were mod-
elled using extended least squares regression using
NONMEM® VI in combination with the Intel FORTRAN 10
compiler [17].

Selection of the structural model for ADAS-cog
data
The model-building exercise employed log-transformed
data using the first-order conditional estimation method
(FOCE) in NONMEM®. It is known that linear models are not
sufficient for portraying cognitive decline in disease pro-
gression [18, 19]. The use of logistic curves to describe this
non-linearity in cognitive decline is well accepted [13, 14,
19–22] and these functions offer the advantage that the
model predictions do not fall outside the bounded scale of
0 to 70 for ADAS-cog.To justify the choice of the non-linear
structural model, simpler linear and non-linear models
were also tested (see Results).

A sequence of logistic models [23] was tested and
these models allowed the progression rate to be the
fastest around the inflection point of 42 points on the
ADAS-cog scale [13, 14, 20, 24]. The generalized logistic
model [23] that represents the rate of disease progression
is as follows:

dADAS-cog

dt
r ADAS-cog

ADAS-cog

ADAS-cog
A

= × − ⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

α
β γ

1
max

;

DDAS-cog ADAS-cog( )0 0=
(1)

where, r is the rate parameter controlling disease progres-
sion, ADAS-cogmax is fixed at 70, ADAS-cog0 is the baseline
score at time zero and a, b and g govern the shape of the
progression curve and also control the inflection point. In
the MCI database there are only four data points (4/1036:
0.4%) with ADAS-cog scores greater than 42 and therefore
estimating any of the shape parameters maybe difficult
with the current dataset (see Results).Three different logis-
tic models were tested: (a) in the first model a and b were
fixed at 1, while g was fixed at 0.667, (b) in the second
model a and g were fixed at 1, while b was fixed at 2.39 and
(c) in the third model b and g were fixed at 1, while a was
fixed at 1.52. Since the relationship between inflection
point and the shape parameters can be derived [23], the
fixed shape parameters in each model allow the inflection
point to be 42, which is in line with the literature derived
value [13, 14, 20, 24] (Table 1). The three models are non-
nested and have the same number of parameters. The
selection of the structural model was therefore guided by
AIC criteria and the model with the lowest AIC value was
considered the base structural model.

Inter-subject variability on baseline ADAS-cog was
evaluated using a log normal distribution because the
parameter had to be constrained to a value greater than
zero with its distribution skewed to the right.The apparent
coefficient of variation for inter-individual variability in
baseline ADAS-cog was computed as the square root of
omega (w). Inter-individual variability on the rate param-
eter r was evaluated using an additive-error model. Rate of
progression can be either positive or negative (disease
can worsen or improve over time) in MCI subjects. It is
therefore important to use an additive-error model for
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parameter r, so that both types of progression can be
captured.The coefficient of variation for inter-individual vari-
ability on the r parameter was computed as 100% ¥ w/
population estimate. Since ADAS-cog scores were log trans-
formed, an additive error model was used to describe the
residual variability. The scores are non-negative and were
increasingly variable as the value of the scores increased.Both
these characteristics are captured adequately using the
log-transform both sides approach for the residual error
[25, 26].This approach involves logarithmic transformation
of both the observed data and model predictions, which
induces normality and allows variance stabilization [25,
26]. The magnitude of the residual variability parameter
was expressed as a standard deviation.

Mixture model for ADAS-cog data
It was observed that the inter-individual variability esti-
mates for the progression rate parameter r in the base
structural model was quite high (>100% coefficient of
variation). The high variability is also visible in the longitu-
dinal ADAS-cog scores in MCI subjects (see Results). This
led to the hypothesis that the MCI population consists of a
mixture of two sub-populations and mixing of these non-
homogenous populations led to high inter-individual vari-
ability.These two sub-populations could represent fast and
slow progressers. Slow progressers were defined as those
having a lower r parameter and lower baseline ADAS-cog
(and vice versa for fast progressers).To test the possibility of
two sub-populations, mixture modelling, as implemented
in NONMEM® VI [27–29], was applied to the ADAS-cog data.
To allow flexibility, residual variability was allowed to vary
between the two sub-populations.

Mixture models for baseline CSF biomarker
data
Two-component mixture models were also fitted sepa-
rately for each of the baseline CSF biomarker data (CSF
Ab1–42, tau, p-tau181P, and p-tau181P : Ab1–42 ratio) under
the assumption that the data are sampled from 2 different
normal distributions. Since there is a single baseline mea-
surement per subject, only one level of random effects was
implemented using an additive error model. Both tau

markers had right skewed distributions and therefore
CSF tau, p-tau181P, and p-tau181P A : b1–42 ratio were log
transformed before analysis to satisfy the normality
assumption. The thresholds for p-tau181p, Ab1–42 and
p-tau181p : Ab1–42 were based on the densities of their
bimodal distribution. The threshold is taken as the lowest
point in the trough between the two peaks where the
density curves of the two distributions for the mixture
population meet (see Results).

Computation of % correct classification
statistics
It was conjectured that MCI subjects with non-pathologic
CSF could be the slow progressers, while subjects with
pathologic CSF could be the fast progressers. For CSF Ab1–
42, subjects below the critical threshold (identified by the
mixture model above) were considered having pathologic
CSF. In contrast, for CSF p-tau181P and p-tau181P : Ab1–42
ratio, subjects above the critical threshold from the respec-
tive mixture models were considered to have pathologic
CSF. To assess whether there could be a correlation
between ADAS-cog progression and CSF status, % correct
classification (%CC) [27] statistics were computed between
each subject’s post hoc estimate of sub-population assign-
ment from the ADAS-cog mixture model and the CSF
sub-population category based on the CSF biomarker
threshold.The %CC was computed for each CSF biomarker,
where CC is either pathologic CSF corresponding to fast
progresser status or non-pathologic CSF corresponding to
slow progresser status.

