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CONFIDENCE INTERVAL ESTIMATION FOR SENSITIVITY
TO THE EARLY DISEASED STAGE BASED ON EMPIRICAL
LIKELIHOOD

Tuochuan Dong and Lili Tian
Department of Biostatistics, University at Buffalo, Buffalo, New York, USA

Many disease processes can be divided into three stages: the non-diseased stage: the early
diseased stage, and the fully diseased stage. To assess the accuracy of diagnostic tests for
such diseases, various summary indexes have been proposed, such as volume under the
surface (VUS), partial volume under the surface (PVUS), and the sensitivity to the early
diseased stage given specificity and the sensitivity to the fully diseased stage (P,). This paper
focuses on confidence interval estimation for P, based on empirical likelihood. Simulation
studies are carried out to assess the performance of the new methods compared to the
existing parametric and nonparametric ones. A real dataset from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is analyzed.

Key words: Diagnostic tests; Empirical likelihood; The sensitivity to the early diseased stage.

1. INTRODUCTION

Disease process is usually divided into two stages, i.e., the nondiseased and the
diseased, and diagnostic tests are utilized to classify the subjects into different stages. The
probability that a nondiseased subject is correctly classified is defined as the specificity,
and the probability that a diseased subject is correctly identified is called sensitivity. When
the outcome of diagnostic test is continuous, both sensitivity and specificity are functions
of the cutoff value. As the cutoff value changes, sensitivity and specificity vary inversely
to each other. The receiver operating characteristic (ROC) curve, a plot of sensitivity vs.
(1-specificity) as the cutoff value runs through the whole range of all possible outcome
values, is a popular graphical assessment of the diagnostic accuracy for a diagnostic test.
For detailed review of statistical methods in ROC analysis, see Shapiro (1999), Zhou et al.
(2002), Pepe (2003), and Zou et al. (2010).

To assess the diagnostic accuracy of a binary-scale test, there exist many diagnostic
accuracy measures such as the area under the curve (AUC). The AUC indicates the overall
performance of a diagnostic test for all the cutoff values. However, in medical practice, a
cutoff value is often chosen by medical practitioners so that a fixed value of specificity is
achieved (typically 80%, 90%, or 95%). Hence, the sensitivity given the specificity serves as a
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meaningful diagnostic measure. Toward this end, several papers discussed the issues of
estimation of sensitivity given the specificity. For example, Green house and Mantel (1950)
presented the inference procedures for a diagnostic test with continuous range, either with or
without normal distribution assumptions; McNeil and Hanley (1984) estimated the pointwise
confidence interval for sensitivity at a fixed specificity in the bi-normal model; Linnet (1987)
took into account the sampling variation of the discrimination limits and proposed both
parametric and nonparametric methods to construct the confidence interval; Platt et al.
(2000) recommended a confidence interval by using Efron’s bias-corrected acceleration
(BCa) bootstrap; and Zhou and Qin (2005) introduced two nonparametric confidence inter-
vals. Most recently, Qin et al. (2011) presented empirical likelihood-based confidence inter-
vals for the sensitivity at a fixed level of specificity.

In practice, a disease process might involve three ordinal diagnostic stages: the
normal healthy stage without even the earliest subtle disease symptoms, the early stage of
the disease, and the stage of full-blown development of the disease. For example, mild
cognitive impairment (MCI) and/or early stage Alzheimer’s disease (AD) is a transitional
stage between the cognitive changes of normal aging and the more serious AD. Recently,
the traditional ROC analysis has already been extended to three-stage cases, see, e.g.,
Mossman (1999), Dreiseitl et al. (2000), Heckerling (2001), Nakas and Yiannoutsos
(2004), Xiong et al. (2006), He and Frey (2008), Li and Zhou (2009), Nakas et al.
(2010), Tian et al. (2010), He et al. (2010), Dong et al. (2011), and Li et al. (2012). For
diseases such as AD, early detection is critical since it often means optimal time window
for therapeutic treatment due to the fact that no pharmaceutical treatments to date are
effective for the late stage AD. However, it is far more challenging to diagnose subjects at
the earliest disease stage for clinicians because of the subtle clinical symptoms in the early
stage of many complex disease processes. Hence, the probability associated with the
detection of early diseased stage is critical in medical science and serves as a very
important diagnostic accuracy measure for diseases with three ordinal stages.

