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CONFIDENCE INTERVAL ESTIMATION FOR SENSITIVITY
TO THE EARLY DISEASED STAGE BASED ON EMPIRICAL
LIKELIHOOD

Tuochuan Dong and Lili Tian
Department of Biostatistics, University at Buffalo, Buffalo, New York, USA

Many disease processes can be divided into three stages: the non-diseased stage: the early
diseased stage, and the fully diseased stage. To assess the accuracy of diagnostic tests for
such diseases, various summary indexes have been proposed, such as volume under the
surface (VUS), partial volume under the surface (PVUS), and the sensitivity to the early
diseased stage given specificity and the sensitivity to the fully diseased stage (P2). This paper
focuses on confidence interval estimation for P2 based on empirical likelihood. Simulation
studies are carried out to assess the performance of the new methods compared to the
existing parametric and nonparametric ones. A real dataset from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is analyzed.

Key words: Diagnostic tests; Empirical likelihood; The sensitivity to the early diseased stage.

1. INTRODUCTION

Disease process is usually divided into two stages, i.e., the nondiseased and the
diseased, and diagnostic tests are utilized to classify the subjects into different stages. The
probability that a nondiseased subject is correctly classified is defined as the specificity,
and the probability that a diseased subject is correctly identified is called sensitivity. When
the outcome of diagnostic test is continuous, both sensitivity and specificity are functions
of the cutoff value. As the cutoff value changes, sensitivity and specificity vary inversely
to each other. The receiver operating characteristic (ROC) curve, a plot of sensitivity vs.
(1-specificity) as the cutoff value runs through the whole range of all possible outcome
values, is a popular graphical assessment of the diagnostic accuracy for a diagnostic test.
For detailed review of statistical methods in ROC analysis, see Shapiro (1999), Zhou et al.
(2002), Pepe (2003), and Zou et al. (2010).

To assess the diagnostic accuracy of a binary-scale test, there exist many diagnostic
accuracy measures such as the area under the curve (AUC). The AUC indicates the overall
performance of a diagnostic test for all the cutoff values. However, in medical practice, a
cutoff value is often chosen by medical practitioners so that a fixed value of specificity is
achieved (typically 80%, 90%, or 95%). Hence, the sensitivity given the specificity serves as a
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meaningful diagnostic measure. Toward this end, several papers discussed the issues of
estimation of sensitivity given the specificity. For example, Green house and Mantel (1950)
presented the inference procedures for a diagnostic test with continuous range, either with or
without normal distribution assumptions; McNeil and Hanley (1984) estimated the pointwise
confidence interval for sensitivity at a fixed specificity in the bi-normal model; Linnet (1987)
took into account the sampling variation of the discrimination limits and proposed both
parametric and nonparametric methods to construct the confidence interval; Platt et al.
(2000) recommended a confidence interval by using Efron’s bias-corrected acceleration
(BCa) bootstrap; and Zhou and Qin (2005) introduced two nonparametric confidence inter-
vals. Most recently, Qin et al. (2011) presented empirical likelihood-based confidence inter-
vals for the sensitivity at a fixed level of specificity.

In practice, a disease process might involve three ordinal diagnostic stages: the
normal healthy stage without even the earliest subtle disease symptoms, the early stage of
the disease, and the stage of full-blown development of the disease. For example, mild
cognitive impairment (MCI) and/or early stage Alzheimer’s disease (AD) is a transitional
stage between the cognitive changes of normal aging and the more serious AD. Recently,
the traditional ROC analysis has already been extended to three-stage cases, see, e.g.,
Mossman (1999), Dreiseitl et al. (2000), Heckerling (2001), Nakas and Yiannoutsos
(2004), Xiong et al. (2006), He and Frey (2008), Li and Zhou (2009), Nakas et al.
(2010), Tian et al. (2010), He et al. (2010), Dong et al. (2011), and Li et al. (2012). For
diseases such as AD, early detection is critical since it often means optimal time window
for therapeutic treatment due to the fact that no pharmaceutical treatments to date are
effective for the late stage AD. However, it is far more challenging to diagnose subjects at
the earliest disease stage for clinicians because of the subtle clinical symptoms in the early
stage of many complex disease processes. Hence, the probability associated with the
detection of early diseased stage is critical in medical science and serves as a very
important diagnostic accuracy measure for diseases with three ordinal stages.