CSF biomarkers as covariates in the ADAS-cog
base structural model
The %CC was high for CSF Ab1–42, p-tau181P, and
p-tau181P : Ab1–42 ratio and therefore an assessment was
made whether these could serve as categorical covariates
in the ADAS-cog base structural model. The optimal
threshold for dichotomizing these biomarkers into cat-
egorical covariates was fixed based on the mixture model
for these biomarkers described earlier. Three separate
ADAS-cog models were fitted, one with CSF Ab1–42, one
with p-tau181P and another with p-tau181P : Ab1–42 ratio,

Table 1
Summary of structural models

Model description Progression rate Inflection point Fixed parameter† Number of qs AIC value

Logistic 1
dADAS-cog

dt
r ADAS-cog

ADAS-cog
= × −⎡

⎣⎢
⎤
⎦⎥

1
70

γ 70

1+ γ g = 0.667 2 -1126

Logistic 2
dADAS-cog

dt
r ADAS-cog

ADAS-cog
= × − ( )⎡

⎣⎢
⎤
⎦⎥

1
70

β
70

1

1
β β

β+
⎛
⎝⎜

⎞
⎠⎟ b = 2.39 2 -1128

Logistic 3
dADAS-cog

dt
r ADAS-cog

ADAS-cog
= × −⎡

⎣⎢
⎤
⎦⎥

α 1
70

α
α

×
+

70

1
a = 1.52 2 -1129

†In all three models the fixed parameter corresponds to an inflection point at an ADAS-cog score of 42.
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and in all models the biomarkers were formulated as cat-
egorical covariates to affect both baseline ADAS-cog and r.
These models had the same number of parameters and
selection of the more optimal biomarker as a covariate was
based on the AIC criteria. For completeness, once the
optimal biomarker was selected, it was also tested as a
continuous covariate on baseline ADAS-cog and r using (a)
linear function, (b) power function and (c) log linear func-
tion and the choice of the functional form of the covariate
was also based on AIC.The categorical covariate formalism
also offers two other advantages that were also tested: (a)
the assumption can be tested whether the slow progress-
ers are non-progressers and (b) the assumption can be
tested whether the residual variability between the two
sub-populations is sufficiently different The model chosen
after incorporation of CSF biomarkers in the ADAS-cog
model will be referred to as the base reference model.

Assessment of applicability of AD model
covariates to the MCI population
The development of the base reference model led to the
observation that there are only 129 progressers in the
current dataset. A covariate search on such a small data-
base could cause identification of incorrect covariate rela-
tionships due to random noise. Moreover, such an analysis,
which could be associated with low power, may identify
spurious and/or exaggerated covariate relationships [30].
Therefore, further covariate search was guided by prior
knowledge related to this disease area. Previous analysis of
covariate relationships in the ADNI population has sug-
gested that baseline ADAS-cog is affected by baseline hip-
pocampal volume, baseline ventricular volume and years
since dementia onset at baseline [13, 14]. Furthermore, the
r parameter is associated with baseline age, APOE4, base-
line cholesterol and baseline Trail B test [12, 13, 31]. Since
the MCI progressers identified in the current analysis have
AD pathology (high p-tau181P : Ab1–42 ratio), the relevance
of these previously known AD covariates was also tested in
the MCI population (except years since dementia onset,
which is not relevant to MCI). NONMEM® VI was used to
optimize and finalize the covariate model In the model,
continuous covariates were modelled using a power func-
tion after normalization by the typical reference value
(population median), while categorical covariates were
introduced as fractional shifts [32]. All of the influential
covariates from the previous AD analysis [13, 14] were
added to the base reference model using the appropriate
functional form [32]. Covariates introduced into the full
model were then tested using backward elimination,a pro-
cedure described by Wahlby et al. [33], and the objective of
this analysis was to develop the most parsimonious cova-
riate disease progression model in MCI.

Finally, to assess the precision and stability of the final
model, the parameter estimates were subjected to internal
model evaluation [13, 14]. The evaluation consisted of a
non-parametric bootstrap and a visual predictive check

[13, 14, 34, 35]. Bootstrap analysis was performed using the
package Perl Speaks NONMEM®, version PsN-3.1.0 [34].

Results

Subject characteristics
The characteristics of the ADNI MCI subjects with CSF
information are shown in Table 2. Petersen et al. have
recently reported the demographic and biomarker charac-
teristics of all the 398 MCI subjects recruited in the ADNI
trial [36]. The characteristics of the 198 MCI subjects with
CSF information in the current analysis (Table 2) are almost
identical to the statistics for the full set of 398 MCI subjects
(similar distribution for age, APOE, gender, educational
status and cognitive tests).This indicates that the subset of
MCI subjects with CSF information represents a represen-
tative sample of the larger population. This subset of MCI
subjects was between the ages of 55 to 89 years (mean �
standard deviation [SD] 75 � 8). The subjects had, on an
average 16 years (�3 SD) of education. Ninety-eight sub-
jects (49.5%) had a family history of dementia with at least
one parent having the disease. There was an apparent
pattern for maternal transmission of the disease since 77 of
the 98 subjects with a family history had mothers with
dementia which is consistent with earlier reports in the AD
literature [13]. 54% of MCI subjects were APOE e4 carriers,
where 43% had one e4 allele and 11% had two e4
alleles. MCI subjects also had relatively high serum choles-
terol, with the mean cholesterol concentration being
198 mg dl-1 (� 43 SD), which is close to the high choles-
terol cut-off of �200 mg dl-1.

Choice of structural model
The results from the logistic structural model selection
process are shown in Table 1. AIC values for the various
structural models indicate that logistic model 3 with a
shape parameter was the most suitable (i.e. lowest value
among the three models tested). This model form has also
been reported to describe AD disease progression quite
well [13, 14]. To understand the behaviour of these struc-
tural models, the progression rate was plotted as a func-
tion of the current ADAS-cog score using the parameter
estimates from each model. The results are presented in
Figure S1, which indicate that the three separate expo-
nents (a, b and g) control both the inflection point and the
initial shape of the curvature characterizing the relation-
ship between progression rate and ADAS-cog. The model
with a shape parameter had greater flexibility at low
ADAS-cog scores, which is particularly relevant to the MCI
population (Figure S1). It is therefore reassuring that this
function was identified here and in previous work [13, 14]
as a suitable structural model for describing ADAS-cog
progression.

A linear model for disease progression was also tested
and it resulted in an AIC value of -1094, which signifies
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poorer model fit compared with the logistic models
(Table 1). A simplified logistic function was tested next,
which does not have a shape parameter (i.e. characterized
by an inflection point at half-maximal score of 35) and this
model produced an AIC of -1125. It should be noted that
all the logistic models that had a shape factor gave better
AIC values (Table 1) than the simplified logistic model.This
behaviour agrees with the published literature [13, 14, 20,
24] that the inflection point for ADAS-cog is close to 42 and
not at the mid-point of the ADAS-cog scale. Finally, the
logistic model with the a shape parameter that had the
lowest AIC value was also rerun where a was estimated
instead of being fixed.The model ran successfully and gave
an estimate of a of 1.48 (inflection point = 41.8); which is
very close to the fixed value of a = 1.52 based on prior
knowledge. However, estimating a led to poorer param-
eter precision and therefore a was kept fixed at 1.52 based

on extensive knowledge [13, 14, 18–22, 24] about the tem-
poral nature of cognitive decline to ensure model stability.
In summary, this exercise of testing various structural
models confirmed the utility of the AD structural model for
the MCI population, which is not surprising since 42% of
the current MCI population converts to AD during the
course of the study.The logistic structural model with the a
shape parameter was thus taken forward for assessment of
mixture populations and covariate analysis and is referred
to as the base model.