To be more specific, let Y1, Y>, and Y3 denote the test results for the nondiseased, the
early diseased, and the fully diseased group of a diagnostic test, respectively, F;, F,, and
F5 denote corresponding cumulative distribution functions, and n;, n,, and n; denote
sample sizes. Assume that the test results are measured on a continuous scale and that
higher values indicate greater severity of the disease. Given a pair of threshold values ¢,
and ¢, (c; < ¢), the subject is identified as nondiseased if the test result is smaller than ¢,
as fully diseased if the test result is larger than c,, and as early diseased if the test result is
between c¢; and c,. The specificity P;, which is the correct classification rate for the
nondiseased stage, the sensitivity to the early diseased stage P, and the sensitivity to the
fully diseased stage P are defined as

Py =Fi(c1)
P, =F(c) — Fy(c1) = B2 [Fy ' (1 = Py)] — B [FyH(Py)] (1)
P3 =1 7F3(C2).

Given P; and P;, ¢ and ¢, can be determined. Consequently, P, the sensitivity to the
early diseased stage given the specificity P; and the sensitivity to the fully diseased stage
P;, can be formulated as a function of P, and Ps, i.e., P, = P,(P;, P3) which also defines
a surface in the three-dimensional space (P; P; P,), namely, the ROC surface. The point
(Py,P5,P,) = (1,1,1) indicates the perfect discrimination ability.
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To evaluate the diagnostic accuracy of the biomarkers for three-class diseases,
various summary measures of the ROC surface have been proposed. Among them, the
volume under the ROC surface (VUS), considered as the extension of AUC in the three-
class disease paradigm, is a very popular one. The VUS denotes the probability that a
randomly chosen subject from the nondiseased group, that from early diseased group and
that from fully diseased group follow simple order, i.e., VUS = P(Y; < ¥, < Y3). More
details about VUS can be found in Nakas and Yiannoutsos (2004), Xiong et al. (2006), He
and Frey (2008), Wan (2012), and Kang and Tian (2013).

In addition to the overall performance of a biomarker measured by VUS, an
accurate estimate of P, helps clinicians to identify the best disease markers for early
diagnosis and therefore the inference procedures for P, are very useful. Dong et al.
(2011) first attempted to provide parametric and nonparametric confidence interval
estimation methods for P,. However, the most recommended methods depend on
either normality assumption or Box—Cox transformation to normality. It is well
known that not all of the non-normal distributions can be transformed to normal
via Box—Cox transformation. Therefore, some alternative approaches for estimating
the confidence interval of P, which do not depend on distributional assumption and
also provide good coverage probabilities are worth exploring.

The goal of this paper is to present empirical likelihood-based confidence intervals
for P, i.e., the sensitivity to the early diseased stage given specificity and the sensitivity
to the fully diseased stage. Empirical likelihood is introduced by Owen (1990, 2001) and
has many advantages over normal approximation-based methods. For instance, empirical
likelihood-based confidence regions are range preserving and transformation respecting,
the regularity conditions for empirical likelihood-based methods are weak and natural, and
it utilizes the power of likelihood-based approaches to solve complex statistical problems.
The empirical likelihood has been used widely in many applied areas including diagnostic
tests with binary outcomes, e.g., Claeskens et al. (2003) suggested a smoothed empirical
likelihood-based method (SEL) to estimate the sensitivity, and Qin et al. (2011) proposed
two empirical likelihood-based confidence intervals for the sensitivity at a fixed level of
specificity. The rest of this paper is organized as follows. Section 2 presents a review of
existing methods. In Section 3, the large sample properties of P, and the empirical
likelihood approaches are proposed. In Section 4, simulation studies are conducted to
evaluate the proposed methods. In Section 5, a real dataset from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database is analyzed. Section 6 is the discussion. The
proofs for the formula of the variance for an estimator of P, and the empirical likelihood
theorem are given in the Appendix.