To be more specific, let Y1, Y2, and Y3 denote the test results for the nondiseased, the
early diseased, and the fully diseased group of a diagnostic test, respectively, F1, F2, and
F3 denote corresponding cumulative distribution functions, and n1, n2, and n3 denote
sample sizes. Assume that the test results are measured on a continuous scale and that
higher values indicate greater severity of the disease. Given a pair of threshold values c1
and c2 (c1 < c2), the subject is identified as nondiseased if the test result is smaller than c1,
as fully diseased if the test result is larger than c2, and as early diseased if the test result is
between c1 and c2. The specificity P1, which is the correct classification rate for the
nondiseased stage, the sensitivity to the early diseased stage P2, and the sensitivity to the
fully diseased stage P3 are defined as

P1 ¼ F1 c1ð Þ
P2 ¼ F2 c2ð Þ � F2 c1ð Þ ¼ F2 F�1

3 1� P3ð Þ� �� F2 F�1
1 P1ð Þ� �

P3 ¼ 1� F3 c2ð Þ:
(1)

Given P1 and P3, c1 and c2 can be determined. Consequently, P2, the sensitivity to the
early diseased stage given the specificity P1 and the sensitivity to the fully diseased stage
P3, can be formulated as a function of P1 and P3, i.e., P2 ¼ P2 P1;P3ð Þ which also defines
a surface in the three-dimensional space (P1,P3,P2), namely, the ROC surface. The point
P1;P3;P2ð Þ ¼ 1; 1; 1ð Þ indicates the perfect discrimination ability.
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To evaluate the diagnostic accuracy of the biomarkers for three-class diseases,
various summary measures of the ROC surface have been proposed. Among them, the
volume under the ROC surface (VUS), considered as the extension of AUC in the three-
class disease paradigm, is a very popular one. The VUS denotes the probability that a
randomly chosen subject from the nondiseased group, that from early diseased group and
that from fully diseased group follow simple order, i.e., VUS ¼ P Y1 < Y2 < Y3ð Þ. More
details about VUS can be found in Nakas and Yiannoutsos (2004), Xiong et al. (2006), He
and Frey (2008), Wan (2012), and Kang and Tian (2013).

In addition to the overall performance of a biomarker measured by VUS, an
accurate estimate of P2 helps clinicians to identify the best disease markers for early
diagnosis and therefore the inference procedures for P2 are very useful. Dong et al.
(2011) first attempted to provide parametric and nonparametric confidence interval
estimation methods for P2. However, the most recommended methods depend on
either normality assumption or Box–Cox transformation to normality. It is well
known that not all of the non-normal distributions can be transformed to normal
via Box–Cox transformation. Therefore, some alternative approaches for estimating
the confidence interval of P2 which do not depend on distributional assumption and
also provide good coverage probabilities are worth exploring.

The goal of this paper is to present empirical likelihood-based confidence intervals
for P2, i.e., the sensitivity to the early diseased stage given specificity and the sensitivity
to the fully diseased stage. Empirical likelihood is introduced by Owen (1990, 2001) and
has many advantages over normal approximation-based methods. For instance, empirical
likelihood-based confidence regions are range preserving and transformation respecting,
the regularity conditions for empirical likelihood-based methods are weak and natural, and
it utilizes the power of likelihood-based approaches to solve complex statistical problems.
The empirical likelihood has been used widely in many applied areas including diagnostic
tests with binary outcomes, e.g., Claeskens et al. (2003) suggested a smoothed empirical
likelihood-based method (SEL) to estimate the sensitivity, and Qin et al. (2011) proposed
two empirical likelihood-based confidence intervals for the sensitivity at a fixed level of
specificity. The rest of this paper is organized as follows. Section 2 presents a review of
existing methods. In Section 3, the large sample properties of P2 and the empirical
likelihood approaches are proposed. In Section 4, simulation studies are conducted to
evaluate the proposed methods. In Section 5, a real dataset from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database is analyzed. Section 6 is the discussion. The
proofs for the formula of the variance for an estimator of P2 and the empirical likelihood
theorem are given in the Appendix.

2. EXISTING METHODS

This section presents a brief review of the existing methods including the general-
ized inference method and bootstrap approaches for confidence interval estimation of
sensitivity to the early diseased stage by Dong et al. (2011).