Mixture model for ADAS-cog
Results from the base model indicated that the between
subject variability for the progression rate parameter was
113% coefficient of variation.This led to the formulation of
a mixture model for MCI ADAS-cog data. The parameter
estimates of the mixture model are shown in Table S2,

Table 2
Summary statistics for ADNI MCI subjects with CSF data

Variable name (abbreviation), units

Mean (� SD) or n (%)

All subjects
(n = 198)

Subjects with
pathologic CSF*
(n = 129)

Subjects without
pathologic CSF†
(n = 69)

Baseline MRI volumetric measures
Ventricular volume (ml) 44.6 � 24 42.3 � 21 48.8 � 28
Hippocampal volume‡ (mm3) 3146 � 528 3045 � 468 3334 � 583

Baseline chemical biomarkers
Serum cholesterol, mg dl-1 198 � 43 202 � 45 192 � 39
Subjects with high cholesterol, � 200 mg dl-1 87 (44%) 60 (47%) 27 (39%)
CSF Ab1–42 164 � 55 134 � 30 218 � 49
CSF tau 103 � 60 125 � 63 62 � 22
CSF p-tau181P 35 � 18 44 � 16 19 � 5
Log CSF p-tau181P : Ab1–42 ratio -1.6 � 0.7 -1.14 � 0.4 -2.46 � 0.4

Demographic and genetic factors
Baseline age (AGE), years 75 � 8 74 � 7 75 � 8
Apolipoprotein E genotype status (APOE4)

0 allele 92 (46%) 40 (31%) 52 (75%)
1 allele 85 (43%) 69 (53%) 16 (23%)
2 alleles 21 (11%) 20 (16%) 1 (1.4%)

Family history of dementia (FHD)
None 100 (51%) 60 (47%) 40 (58%)
Father 21 (11%) 12 (9.3%) 9 (13%)
Mother 65 (33%) 48 (37%) 17 (25%)
Both 12 (6.1%) 9 (7.0%) 3 (4.3%)

Gender (SEX)
Male 132 (67%) 79 (61%) 53 (77%)
Female 66 (33%) 50 (39%) 16 (23%)

Years of education (EDU) at baseline 16 � 3 16 � 3 16 � 3
Baseline cognitive tests

ADAS-cog 11.7 � 5 12.7 � 5 9.9 � 4
Mini-mental state exam (MMSE) 26.9 � 2 26.8 � 2 27.1 � 2
Trail making test; part B, s 133 � 73 140 � 74 121 � 69

Longitudinal ADAS-cog scores Mean � SD (n) Mean � SD (n) Mean � SD (n)
Baseline 11.7 � 5 (n = 198) 12.7 � 5 (n = 129) 9.9 � 4 (n = 69)
6 months 12.5 � 5 (n = 190) 13.7 � 5 (n = 125) 10.1 � 5 (n = 65)
1 year 12.6 � 6 (n = 184) 14.2 � 6 (n = 121) 9.6 � 4 (n = 63)
1.5 years 13.5 � 7 (n = 169) 15.6 � 7 (n = 111) 9.6 � 5 (n = 58)
2 years 14.0 � 7 (n = 158) 16.3 � 7 (n = 106) 9.3 � 5 (n = 52)
3 years 15.2 � 9 (n = 118) 17.8 � 9 (n = 76) 10.5 � 6 (n = 42)

*Subjects with pathologic CSF at baseline: log CSF p-tau181P : Ab1–42 ratio > -1.86. †Subjects without pathologic CSF at baseline: log CSF p-tau181P : Ab1–42 ratio � -1.86.
‡Average of left and right hippocampal volume.
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which indicate that slow progressers have both a lower
progression rate and a lower baseline score. The progres-
sion rate is even slower after accounting for the lower
ADAS-cog scores observed in the MCI population (the
model uses the logistic structural form). The mixing frac-
tion for progressers was 70%, indicating that 30% of the
subjects could be progressing slowly in the MCI popula-
tion.To understand the biological basis behind this hetero-
geneity in the MCI population, CSF biomarkers were
assessed for bimodality.The bimodality in progression rate
could be associated with dichotomy in the distribution of
CSF biomarkers. Therefore, mixture models for CSF biom-
arkers were assessed next.

Mixture models for CSF biomarkers and %CC
statistics
Out of the four CSF candidate markers, three depicted
possible bimodality (Figure 1). CSF total tau exhibited
unimodality and a right skewed distribution, which was
log-transformed to approximate normality (Figure 1C). A
mixture model could not be successfully fitted to the log-
transformed CSF total tau distribution and it was therefore
not considered further as a candidate marker. For the three
remaining markers a mixture model was successfully fitted
and the results of the analysis are presented in Table S3. A
mixture of two normal distributions with nearly equal stan-
dard deviations is bimodal if their means differ by at least
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twice the common standard deviation [37]. This expecta-
tion of bimodality is met for CSF Ab1–42 (Figure 1A), CSF
p-tau181p (Figure 1B) and CSF p-tau181p : Ab1–42 ratio
(Figure 1D) based on the parameter estimates reported in
Table S3. The ability to fit mixture models with distinct
random effect parameters is dependent upon the nature
of the underlying mixture (i.e. how close are the sub-
population means and how much data are available per
sub-population). Attempts to fit separate random effects
for CSF sub-populations led to model instability which was
reflected in higher imprecision for model parameters.Thus
the two sub-populations for the CSF biomarkers were
assumed to have the same variances (Table S3) as is com-
monly done in the implementation of mixture models in
NONMEM® [28, 29]. Furthermore, fitting the model without
subpopulations to the baseline CSF dataset for p-tau181p,
Ab1–42 and p-tau181p : Ab1–42 ratio resulted in much
worse fit (based on AIC and likelihood ratio test).

The mixing proportion for p-tau181P, p-tau181P : Ab1–42
and Ab1–42 were 55%, 64% and 75% respectively and
these are close to the 70% mixing proportion for the
ADAS-cog mixture model. The thresholds determined for
p-tau181P, p-tau181P : Ab1–42 and Ab1–42 based on the den-
sities of these bimodal distribution were 29 pg ml-1 (log
scale 3.37), 0.156 (log ratio -1.86) and 198 pg ml-1 respec-
tively and these thresholds are indicated in Figure 1. Based
on these threshold values, the population was dichoto-
mized and the %CC statistic was computed for each
marker using the post hoc estimate of sub-population
assignment from the ADAS-cog mixture model. The %CC
for p-tau181P, p-tau181P : Ab1–42, Ab1–42 were 68%, 73%
and 71% respectively. Since the %CC for p-tau181P,
p-tau181P : Ab1–42 and Ab1–42 were relatively high (~70%),
all three markers were pursued further as potential covari-
ates in the ADAS-cog base model. Since p-tau181P : Ab1–42
ratio gave the highest %CC statistic, the contingency table
between CSF status and progresser status from the
mixture model is reported in Table S4.