2. EXISTING METHODS

This section presents a brief review of the existing methods including the general-
ized inference method and bootstrap approaches for confidence interval estimation of
sensitivity to the early diseased stage by Dong et al. (2011).

2.1. Generalized Inference Method

Assume Y; follows normal distributions with mean y; and variance al? fori=1,2,3,
the generalized pivotal quantity for P, as given in (1) can be written as
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Rp — @ {Rﬂ} — R, +07'(1 —P3)R,,3] @ {Rﬂl - Ry, + (DI(PI)R,,,]
, =

R{TZ R”2

where R, =¥, — Z;y /R,,_z/n,-, Z~N(0,1), and R, = ("i;_l)s‘?, where V,-~)(f“_] for

i=1,2,3. By generating V; and Z; repeatedly, an array of Rp,’s can be obtained. A
two-sided 100(1 — a)% generalized inference confidence interval for P,, GI, is
(Rp,(a/2),Rp,(1 — a/2)), where Rp,(a) denotes the 100ath percentile of Rp,.

When the normality assumptions are violated, the Box—Cox transformation is utilized
as P, is invariant under monotonic transformations. Assume the data after transformation do
follow the normality assumptions, then the GI method can be applied. Such confidence
interval is noted as BCGI hereafter.

2.2. Nonparametric Approaches
The P, as given in (1) can be nonparametrically estimated as

~ Z:’Z] I[ﬁ;l(Pl)ngF;I(lng)}

Py = o @

With a bootstrap sample }%"lzj(b =1-500), the 100(1 — a)% bootstrap percentile confi-
dence interval (BTP) can be obtained as

(Pia/2), Ph(1—0/2)

where j’g(a) is the 100a% percentile. An adjusted estimator of P, proposed by Agresti
and Coull (1998) is

2 2:21 [[Ffl(Pl)gngﬁ;'(lng] + Z%—a/z/z
Py = 5 (3)
m+Zi_g,

where z,_,, stands for 100(1 — /2)% percentile for standard normal distribution. The
100(1 — @)% BTI confidence interval is

(1:)2 —Z]_a/Z\/@bom<ﬁ2), 1:)2 +Z]_a/2“@bont(ﬁ2>>

where Var boot (132) is the bootstrap estimate for the variance of P, (more details can be

2 zb
found in Dong et al. (2011)). Replacing P, with the mean P, obtained from the bootstrap
sample, the 100(1 — a)% BTII confidence interval is given as

zb — 2 zb — 2
<P2 — Zy_g21/ Varteot (Pz), Py +z1_g24 | Varboo! (P2>>
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In Dong et al. (2011), through a simulation study, GI and BCGI were shown to
provide accurate confidence intervals, given the corresponding normality assumptions
were satisfied. Otherwise, BTII was recommended except in the scenarios with large P,
and small sample sizes where BTP was preferred.

3. TWO NEW APPROACHES

In this section, two new methods for confidence interval estimation of P, are
presented. Section 3.1 presents a method based on asymptotic normality and Section
3.2 presents two confidence intervals based on empirical likelihood.

3.1. Normal Approximation-Based Confidence Interval

For the diagnostic tests with binary diagnostic outcomes, Linnet (1987) provided the
parametric formula for the variance of estimated sensitivity given the specificity, based on
which normal approximation-based confidence interval was constructed. Further details
can also be found in Zhou and Qin (2005) and Qin et al. (2011). Following the same vein,
the variance of P, can be proven as (see Appendix A)