2.1. Generalized Inference Method

Assume Yi follows normal distributions with mean μi and variance σ2i for i ¼ 1; 2; 3,
the generalized pivotal quantity for P2 as given in (1) can be written as

CONFIDENCE INTERVAL ESTIMATION FOR SENSITIVITY 1217

D
ow

nl
oa

de
d 

by
 [

"U
ni

ve
rs

ity
 a

t B
uf

fa
lo

 L
ib

ra
ri

es
"]

 a
t 1

7:
52

 0
7 

Ja
nu

ar
y 

20
16

 



RP2 ¼ Φ
Rμ3 � Rμ2 þ Φ�1 1� P3ð ÞRσ3

Rσ2

� �
� Φ

Rμ1 � Rμ2 þ Φ�1 P1ð ÞRσ1

Rσ2

� �

where Rμi ¼ �yi � Zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rσ2i

.
ni

r
, Zi,N 0; 1ð Þ, and Rσi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni�1ð Þs2i
Vi

q
, where Vi,χ2ni�1 for

i ¼ 1; 2; 3. By generating Vi and Zi repeatedly, an array of RP2 ’s can be obtained. A
two-sided 100 1� αð Þ% generalized inference confidence interval for P2, GI, is
RP2 α=2ð Þ;RP2 1� α=2ð Þð Þ, where RP2 αð Þ denotes the 100αth percentile of RP2 .

When the normality assumptions are violated, the Box–Cox transformation is utilized
as P2 is invariant under monotonic transformations. Assume the data after transformation do
follow the normality assumptions, then the GI method can be applied. Such confidence
interval is noted as BCGI hereafter.

2.2. Nonparametric Approaches

The P2 as given in (1) can be nonparametrically estimated as

�̂P2 ¼
Pn2

i¼1 I F̂�1
1 P1ð Þ�Yi�F̂�1

3 1�P3ð Þ½ �
n2

(2)

With a bootstrap sample �̂Pb
2 b ¼ 1� 500ð Þ, the 100 1� αð Þ% bootstrap percentile confi-

dence interval (BTP) can be obtained as

�̂P
b
2 α=2ð Þ; �̂Pb

2 1� α=2ð Þ
� �

where �̂Pb
2 αð Þ is the 100α% percentile. An adjusted estimator of P2 proposed by Agresti

and Coull (1998) is

~̂P2 ¼
Pn2

i¼1 I F̂�1
1 P1ð Þ�Yi�F̂�1

3 1�P3ð Þ½ � þ z21�α=2=2

n2 þ z21�α=2

(3)

where z1�α=2 stands for 100 1� α=2ð Þ% percentile for standard normal distribution. The
100 1� αð Þ% BTI confidence interval is

~̂P2 � z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar boot ~̂P2

� �
;

r
~̂P2 þ z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar boot ~̂P2

� �r	 

where dVar boot ~̂P2

� �
is the bootstrap estimate for the variance of ~̂P2 (more details can be

found in Dong et al. (2011)). Replacing ~̂P2 with the mean
�̂~P
b

2 obtained from the bootstrap
sample, the 100 1� αð Þ% BTII confidence interval is given as

�̂~P
b

2 � z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar boot ~̂P2

� �r
;

�̂~P
b

2 þ z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar boot ~̂P2

� �r	 
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In Dong et al. (2011), through a simulation study, GI and BCGI were shown to
provide accurate confidence intervals, given the corresponding normality assumptions
were satisfied. Otherwise, BTII was recommended except in the scenarios with large P2

and small sample sizes where BTP was preferred.

3. TWO NEW APPROACHES

In this section, two new methods for confidence interval estimation of P2 are
presented. Section 3.1 presents a method based on asymptotic normality and Section
3.2 presents two confidence intervals based on empirical likelihood.

3.1. Normal Approximation-Based Confidence Interval

For the diagnostic tests with binary diagnostic outcomes, Linnet (1987) provided the
parametric formula for the variance of estimated sensitivity given the specificity, based on
which normal approximation-based confidence interval was constructed. Further details
can also be found in Zhou and Qin (2005) and Qin et al. (2011). Following the same vein,
the variance of �̂P2 can be proven as (see Appendix A)

σ2�̂P2
¼ P2 1� P2ð Þ

n2
þ P1 1� P1ð Þ

n1
� f

2
2 F�1

1 P1ð Þ� �
f 21 F�1

1 P1ð Þ� �þ P3 1� P3ð Þ
n3

� f
2
2 F�1

3 1� P3ð Þ� �
f 23 F�1

3 1� P3ð Þ� � (4)

where f1, f2, and f3 are the probability density functions for Y1, Y2, and Y3, respectively. It
can be shown that when n1, n2, and n3 are large, �̂P2 has an approximately normal
distribution with mean P2 and variance σ2