CSF biomarkers as covariates for ADAS-cog
disease progression
CSF Ab1–42 was incorporated as a categorical covariate on
both baseline ADAS-cog and r parameter, which produced
an AIC value of -1163. The AIC value with the model
parameterizing CSF p-tau181P as the covariate was -1167.
Finally, the AIC value for the model with CSF
p-tau181P : Ab1–42 ratio as a covariate on the same param-
eters was -1181. This suggested that the ratio of the two
biomarkers may carry more information than a single
biomarker alone and it was chosen as the CSF-related
covariate in the ADAS-cog model. For completeness, the
ratio of p-tau181P : Ab1–42 was also tested as a continuous
covariate through a linear, log-linear or power relationship,
which yielded AIC values of -1165, -1179 and -1173. CSF
p-tau181P : Ab1–42 ratio thus produces the lowest AIC value
when it is formulated as a categorical covariate. This sug-

gests that these CSF end points (p-tau181P and Ab1–42) may
serve as a threshold between occult and measureable
disease progression. It is noteworthy that simply adding
these two parameters to the ADAS-cog base model,
p-tau181P A : b1–42 affecting baseline ADAS-cog and r,
reduced the minimum value of the objective function by
56 points which is highly significant (P < 0.00001). It was
also noticed that the estimate of the r parameter in the
slow progressers (log p-tau181P : Ab1–42 � -1.86) was
0.005,which is very close to zero.Therefore, the assumption
was tested whether these subjects represent non-
progressers with a typical r parameter value of zero. This
simplification led to an increase in the minimum value of
the objective function by 0.4 points. Therefore, the model
reduction by one parameter did not lead to a significant
change in the fit.Thus, based on this analysis, fast progress-
ers will be referred to as progressers, while slow progress-
ers will be referred to as non-progressers. Progressers are
defined as subjects with log p-tau181P : Ab1–42 > -1.86,
while non-progressers are defined as subjects with log
p-tau181P : Ab1–42 � -1.86.

The non-progressers, because of their small sample size
(n = 69), were also constrained to have their etas (h: devia-
tion of an individual parameter from the population mean)
sampled from the same w distribution as that of the pro-
gressers. However, to allow greater flexibility the residual
variability was allowed to vary between progressers and
non-progressers. Addition of one extra residual error
parameter led to an improvement of 18 objective function
points. It was also noticed that the SD of the residual error
for the non-progressers (0.30) was somewhat larger than
that for the progressers (0.24). This is because the ADAS-
cog score for the non-progressers fluctuates more widely
around a relatively steady value. This model in which the
non-progressers had a typical progression rate parameter
of zero, possessed a lower baseline score and were allowed
to have a different residual variability was considered the
base reference model and was tested further for covariate
model building.

Final covariate model and model verification
Further covariate model building proceeded via a full
model/backward elimination procedure in NONMEM® VI.
The procedure identified only two new covariates in the
model, which were hippocampal volume and the Trail B
test (Table 3). Plots of baseline ADAS-cog h for progressers
and non-progressers vs. hippocampal volume showed that
the baseline score was dependent on this volumetric
marker for both these populations. Furthermore, since the
non-progressers represent a smaller fraction of the whole
population (n = 69) only a single hippocampal volume
related parameter was fitted for baseline ADAS-cog in the
entire MCI population. The h for the r parameter vs. Trail B
test score in non-progressers did not show any trend and
therefore this covariate influences only the progressers.
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Figure S2 shows the goodness of fit plots for the final
model and Table 3 provides the estimates from the final
population based disease progression model. The results
of the non-parametric bootstrap analysis (Table 3) support
the parameter estimates of the final model.The parameter
estimates are similar to the median value obtained from
the bootstrap technique and are contained within the 90%
confidence interval.The observed scores, the visual predic-
tive check, and median model prediction vs. time are dis-
played in Figure 2. These results confirm that the model is
able to describe the ADAS-cog temporal profiles in MCI
subjects since the majority of the observations fall within
the 90% prediction intervals (Figure 2).

Discussion

Characteristics of MCI population identified
based on model based analysis
Three key characteristics of the MCI population emerge: (a)
the MCI population potentially represents a mixture of two
sub-populations, (b) among the MCI progressers, some of
the subjects progress at a relatively slower rate likely due
to additional factors such as preserved executive function
and (c) among the non-progressers 32 subjects (16% of the
MCI population) had a value of the r parameter that was
negative, which indicates that some non-progressers may
have the ability to revert back to normal status.This type of
variability in the clinical course of MCI subjects has been
described previously [2].

Rationale for testing CSF biomarkers as
covariates
In the previous AD analysis [13, 14], the CSF data were not
used since they were available in only 88 subjects.
However, 198 MCI subjects had CSF information, which
represents a reasonable size sample for investigating CSF
biomarkers as covariates. At the current time, diagnosis
of AD requires presence of dementia. However, there has
been speculation that individuals who are bound to
develop AD can be identified earlier using CSF biomarkers
[38]. Ab and p-tau181P are an integral part of disease pathol-
ogy and it is interesting that progression on a clinical scale
(ADAS-cog) is mirrored in the ratio of log CSF
p-tau181P : Ab1–42. The critical threshold identified for this
ratio in the current analysis is -1.86 (untransformed scale
0.156). MCI subjects below this critical threshold do not
appear to exhibit disease progression (Figure 2A). This
probably indicates that these subjects either do not have
the disease pathology or the pathologic cascade has not
started yet.

Role of APOE and cholesterol
In previous models of AD progression both APOE e4 and
serum cholesterol have been identified as covariates that
predicted faster disease progression [13, 14, 31]. Ab, APOE
and cholesterol are linked with one another [39–41] since
the APOE e4 allele is linked with disturbances in Ab and
cholesterol metabolism. In the current analysis, APOE e4
and serum cholesterol were not identified as statistically
significant covariates. Instead, Ab1–42 and p-tau181P are
covariates in the model. If the entire MCI population is

Table 3
Population parameters and the precision of the parameters using nonparametric bootstrap

Parameter*
Original dataset Bootstrap replicates (n = 1000)
Estimate 90% CI Median 90% CI

qADAS-cog0 11.3 10.7 11.9 11.3 10.7 11.9
qHVOL -0.863 -1.10 -0.629 -0.878 -1.11 -0.627
qCSF 0.827 0.747 0.907 0.827 0.756 0.908

qr 0.042 0.034 0.049 0.041 0.034 0.048
qTRAB 0.621 0.379 0.863 0.634 0.394 0.862

Inter-subject variability (% coefficient of variation)†
ADAS-cog0 32.2 28.5 35.9 31.8 28.0 35.4
r 69.4 48.0 90.8 69.4 48.3 92.4