2 :Pz(l—Pz)+Pu(1—Pu).fzz[Ffl(Pl)]+P3(1—Ps).132[F71(1—P3)} @
n n REE) T RET R

where f}, f>, and f; are the probability density functions for Y;, Y>, and Y3, respectively. It
can be shown that when n;, n,, and n; are large, P, has an approximately normal

distribution with mean P, and variance a% . The a% can be estimated as
2 2

oy :1%2(1 _1%2) +P1(1 —Pl)..l}zz[ﬁfl(Pl)] +P3(1 —Ps).ff[]:ﬂ;l(l — P3)]

P n mo P mo R Py)

®)

where F;'(Py) is the Pith sample quantile of s, 5 ' (1 — P3) is the (1 — P3)th sample
quantile of Y3s, and f, is the kernel density estimate of f;, i = 1,2,3. We use the “over-
smoothed bandwidth selector” by Wand and Jones (1995) to select the bandwidth for the
Gaussian kernel function. The (1 —a)100% normal approximation-based confidence

interval
N /2: ~ /%\
P, Z1-a/2 OP27 P, Z1—a/2 0P2

is referred as asymptotic parametric variance confidence interval (APV) hereafter.

3.2. Empirical Likelihood Confidence Interval

Define an indicator function ¢ as
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1, X<y<z

I, X=Y<Z or X<Y=1Z
$X,Y,Z) =

t, X=v=1Z

0, otherwise

Given P; and P;, for a test result Y of a subject from the early diseased group, define a
random variable

U=g[F ' (P),Y,F;'(1—Py)]
It is evident that

=E{[F;'(P1),Y,Fy'(1—P3)]} = P[Fy ' (P1) <Y<F;'(1— P3)]
—P[F (P1)<Y§F3 '1-P3)] =P,

Based on this relationship between P, and U, we can develop an empirical like-
lihood procedure for making inference about P,. Let p = (p1,...,ps,) be a probability
vector for the early diseased group, and /2, p; = 1 and p; > 0 for all i. The empirical
likelihood for P, can be defined as

L(P,) —sup{f[pz sz—l Zp, Ui — P2) —0}

where U; = ¢[F{'(P1),Y;, Fy'(1 —P3)], i=1,2,...,n. Since Us depend on the
unknown distribution functions F; and F3, we replace them by their empirical distribu-
tions F| and F3, and obtain a profile empirical likelihood for P,

ny ny ny
= Sup{Hpi : Zpi = 172171(12 -P) = 0}
i=1 i=1 i=1

where U; = ¢[F1‘1(P1), Y, Fy (1 — P5)], i=1,2,...,n,. By the Lagrange multiplier
method, we can easily obtain the following expression for p;

pr = {1+ 30— P2)}

where 1 is the solution of

Ml Q>
Q> |

1
n—g =0 (6)

Pz)

Note that []?2, p;, subject to > 12, p; = 1, attains its maximum n," at p; = n; .

The profile empirical likelihood ratio for P, is defined as
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V(Pz) = ﬁ nzp, H {1 +j. U Pz)}_l

Hence the corresponding profile empirical log-likelihood ratio is

I(Py)= — 2log r(P5) _ZZlog{l—&-l(U Py} (7

i=1

where / is the solution of (6).

Since the profile empirical log-likelihood ratio /(P;) is a sum of dependent vari-
ables, its asymptotic distribution is no longer a standard chi-square distribution. In
Appendix B, it is proven that /(P,) follows a scaled y? distribution. The asymptotic
distribution of /(P,) is summarized in the following theorem.

Theorem: Assume that F;, F», and F3 are continuous distribution functions, and the density
functions f;, f,, and f; are positive and continuous at ¢; and ¢, If
0 < py =limy, g0 1 /12 < 00, 0 < p, = limy, ;00 13/M2<00, and P, is the true value of
the sensitivity to the early diseased stage given specificity and the sensitivity to the fully
diseased stage, the limiting distribution of /(P,), defined by (7), is a scaled chi-square
distribution with one degree of freedom. That is,