�̂P2
. The σ2

�̂P2
can be estimated as

cσ2
�̂P2

¼
�̂P2 1� �̂P2

� �
n2

þ P1 1� P1ð Þ
n1

� f̂
2
2 F̂�1

1 P1ð Þ� �
f̂ 21 F̂�1

1 P1ð Þ� �þ P3 1� P3ð Þ
n3

� f̂
2
2 F̂�1

3 1� P3ð Þ� �
f̂ 23 F̂�1

3 1� P3ð Þ� � (5)

where F̂�1
1 P1ð Þ is the P1th sample quantile of Y1s, F̂�1

3 1� P3ð Þ is the 1� P3ð Þth sample
quantile of Y3s, and f̂i is the kernel density estimate of fi, i ¼ 1; 2; 3. We use the “over-
smoothed bandwidth selector” by Wand and Jones (1995) to select the bandwidth for the
Gaussian kernel function. The 1� αð Þ100% normal approximation-based confidence
interval

�̂P2 � z1�α=2

ffiffiffiffiffiffifficσ2
�̂P2

r
; �̂P2 þ z1�α=2

ffiffiffiffiffiffifficσ2
�̂P2

r	 


is referred as asymptotic parametric variance confidence interval (APV) hereafter.

3.2. Empirical Likelihood Confidence Interval

Define an indicator function ϕ as
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ϕ X ; Y ; Zð Þ ¼

1; X<Y<Z

1
2 ; X ¼ Y<Z or X<Y ¼ Z

1
6 ; X ¼ Y ¼ Z

0; otherwise

:

8>>>>>><>>>>>>:
Given P1 and P3, for a test result Y of a subject from the early diseased group, define a
random variable

U ¼ ϕ F�1
1 P1ð Þ; Y ;F�1

3 1� P3ð Þ� �
It is evident that

E Uð Þ ¼ E ϕ F�1
1 P1ð Þ; Y ;F�1

3 1� P3ð Þ� �� � ¼ P F�1
1 P1ð Þ <Y<F�1

3 1� P3ð Þ� �
¼ P F�1

1 P1ð Þ <Y � F�1
3 1� P3ð Þ� � ¼ P2

Based on this relationship between P2 and U, we can develop an empirical like-
lihood procedure for making inference about P2. Let p ¼ p1; . . . ; pn2ð Þ be a probability
vector for the early diseased group, and

Pn2
i¼1 pi ¼ 1 and pi � 0 for all i. The empirical

likelihood for P2 can be defined as

~L P2ð Þ ¼ sup
Yn2
i¼1

pi :
Xn2
i¼1

pi ¼ 1;
Xn2
i¼1

pi Ui � P2ð Þ ¼ 0

( )

where Ui ¼ ϕ F�1
1 P1ð Þ; Yi;F�1

3 1� P3ð Þ� �
, i ¼ 1; 2; . . . ; n2. Since Ui’s depend on the

unknown distribution functions F1 and F3, we replace them by their empirical distribu-
tions F̂1 and F̂3, and obtain a profile empirical likelihood for P2

L P2ð Þ ¼ sup
Yn2
i¼1

pi :
Xn2
i¼1

pi ¼ 1;
Xn2
i¼1

pi Ûi � P2


 � ¼ 0

( )

where Ûi ¼ ϕ F̂�1
1 P1ð Þ; Yi; F̂�1

3 1� P3ð Þ� �
, i ¼ 1; 2; . . . ; n2. By the Lagrange multiplier

method, we can easily obtain the following expression for pi

~pi ¼ 1

n2
1þ ~λ Ûi � P2


 �� ��1

where ~λ is the solution of

1

n2

Xn2
i¼1

Ûi � P2

1þ ~λ Ûi � P2


 � ¼ 0 (6)

Note that
Qn2

i¼1 pi, subject to
Pn2

i¼1 pi ¼ 1, attains its maximum n�n2
2 at pi ¼ n�1

2 .
The profile empirical likelihood ratio for P2 is defined as

1220 DONG AND TIAN

D
ow

nl
oa

de
d 

by
 [

"U
ni

ve
rs

ity
 a

t B
uf

fa
lo

 L
ib

ra
ri

es
"]

 a
t 1

7:
52

 0
7 

Ja
nu

ar
y 

20
16

 



r P2ð Þ ¼
Yn2
i¼1

n2~pið Þ ¼
Yn2
i¼1

1þ ~λ Ûi � P2


 �� ��1

Hence the corresponding profile empirical log-likelihood ratio is

l P2ð Þ;� 2 log r P2ð Þ ¼ 2
Xn2
i¼1

log 1þ ~λ Ûi � P2


 �� �
(7)

where ~λ is the solution of (6).
Since the profile empirical log-likelihood ratio l P2ð Þ is a sum of dependent vari-

ables, its asymptotic distribution is no longer a standard chi-square distribution. In
Appendix B, it is proven that l P2ð Þ follows a scaled χ2 distribution. The asymptotic
distribution of l P2ð Þ is summarized in the following theorem.