Residual variability (SD)
Population with pathologic CSF‡ 0.237 0.207 0.267 0.233 0.208 0.269
Population without Pathologic CSF‡ 0.300 0.269 0.331 0.298 0.269 0.332

*These equations describe the relationships between covariates and the typical value (TV) of the parameters in the final model:

TV ADAS-cog
HVOL

ADAS-cog CSF
csf

HVOL

0 0
3115

= × × ( )θ θ
θ

TV r
TRAB

CSFr FLAG

TRAB

= × ( ) ×θ
θ

109

where; csf is a 0/1 exponent and CSFFLAG is a 1/0 flag variable depending on sub-population with/without pathologic CSF respectively. HVOL, CSF and TRAB refer to hippocampal
volume, cerebrospinal fluid and Trail B test respectively. †Between the base model and final covariate model the inter-subject variability SD estimates improved from 39.5% and 113%
to 32.2% and 69.4% coefficient of variation respectively. ‡Population with pathologic CSF corresponds to log CSF p-tau181P : Ab1–42 ratio > -1.86; population without pathologic
CSF corresponds to log CSF p-tau181P : Ab1–42 ratio � -1.86.
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stratified by either APOE or cholesterol status (Figures 3A
and 4A respectively) there is an evident trend that these
factors affect progression rate. However, if the population
is first dichotomized by p-tau181P : Ab1–42 CSF status and
the influence of APOE and cholesterol are assessed, then
the trend disappears (Figures 3B, 3C and 4B, 4C respec-

tively). Furthermore, 84% (89/106) of APOE e4 carriers have
the pathologic CSF ratio. Similarly 69% (60/87) of MCI sub-
jects with high cholesterol have pathologic CSF ratio. Thus
APOE e4, high cholesterol and high p-tau181P : Ab1–42 ratio
are likely correlated with one another. This probably also
explains why high cholesterol and APOE e4 were signifi-
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cant in the AD analysis where CSF biomarkers were not
tested [13, 14, 31]. The p-tau181P : Ab1–42 ratio was highly
significant in the MCI disease progression model and
maybe a more useful covariate than APOE e4 and
cholesterol.

Other comparisons between MCI and AD
progression models
Hippocampal volume and the Trail B test have been previ-
ously identified as influential covariates in AD [13, 14],
which are equally significant in the current MCI analysis.To

allow visualization of important covariate effects, some
simple diagnostics were created (Figures 5, 6, and Figure
S3). For these plots the important covariates were dichoto-
mized (> Median and � Median) to create roughly equal
groups and the mean ADAS-cog was plotted as a function
of this newly created categorical variable. Hippocampal
volume was associated with baseline scores for both pro-
gressers and non-progressers, (Figure 5A and 5B). This
finding for hippocampal volume is consistent with the lit-
erature where cognitive decline was associated with hip-
pocampal atrophy [42]. Additionally, a longer completion
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Influence of cholesterol is no longer apparent once the data are dichotomized by CSF status. (A) entire MCI population, (B) Progressers with pathologic CSF
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time on the Trail B test was associated with faster progres-
sion for subjects with pathologic CSF (Figure 5C), which
indicates that patients with poor executive function
progress rapidly.

Two additional covariates (ventricular volume and age)
that were identified previously in AD [13, 14] were not
statistically significant in the MCI analysis. The inability to
identify ventricular volume in the current analysis is prob-
ably related to the narrow range of the baseline data in
MCI. There is an apparent trend for the influence of ven-
tricular volume on baseline ADAS-cog (Figure S3) but this
trend does not reach statistical significance. As far as the
influence of age is concerned, it does appear that there is a
differential effect of this covariate on AD vs. MCI subjects
(Figure 6). It seems that if the onset of AD dementia occurs
at an early age then the form of the disease is rather
aggressive and progression is quite rapid (Figure 6A).
However, in the MCI population, the onset of dementia has
not yet occurred and age does not appear to influence
disease progression substantially (Figure 6b).

Summary of findings: application of CSF
biomarkers for trial enrichment
The CSF findings from this analysis match with the ADNI
information about the number of MCI subjects who have
either converted (n = 84) or not converted (n = 114) to AD.
The information about converters and non-converters
from ADNI, as a function of CSF biomarker status, is
depicted in Figure 7.The results indicate that the CSF infor-
mation, at the individual level, has good negative predic-
tive value i.e. 58 out of the 69 (84%) subjects with log
p-tau181P : Ab1–42 ratio � -1.86 have still not converted to
AD.Moreover, it is also reassuring to see that 87% (73/84) of
the converters have high log p-tau181P : Ab1–42 ratio
(> -1.86). In contrast, 56 out of the 129 subjects (43%) with

log p-tau181P : Ab1–42 ratio > -1.86 have still not converted
to AD. These subjects likely will either (a) eventually
develop AD as the 2–3 follow-up period in the current
database may not be long enough or (b) it is also possible
that these subjects have other protective factors (e.g. pre-
served executive function) that temporarily slow down
their progression rate. Thus these CSF biomarkers may not
precisely predict clinical conversion to AD. They can,
however, be quite useful in excluding those subjects who
have a low likelihood of exhibiting disease progression
within a 2–3 year time frame of a clinical trial. Since non-
progressing subjects may cause noise in an MCI clinical
trial (higher residual error), it may be prudent to exclude
them. The utility of CSF biomarkers as a trial enrichment
tool has recently received regulatory attention in a qualifi-
cation opinion issued by the European Medicines Agency
[43]. Furthermore, there is at least one pharmaceutical
company that is using this technique for population
enrichment [44] and there are two distinct reasons for
excluding these patients in a prodromal AD study: (i) they
are likely to remain stable on both placebo and active arms
and (ii) these subjects likely do not have Ab and tau abnor-
malities and may not benefit from a therapy directed
towards plaque and tangle pathology.

Two recent publications report results that are quite
compatible with the current analysis. First, Buchhave et al.
report a clinical study from Sweden with median follow-up
time of 9.2 years in 137 MCI patients [45]. In this study
baseline p-tau181p : Ab1–42 ratio again exhibited bimodal-
ity and 90% of the patients with pathologic CSF biomarker
levels (high p-tau181p and low Ab1–42) developed AD in
9–10 years. Secondly, Snider et al. report another smaller
study with 49 MCI subjects with longitudinal profile for
clinical dementia rating-sum of boxes which is another
cognitive and functional end point [46]. Their results also
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show that high p-tau181p and low Ab1–42 quantitatively
predicts rapid progression for cognitive decline. Thus the
current analysis and previous results qualify the utility of
CSF biomarkers for being predictive of the rate of cognitive
decline on continuous scales rather than just the dichoto-
mous outcome of conversion to AD.