L
ey P Py L(P2) = 1

where the scale constant rp, p, p, is

TP, Py, P =

with 0'%] = P,(1 — P;) and 0’% as given in (4).
i 2

In order to construct conﬁdence interval for P, based on the above Theorem, we
need to estimate oU_ and o2 . The O'U can be estimated as P2 1 - P2 and a Gaussian
kernel was used to obtain’ a parametric estimation of O'P , as shown in (5). The
100(1 — a)% ELP confidence interval for P, is

Cl(P2) = { P2+ 13 gy, 1(P2) < 231 =)}

where 7, p p = M and y2(1 — a) is the (1 — @)th quantile of 2. The performance
’ ’ l’lz-o’%
Py
of this ELP method highly depends on the density estimates from the Gaussian kernel,
whose bandwidth is chosen without a well-recognized standard. Therefore, the following
bootstrap approach is proposed to estimate o2 instead:

For b = 1 to B = 500 bootstrap iterations,

Step 1: Draw resamples of sizes 1, n,, and n3 with replacement from the nondiseased sample Yj;’s,
the early diseased sample Y5;’s, and the fully diseased sample Y3;’s, respectively. Denote the
bootstrap samples as § Y71, i=1,2,3,/=1,2,.
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Step 2: Calculate the bootstrap version of 13'27 according to (2).

Step 3: The proposed bootstrap variance estimator for 132 is defined as
— 1 B 2 zb 2
b b o
% BT (P 2= P 2)

where 1%2 is defined in (2).

This leads to the second 100(1 — )% empirical likelihood confidence interval
(ELB) for P,

Cl(P2) = {P2 i rjy oy, - 1(P2) < 231 = )}

where 75 p p = PZ(I:;Z) and y3(1 — a) is the (1 — a)th quantile of y3.
np-0=
Py

4. SIMULATION STUDIES

Simulation studies are carried out to compare the performance of the proposed
empirical likelihood confidence intervals ELP and ELB, as well as the asymptotic
confidence interval APV, with the existing ones, i.e., GI, BCGI, BTP, and BTII
proposed in Dong et al. (2011). As BTI is always inferior than BTIIL, it is not included
in the tables.

We evaluate these approaches under the normal and beta-distribution scenarios
proposed in Dong et al. (2011), to check whether the new approaches can give compar-
able performance as the recommended GI/BCGI parametric approach where the normal-
ity assumptions are satisfied with or without Box—Cox transformation. In addition, we
also investigated the combined scenario where the normality assumptions cannot be met,
that is, gamma for the nondiseased, log-normal for the early diseased, and Weibull for the
fully diseased group. The density functions for the combined distribution scenario are
plotted in Fig. 1. Sample sizes (1, n,, n3) are set as (10, 10, 10), (30, 30, 30), (50, 30, 30),
(50, 50, 50), (100,100,100), (100, 50, 50), and (100,100, 50). With a fixed 80% specificity
and a fixed 80% sensitivity to the fully diseased stage, the parameters for the distributions
are chosen correspondingly so that P, equals to 50% or 90%. Under each setting, 5000
random samples are generated. The simulation results are presented in Tables 1-3.

Table 1 presents simulation results under the normal distributions. The performance
of the newly proposed empirical likelihood confidence interval ELB is satisfactory in
terms of coverage probability although the ELB tends to be slightly conservative for the
small sample sizes. ELP performs well for P, = 0.5 except at the sample size (10, 10,
10), but becomes conservative when P, = 0.9. BTII gives good estimates at P, = 0.5,
but when P, increases to 0.9, BTII obtains a 0.8956 coverage probability at the sample
size (10, 10, 10), which is much lower than the 95% nominal level. In addition, as the
sample size increases, BTII grows conservative. The BTP interval is generally conserva-
tive. The normal approximation-based confidence interval APV is slightly conservative at
small sample sizes. The generalized inference method GI performs the best in the
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Scenario 1, P2=0.5 Scenario 2, P2=0.9
w w
A — G (6,12) A — G (6, 12)
N — LrﬁTwmsa 0.5) N —_ Ll\?rw:o.s)
—— Weibull (4, 6.6) —— Weibull (4, 12.5)
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0 | ©
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Figure 1 Density functions for the nondiseased, early diseased and fully diseased group for the two simulation
scenarios in Table 3.

closeness of coverage probability to the nominal level and the length of the confidence
interval.

Table 2 presents simulation results for the beta distribution. The coverage prob-
ability of ELB remains conservative for the small sample sizes at P, = 0.5; however,
when P, = 0.9, for the small sample size (10, 10, 10), ELB attains coverage probability
which is very close to the nominal level, and is even better than the BCGI approach. The
other empirical likelihood method ELP yields satisfactory coverage probabilities when
P, = 0.5 except at the sample size (10, 10, 10), while it is conservative for medium
sample sizes when P, = 0.9. The nonparametric method BTII is satisfactory at P, = 0.5,
while at P, = 0.9, it changes from being liberal to being conservative as sample sizes
increase. The large sample method APV is generally liberal when sample sizes are small.
The generalized inference approach with Box—Cox transformation is usually satisfactory,
but it can be worse than ELB for a few scenarios, such as (100, 100, 50) at P, = 0.5 or
(10, 10, 10) at P, = 0.9.

In Table 3, the simulation results for the combined distribution are presented. For
such cases, the Box—Cox transformation fails to transform the data to the normal dis-
tributions. Therefore, as expected, the performance of BCGI is unsatisfactory. Generally
speaking, the ELB method is close to the 95% nominal level except being slightly
conservative at the sample size (10, 10, 10). The ELP method provides reasonable
coverage at P, = 0.5 except for the sample size (10, 10, 10); however, it becomes
conservative for P, = 0.9. BTII maintains the nominal level for most cases except for
the sample size (10, 10, 10), where the coverage probability can be as low as 0.7848. In
addition, for scenarios such as (100, 50, 50) and (100, 100, 50), BTII becomes more
conservative than ELB. The BTP method is generally conservative except at the sample
size (10, 10, 10) when P, = 0.9. The asymptotic approach APV remains liberal for most
of the cases; however, as the sample size increases to (100, 100, 100), the coverage
probability is very close to the 95% nominal level.

In summary, the GI method or the BCGI method works well for normal and beta
distributions, but becomes unusable for the combined distributions case, where the Box—
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Cox transformation fails to work. The performance of APV is very unstable as it is
slightly conservative for the normal case and is generally liberal for the non-normal ones.
The BTII, for large P,’s, is conservative under large unbalanced sample sizes and gives
very liberal estimates under small sample sizes. The BTP produces conservative con-
fidence intervals for most of the cases. The ELP performs well for scenarios with smaller
P», but it turns out to be conservative for the cases with higher P,. Finally, the proposed
ELB method gives stable confidence interval estimation with coverage probability close
to the nominal level for almost all cases, except that it can be slightly conservative under
small sample sizes. Therefore, overall speaking, the ELB method is highly recommended,
especially for the cases when normality assumptions are violated and Box—Cox transfor-
mation fails to work.

5. EXAMPLE

AD is the most common form of dementia, and it is one of the most expensive
diseases for society in Europe and the United States. According to Wimo et al. (2013), the
total estimated worldwide cost of dementia was US$604 billion in 2010. About 70% of
the costs occurred in western Europe and North America. The Alzheimer’s Discase
Neuroimaging Initiative (ADNI) is a research project that is designed to validate the use
of biomarkers including blood tests, tests of cerebrospinal fluid, and MRI/PET imaging
for AD clinical trials and diagnosis. It aims to define the rate of progress of MCI and AD,
to develop improved methods for clinical trials, and to provide a large database which will
improve design of clinical treatment trials.