It should be pointed out that MCI clinical trials have
historically used categorical or time to event outcomes as
their primary analysis [47]. Recently Donohue et al. have
suggested that continuous assessment of disease severity
may be more efficient because mixed-effects models use
all available data, which make them more robust [47].
Donohue et al. have also shown that trials with continuous
outcomes have greater power on average than those with
a dichotomous outcome [47]. Thus, the mixed effects
disease progression model presented in the current analy-
sis could also find utility in analyzing data from pivotal
efficacy trials in MCI.

In summary, this work provides an integrated model-
based analysis of disease progression in MCI subjects. This
model allows identification of sub-populations suitable for
trial enrichment and could represent a useful tool for effi-
cient trial design through clinical trial simulations. In par-
ticular, CSF biomarkers can be useful for excluding those
MCI subjects who have a low likelihood of exhibiting
disease progression on both continuous and categorical

end points. Furthermore, continuous end points may be
more suitable than categorical endpoints since they have
the potential to increase the statistical power of clinical
trials.

One of the obstacles for implementing the trial enrich-
ment approach is the variation in biomarker measure-
ments observed between studies and laboratories. Even
though these biomarker distributions show bimodality at
baseline in MCI studies [5, 45] the absolute values for these
biomarkers can be quite different. This variation is prob-
ably the result of differences in CSF sample handling tech-
niques, analytical procedures and analytical kits/reagents.
Standardization of these procedures may reduce the varia-
tion and increase the utility of these CSF biomarkers. Cur-
rently, there are at least three quality control and
standardization initiatives [48–50] underway that will likely
help with harmonization of CSF biomarker measurements.

Competing interests

The authors of this manuscript are employees of Johnson
& Johnson Pharmaceutical Research & Development
(JnJPRD) and own JnJ stock.

The authors are sincerely grateful to all members of the
Advanced Modeling & Simulation Department at JnJPRD for

100

80

60

A

Baseline CSF Ab1-42 in MCI 
subjects (pg ml–1)

B
as

el
in

e 
C

S
F

 p
-t

au
18

1p
 in

 M
C

I 
su

bj
ec

ts
 (

pg
 m

l–1
)

40

20

50 100 150 200 250 300

100

80

60

B

Baseline CSF Ab1-42 in MCI 
subjects (pg ml–1)

B
as

el
in

e 
C

S
F

 p
-t

au
18

1p
 in

 M
C

I 
su

bj
ec

ts
 (

pg
 m

l–1
)

40

20

50 100 150 200 250 300

Figure 7
Relationship between CSF p-tau181P and Ab1–42 for MCI subjects that have (A) not converted to AD and (B) converted to AD. In both panels triangles
represent subjects with log CSF p-tau181P : Ab1–42 ratio > -1.86,while squares represent subjects with log CSF p-tau181P : Ab1–42 ratio � -1.86. In both panels
open symbols refer to correct assignment i.e. low ratio subjects who do not convert and high ratio subjects who convert to AD. In contrast, filled symbols
represent incorrect assignment i.e. high ratio subjects who have not converted and low ratio subjects who have converted to AD. (A) � log CSF
p-tau181p : Ab1-42 ratio > -1.86; � log CSF p-tau181p : Ab1-42 ratio �-1.86. (B) � log CSF p-tau181p : Ab1-42 ratio > -1.86; log CSF p-tau181p : Ab1-42 ratio
�-1.86

M. N. Samtani et al.

158 / 75:1 / Br J Clin Pharmacol



their insightful comments during the conduct of this analysis.
We are also thankful to Harry Chen (JnJPRD) for formatting
NONMEM® ready files for this analysis. Anna Mendlin (JnJPRD)
provided editorial support for this manuscript.

Data collection and sharing for this project was funded by
ADNI (National Institutes of Health Grant U01 AG024904).
ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following:
Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-
Myers Squibb, Eisai Global Clinical Development, Elan Corpo-
ration, Genentech, GE Healthcare, GlaxoSmithKline,
Innogenetics, Johnson and Johnson, Eli Lilly and Co.,
Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F.
Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as
non-profit partners the Alzheimer’s Association and Alzhe-
imer’s Drug Discovery Foundation, with participation from
the U.S. Food and Drug Administration. Private sector contri-
butions to ADNI are facilitated by the Foundation for the
National Institutes of Health (http://www.fnih.org). The
grantee organization is the Northern California Institute for
Research and Education and the study is coordinated by the
Alzheimer’s Disease Cooperative Study at the University of
California, San Diego. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of California,
Los Angeles. This research was also supported by NIH grants
P30 AG010129, K01 AG030514 and the Dana Foundation.

REFERENCES

1 Petersen RC. Mild cognitive impairment clinical trials. Nat
Rev Drug Discov 2003; 2: 646–53.

2 Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE,
Ivnik RJ, Smith GE, Jack CR Jr. Mild cognitive impairment: ten
years later. Arch Neurol 2009; 66: 1447–55.

3 Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K,
Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H,
Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H,
Scheltens P, Tierney MC, Whitehouse P, Winblad B.
International Psychogeriatric Association Expert Conference
on mild cognitive impairment. Mild cognitive impairment.
Lancet 2006; 367: 1262–70.

4 Brooks LG, Loewenstein DA. Assessing the progression of
mild cognitive impairment to Alzheimer’s disease: current
trends and future directions. Alzheimers Res Ther 2010; 2:
1–9.

5 De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E,
Engelborghs S, De Deyn PP, Coart E, Hansson O, Minthon L,
Zetterberg H, Blennow K, Shaw L, Trojanowski JQ,
Alzheimer’s Disease Neuroimaging Initiative.
Diagnosis-independent Alzheimer disease biomarker
signature in cognitively normal elderly people. Arch Neurol
2010; 67: 949–56.

6 Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J,
Herholz K, Bokde AL, Jessen F, Hoessler YC, Sanhai WR,

Zetterberg H, Woodcock J, Blennow K. Biomarkers for
Alzheimer’s disease: academic, industry and regulatory
perspectives. Nat Rev Drug Discov 2010; 9: 560–74.

7 Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH,
Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC,
Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of
mild cognitive impairment due to Alzheimer’s disease:
recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement 2011;
7: 270–9.

8 Brys M, Pirraglia E, Rich K, Rolstad S, Mosconi L, Switalski R,
Glodzik-Sobanska L, De Santi S, Zinkowski R, Mehta P,
Pratico D, Saint Louis LA, Wallin A, Blennow K, de Leon MJ.
Prediction and longitudinal study of CSF biomarkers in mild
cognitive impairment. Neurobiol Aging 2009; 30: 682–90.

9 Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC,
Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio
as a prediction of cognitive decline in nondemented older
adults. Arch Neurol 2007; 64: 343–9.

10 Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K,
Minthon L. Association between CSF biomarkers and
incipient Alzheimer’s disease in patients with mild cognitive
impairment: a follow-up study. Lancet Neurol 2006; 5:
228–34.