In the ADNI database, there are many biomarkers to measure the disease
progress of AD. Here we use a small subset which includes ratio of levels of protein
Tau and protein 45,, (TAU/ABETA), Fluoro Deoxy Glucose (FDG), and Alzheimer’s
Disease Assessment Scale (ADASI11) at the 24th month visit. The clinical dementia
rating (CDR) denotes the severity of dementia and a global CDR is derived from
individual ratings in multiple domains by an experienced clinician. CDR 0 indicates
no dementia and CDR 0.5, 1, 2, and 3 represent very mild, mild, moderate, and severe
dementia, respectively. Since patients with large CDR such as 2 or 3 are rarely
available, patients with CDR greater than or equal to 1 are referred as the fully
diseased group. CDR 0 and 0.5 refer to the nondiseased group and the early diseased
group, respectively. This subset contains 194, 290, and 183 subjects for the nondi-
seased, the early diseased, and the fully diseased group, respectively. Due to missing
values, the actual sample sizes for each variable may vary, as reported in Table 4.
Figure 2 presents the estimated kernel densities of the three disease groups for TAU/
ABETA, FDG, and ADASI11, respectively. By utilizing the Shapiro—Wilk’s normality
test, TAU/ABETA is found to satisfy the normality assumptions after the Box—Cox
transformation; for FDG, the original data meet the normality assumptions, and for
ADASI11, the data either with or without the Box—Cox transformation cannot achieve
the normality assumptions for all three groups simultaneously. Since the parametric
assumptions are not met, GI/BCGI cannot be rationally applied. Therefore, only the
other methods are used to analyze this variable. Table 5 presents the estimated
confidence intervals of P, for each variable. Under the recommended ELB approach,
ADASII achieves (0.4660, 0.6657) as its 95% confidence interval for P,, suggesting
it gives a mediocre performance to diagnose the early stage AD patients.
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Table 4 Summary statistcs for ADNI data

CDR 0

CDR 0.5 CDR 1

Biomarker N Mean Std N

Mean Std N Mean Std Vus

TAU/ABETA 24 0.37 0.21 48
FDG 82 6.37 0.56 130
ADASI1 193 5.44 2.83 288

0.72 0.48 26 0.89 0.48 0.3890
5.86 0.68 70 4.95 0.74 0.5560
12.26 5.84 180 26.23 11.70 0.7575

Kernel densities for TAU/ABETA

7 —— Non-diseased
—— Early diseased
™ - —— Fully diseased
2
2 o
[
a
o -
T T T T T T T T
-0.5 05 1.0 15 20 25 3.0
TAU/ABETA
Kernel densities for ADAS11
o
(\! —
S} —— Non-diseased
© —— Early diseased
~ —— Fully diseased
o
2
2 5
c Y.
[0} o
a
e}
o
IS
o
O_ —
o T T T T T T

ADAS11

Kernel densities for FDG

@ ]
© | — Non-diseased
—— Early diseased
© )
o — Fully diseased
=
s
$ o
[m)
N
o
o |
o

Figure 2 Estimated kernel densities for TAU/ABETA, FDG, and ADAS11 in the ADNI data.

6. SUMMARY AND DISCUSSION

For disease processes with three ordinal stages, the sensitivity to the early diseased

stage given specificity and sensitivity to th
important diagnostic accuracy index, especi

e fully diseased stage, P,, is considered as an
ally for early disease detection. The higher P,,

is, the better will be the diagnostic ability of the diagnostic test or biomarker for
identifying the early diseased stage. Therefore, an accurate estimation of the confidence

interval for P, will facilitate investigators

to identify the good biomarkers. This article
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Table 5 Estimated confidence intervals for the probability of detecting early diseased individuals using TAU/
ABETA, FDG and ADASI11 of the ADNI data (sensitivity to fully diseased stage and specificity are assumed to
equal to 0.8)

Confidence Intervals for the test covariates

BTII BTP ELB GI BCGI
Biomarkers PyP Ib ub b ub b ub b ub b ub
TAU/ABETA 0.1335 0.0052 0.2614 0.0371 0.2685 0.0073 0.3712 — — 0.0000 0.2104
FDG 0.2011 0.0875 0.3388 0.1001 0.3620 0.0724 0.3716 0.0349 0.3152 — —
ADASI1 0.5754 0.4806 0.6927 0.4829 0.6834 0.4660 0.6657 — — — —

TAU/ABETA: Ratio of the CSF parameters: protein Tau and protein Af,,.
FDG: Fluoro Deoxy Glucose.

ADASI1: Alzheimer’s Disease Assessment Scale.

BTIIL: Confidence interval is computed by the BTII approach.

BTII: Confidence interval is computed by the BTII approach.

ELB: Confidence interval is computed by the ELB approach.

ELP: Confidence interval is computed by the ELP approach.

APV: Confidence interval is computed by the APV approach.

P)P: The nonparametric estimation of P, in Equation (3).

proposes the ELB approach and compares it with the existing confidence intervals.
Simulation studies show that ELB is not only more robust than parametric methods
which heavily rely on the normality assumptions, but also generally gives more accurate
confidence intervals than nonparametric methods, especially for unbalanced datasets.
Therefore, the ELB method is highly recommended in practice.

For future work, following the same vein of Dong et al. (2014), we would like to
develop the semiparametric inference procedure for the difference of two correlated P,’s,
based on the empirical likelihood technique.

APPENDIX A: PROOF OF VARIANCE OF P, IN (4)

The asymptotic variance of }i)z is shown in (4). The following is the proof.
Proof:

2, = Be o {Var, [B2(er < ¥ < @)} + Vare o {Ep, [Paer < ¥ < &)}

P
g {P2(3’1 <Y <&l —P(e1 <Y < &)
¢1,02
n

} + Val"ghg2 [PZ(&l S Y S 6’2)]

. P N P . .
As ¢; — ¢; and ¢, — ¢, and we assume P, is continuous, SO

E. . Pz(a‘l Y&’z)[l — PZ(&I Y&z)] L P2(01 YCz)[l — Pz(cl YCz)]
e ) ny
Py(1 —Py)
ny
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Furthermore, since ¢; ¢, we have

Vare, &, [P2(¢1 <Y < &) = Vare ,[F2(¢2) — F2(1)]
= Vary,|F2(¢2)] + Vare, [F2(é1)]
= (&) - Var(es) +£5(@1) - Var(er)
P3(1 — P3) P1(1 Py)

= G RO ey
Pl(l Py)

LP3(1 P3)
n3 fz(Cz) : n1f1( 1)

o>

f(@)

(c2) + 13 (e1)

Hence

, Pl —Pz)+P1(l —P) FF(P)] +P3(1 —P;) F[F'(1-Py)]
T o RETE)] T m RRT1-P)

APPENDIX B: PROOF OF THEOREM IN SECTION 3

Proof:
By similar arguments used in Owen (1990), we can easily show that |i] =
%) and maxlggnz‘Uj - P2’ = O(1) a.s. Then we have

Op(ny 2

I(Py) = 2ilog{l +i(U;, - P,)}
_22{ (U — P,) —f/lz(U Pz)}+rn2

where || < ¢33 [2(0; = P2) < el = 0y (5.

From (6),
m (U, - P
1= anzl(Al 2)2 +0, (ngl/z)’
Z/:l ([J/ - P2)
ny 2
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Therefore,

RS Pz>]+0p()
Z/l(UJ P2)
NS .
1 nz (U Pz) P

where ¢ is defined in (6) and P; is a three-sample statistic and

Z¢ yja 3 (1 _P3)]

From the previous proof and the central limit theorem we know that [\/— (132

1231

P)] s

asymptotically normal with the variance n; - ap From the law of large numbers, we have

1 ny

;722 (U — P)* 5 Var(U))

It is easy to check

n 1 ny

=Y (U-P)' | S0

1
2 n2 Jj=1

/:1

Therefore, by the Slutsky Theorem,

£ 2
reypypy - 1(P2) — 1
where the scale constant rp, p, p, is

2
. %

P\, Py, Py =
1, 42,173 nz.o_%
2
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