11 Mattsson N, Zetterberg H, Hansson O, Andreasen N,
Parnetti L, Jonsson M, Herukka SK, van der Flier WM,
Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M,
Tsolaki M, Mulugeta E, Rosén E, Aarsland D, Visser PJ,
Schröder J, Marcusson J, de Leon M, Hampel H, Scheltens P,
Pirttilä T, Wallin A, Jönhagen ME, Minthon L, Winblad B,
Blennow K. CSF biomarkers and incipient Alzheimer disease
in patients with mild cognitive impairment. JAMA 2009; 302:
385–93.

12 Visser PJ, Verhey F, Knol DL, Scheltens P, Wahlund LO,
Freund-Levi Y, Tsolaki M, Minthon L, Wallin AK, Hampel H,
Bürger K, Pirttila T, Soininen H, Rikkert MO, Verbeek MM,
Spiru L, Blennow K. Prevalence and prognostic value of CSF
markers of Alzheimer’s disease pathology in patients with
subjective cognitive impairment or mild cognitive
impairment in the DESCRIPA study: a prospective cohort
study. Lancet Neurol 2009; 8: 619–27.

13 Samtani MN, Farnum M, Lobanov V, Yang E, Raghavan N,
DiBernardo A, Narayan V; Alzheimer’s Disease Neuroimaging
Initiative. An improved model for disease progression in
subjects from Alzheimer’s disease neuroimaging initiative.
J Clin Pharmacol 2012; 52: 629–44.

14 Samtani MN, Farnum M, Lobanov V, Yang E, Raghavan N,
DiBernardo A, Narayan V. An improved model for disease
progression in subjects from Alzheimer’s disease
neuroimaging initiative [Internet]. In: American Conference
on Pharmacometrics (ACoP). San Diego: 2011. Available at:
http://www.go-acop.org/sites/default/files/webform/posters/
ACOP-Poster.ppt (last accessed 8 June 2011).

15 Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ.
Biomarkers of neurodegeneration for diagnosis and
monitoring therapeutics. Nat Rev Drug Discov 2007; 6:
295–303.

Disease progression model in MCI subjects

Br J Clin Pharmacol / 75:1 / 159



16 Toledo JB, Vanderstichele H, Figurski M, Aisen PS,
Petersen RC, Weiner MW, Jack CR Jr, Jagust W, Decarli C,
Toga AW, Toledo E, Xie SX, Lee VM, Trojanowski JQ, Shaw LM,
Alzheimer’s Disease Neuroimaging Initiative. Factors
affecting Ab plasma levels and their utility as biomarkers in
ADNI. Acta Neuropathol 2011; 122: 401–13.

17 Boeckman A, Sheiner A, Beal S. NONMEM VI. GloboMax, ICON
Development Solutions: Ellicott City, MD, 2007.

18 Mendiondo MS, Ashford JW, Kryscio RJ, Schmitt FA.
Modelling mini mental state examination changes in
Alzheimer’s disease. Stat Med 2000; 19: 1607–16.

19 Stern Y, Liu X, Albert M, Brandt J, Jacobs DM,
Del Castillo-Castaneda C, Marder K, Bell K, Sano M, Bylsma F,
Lafleche G, Tsai WY. Application of a growth curve approach
to modeling the progression of Alzheimer’s disease. J
Gerontol A Biol Sci Med Sci 1996; 51: M179–84.

20 Ashford JW, Schmitt FA. Modeling the time-course of
Alzheimer dementia. Curr Psychiatry Rep 2001; 3: 20–8.

21 van Belle G, Uhlmann RF, Hughes JP, Larson EB. Reliability of
estimates of changes in mental status test performance in
senile dementia of the Alzheimer type. J Clin Epidemiol
1990; 43: 589–95.

22 Liu X, Tsai WY, Stern Y. A functional decline model for
prevalent cohort data. Stat Med 1996; 15: 1023–32.

23 Tsoularis A, Wallace J. Analysis of logistic growth models.
Math Biosci 2002; 179: 21–55.

24 Stern RG, Mohs RC, Davidson M, Schmeidler J, Silverman J,
Kramer-Ginsberg E, Searcey T, Bierer L, Davis KL. A
longitudinal study of Alzheimer’s disease: measurement,
rate, and predictors of cognitive deterioration. Am J
Psychiatry 1994; 151: 390–6.

25 Carroll RJ, Ruppert D. Transformations and Weighting in
Regression. New York: Chapman & Hall, 1988; 115–60.

26 Bonate P. Pharmacokinetic-Pharmacodynamic Modeling and
Simulation. New York: Springer, 2006; 141–44.

27 Kaila N, Straka RJ, Brundage RC. Mixture models and
subpopulation classification: a pharmacokinetic simulation
study and application to metoprolol CYP2D6 phenotype. J
Pharmacokinet Pharmacodyn 2007; 34: 141–56.

28 Beal SL, Boeckman AJ, Sheiner LB, eds. NONMEM Users
Guide – Part VI. PREDPP Guide. San Francisco, CA: NONMEM
Project Group, University of California, 1992; 35–6.

29 Ette EI, Williams PJ, eds. Pharmacometrics: The Science of
Quantitative Pharmacology. New York: Wiley, John & Sons,
Incorporated, 2007; 723–57.

30 Ribbing J, Jonsson EN. Power, selection bias and predictive
performance of the Population Pharmacokinetic Covariate
Model. J Pharmacokinet Pharmacodyn 2004; 31: 109–34.

31 Ito K, Corrigan B, Zhao Q, French J, Miller R, Soares H, Katz E,
Nicholas T, Billing B, Anziano R, Fullerton T, Alzheimer’s
Disease Neuroimaging Initiative. Disease progression model
for cognitive deterioration from Alzheimer’s Disease
Neuroimaging Initiative database. Alzheimers Dement 2011;
7: 151–60.

32 Ravva P, Gastonguay MR, Tensfeldt TG, Faessel HM.
Population pharmacokinetic analysis of varenicline in adult
smokers. Br J Clin Pharmacol 2009; 68: 669–81.

33 Wählby U, Jonsson EN, Karlsson MO. Comparison of stepwise
covariate model building strategies in population
pharmacokinetic-pharmacodynamic analysis. AAPS
PharmSci 2002; 4: E27.

34 Lindbom L, Philgren P, Jonsson N. PsN-Toolkit-a collection of
computer intensive statistical methods for nonlinear mixed
effect modelling using NONMEM. Comput Methods
Programs Biomed 2005; 79: 241–57.

35 Holford N. The visual predictive check – superiority to
standard diagnostic (Rorschach) plots. PAGE 2005; 14: 738
(Abstr.).

36 Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC,
Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW,
Trojanowski JQ, Weiner MW. Alzheimer’s Disease
Neuroimaging Initiative (ADNI): clinical characterization.
Neurology 2010; 74: 201–9.

37 Schilling MF, Watkins AE, Watkins W. Is human height
bimodal? Am Stat 2002; 56: 223–9.

38 Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS,
Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical
model of dynamic biomarkers of the Alzheimer’s
pathological cascade. Lancet Neurol 2010; 9: 119–28.

39 Chauhan NB. Membrane dynamics, cholesterol homeostasis,
and Alzheimer’s disease. J Lipid Res 2003; 44: 2019–29.

40 Leduc V, Jasmin-Bélanger S, Poirier J. APOE and cholesterol
homeostasis in Alzheimer’s disease. Trends Mol Med 2010;
16: 469–77.

41 Shobab LA, Hsiung GY, Feldman HH. Cholesterol in
Alzheimer’s disease. Lancet Neurol 2005; 4: 841–52.

42 van de Pol LA, Hensel A, Barkhof F, Gertz HJ, Scheltens P,
van der Flier WM. Hippocampal atrophy in Alzheimer
disease: age matters. Neurology 2006; 66: 236–8.

43 European Medicines Agency. Qualification Opinion of
Alzheimer’s Disease Novel Methodologies/Biomarkers for
BMS-708163. London: EMA, 2011; Doc Reference number
EMA/CHMP/SAWP/102001/2011.

44 ClinicalTrial.gov. A multicenter, double blind,
placebo-controlled, safety and tolerability study of
BMS-708163 in patients with prodromal Alzheimer’s disease.
Available at: http://clinicaltrials.gov/ct2/show/NCT00890890
(last accessed 21 May 2012).

45 Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow K,
Hansson O. Cerebrospinal fluid levels of b-Amyloid 1-42, but
not of tau, are fully changed already 5 to 10 years before the
onset of Alzheimer dementia. Arch Gen Psychiatry 2012; 69:
98–106.

46 Snider BJ, Fagan AM, Roe C, Shah AR, Grant EA, Xiong C,
Morris JC, Holtzman DM. Cerebrospinal fluid biomarkers and
rate of cognitive decline in very mild dementia of the
Alzheimer type. Arch Neurol 2009; 66: 638–45.

47 Donohue MC, Gamst AC, Thomas RG, Xu R, Beckett L,
Petersen RC, Weiner MW, Aisen P, Alzheimer’s Disease

M. N. Samtani et al.

160 / 75:1 / Br J Clin Pharmacol



Neuroimaging Initiative. The relative efficiency of
time-to-threshold and rate of change in longitudinal data.
Contemp Clin Trials 2011; 32: 685–93.

48 Mattsson N, Andreasson U, Persson S, Arai H, Batish SD,
Bernardini S, Bocchio-Chiavetto L, Blankenstein MA,
Carrillo MC, Chalbot S, Coart E, Chiasserini D, Cutler N,
Dahlfors G, Duller S, Fagan AM, Forlenza O, Frisoni GB,
Galasko D, Galimberti D, Hampel H, Handberg A, Heneka MT,
Herskovits AZ, Herukka SK, Holtzman DM, Humpel C,
Hyman BT, Iqbal K, Jucker M, Kaeser SA, Kaiser E, Kapaki E,
Kidd D, Klivenyi P, Knudsen CS, Kummer MP, Lui J, Lladó A,
Lewczuk P, Li QX, Martins R, Masters C, McAuliffe J,
Mercken M, Moghekar A, Molinuevo JL, Montine TJ,
Nowatzke W, O’Brien R, Otto M, Paraskevas GP, Parnetti L,
Petersen RC, Prvulovic D, de Reus HP, Rissman RA, Scarpini E,
Stefani A, Soininen H, Schröder J, Shaw LM, Skinningsrud A,
Skrogstad B, Spreer A, Talib L, Teunissen C, Trojanowski JQ,
Tumani H, Umek RM, Van Broeck B, Vanderstichele H,
Vecsei L, Verbeek MM, Windisch M, Zhang J, Zetterberg H,
Blennow K. The Alzheimer’s Association external quality
control program for cerebrospinal fluid biomarkers.
Alzheimers Dement 2011; 7: 386–95.

49 Shaw LM, Vanderstichele H, Knapik-Czajka M, Figurski M,
Coart E, Blennow K, Soares H, Simon AJ, Lewczuk P, Dean RA,
Siemers E, Potter W, Lee VM, Trojanowski JQ, Alzheimer’s
Disease Neuroimaging Initiative. Qualification of the
analytical and clinical performance of CSF biomarker
analyses in ADNI. Acta Neuropathol 2011; 121: 597–609.

50 Vanderstichele H, Bibl M, Engelborghs S, Le Bastard N,
Lewczuk P, Molinuevo JL, Parnetti L, Perret-Liaudet A,
Shaw LM, Teunissen C, Wouters D, Blennow K.
Standardization of preanalytical aspects of cerebrospinal
fluid biomarker testing for Alzheimer’s disease diagnosis: a
consensus paper from the Alzheimer’s Biomarkers
Standardization Initiative. Alzheimers Dement 2012; 8:
65–73.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Figure S1
Derived shapes of the progression rate curve as a function
of the current ADAS-cog score. Three structural models

with different shape parameters were tested and the
results of the assessment are shown below
Figure S2
Goodness-of-fit plots for the final model. (A) observed vs.
population and individual predictions.The solid line repre-
sents the line of identity, (B) population weighted residuals
vs. time and population predictions and (C) individual
residuals vs. individual predictions, and distribution of
population weighted residuals. Ordinate value of zero is
presented in all the residual plots (solid line). Dashed line
represents the LOWESS smoother. On the bottom right
panel, the solid line represents the normal density and the
dashed line represents the kernel density of population
weighted residuals
Figure S3
Influence of ventricular volume on disease progression:
(A) non-progressers without pathologic CSF [log CSF
p-tau181P : Ab1–42 ratio � -1.86] and (B) progressers with
pathologic CSF [log CSF /p-tau181P : Ab1–42 ratio > -1.86].
Ventricular volumes were dichotomized to create roughly
equal groups (> Median and � Median) in the left and right
panels where median ventricular volumes were 42.9 ml
and 38.4 ml. Error bars represent standard error (SE) and
lines represent simple linear regression through the data
to allow visualization of the trends
Table S1
Elucidation of the motivation behind each stage of the
modelling procedure
Table S2
Mixture model parameters for ADAS-cog scores from ADNI
MCI subjects with CSF data
Table S3
Parameters of the mixture models fitted to the baseline
CSF biomarker data in the ADNI MCI subjects. The MCI
population was dichotomized based on the thresholds
and the %CC statistic is reported using the post-hoc esti-
mate of the sub-population assignment from the ADAS-
cog mixture model
Table S4
Contingency table between CSF status and progresser
status from the mixture model
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