Theorem: Assume that F1, F2, and F3 are continuous distribution functions, and the density
functions f1, f2, and f3 are positive and continuous at c1 and c2. If
0 < ρ1 ¼ limn1;n2!1 n1=n2 < 1, 0 < ρ2 ¼ limn2 ;n3!1 n3=n2<1, and P2 is the true value of
the sensitivity to the early diseased stage given specificity and the sensitivity to the fully
diseased stage, the limiting distribution of l P2ð Þ, defined by (7), is a scaled chi-square
distribution with one degree of freedom. That is,

rP1; P2; P3 � l P2ð Þ �!L χ21

where the scale constant rP1 ; P2; P3 is

rP1; P2; P3 ¼
σ2
Ûi

n2 � σ2�̂P2

with σ2
Ûi

¼ P2 1� P2ð Þ and σ2
�̂P2

as given in (4).

In order to construct confidence interval for P2 based on the above Theorem, we
need to estimate σ2

Ûi
and σ2

�̂P2
. The σ2

Ûi
can be estimated as �̂P2 1� �̂P2

� �
and a Gaussian

kernel was used to obtain a parametric estimation of σ2
�̂P2
, as shown in (5). The

100 1� αð Þ% ELP confidence interval for P2 is

CIα P2ð Þ ¼ P2 : r
�
P1;P2;P3

� l P2ð Þ � χ21 1� αð Þ
n o

where r�P1; P2; P3
¼ �̂P2 1��̂P2ð Þ

n2�cσ2�̂P2 and χ21 1� αð Þ is the 1� αð Þth quantile of χ21. The performance

of this ELP method highly depends on the density estimates from the Gaussian kernel,
whose bandwidth is chosen without a well-recognized standard. Therefore, the following
bootstrap approach is proposed to estimate σ2

�̂P2
instead:

For b ¼ 1 to B ¼ 500 bootstrap iterations,

Step 1: Draw resamples of sizes n1, n2, and n3 with replacement from the nondiseased sample Y1j’s,
the early diseased sample Y2j’s, and the fully diseased sample Y3j’s, respectively. Denote the
bootstrap samples as Yb

ij

n o
, i ¼ 1; 2; 3, j ¼ 1; 2; . . . ; ni.
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Step 2: Calculate the bootstrap version of �̂Pb
2 according to (2).

Step 3: The proposed bootstrap variance estimator for �̂P2 is defined as

cσ2
�̂P2

b ¼ 1

B� 1

XB
b¼1

�̂Pb
2 �

�̂�P
b

2

	 
2

where �̂P2 is defined in (2).

This leads to the second 100 1� αð Þ% empirical likelihood confidence interval
(ELB) for P2

CIα P2ð Þ ¼ P2 : r
�
P1;P2;P3

� l P2ð Þ � χ21 1� αð Þ
n o

where r�P1; P2; P3
¼ �̂P2 1��̂P2ð Þ

n2�cσ2�̂P2 b and χ21 1� αð Þ is the 1� αð Þth quantile of χ21.

4. SIMULATION STUDIES

Simulation studies are carried out to compare the performance of the proposed
empirical likelihood confidence intervals ELP and ELB, as well as the asymptotic
confidence interval APV, with the existing ones, i.e., GI, BCGI, BTP, and BTII
proposed in Dong et al. (2011). As BTI is always inferior than BTII, it is not included
in the tables.

We evaluate these approaches under the normal and beta-distribution scenarios
proposed in Dong et al. (2011), to check whether the new approaches can give compar-
able performance as the recommended GI/BCGI parametric approach where the normal-
ity assumptions are satisfied with or without Box–Cox transformation. In addition, we
also investigated the combined scenario where the normality assumptions cannot be met,
that is, gamma for the nondiseased, log-normal for the early diseased, and Weibull for the
fully diseased group. The density functions for the combined distribution scenario are
plotted in Fig. 1. Sample sizes (n1, n2, n3) are set as (10, 10, 10), (30, 30, 30), (50, 30, 30),
(50, 50, 50), (100,100,100), (100, 50, 50), and (100,100, 50). With a fixed 80% specificity
and a fixed 80% sensitivity to the fully diseased stage, the parameters for the distributions
are chosen correspondingly so that P2 equals to 50% or 90%. Under each setting, 5000
random samples are generated. The simulation results are presented in Tables 1–3.

Table 1 presents simulation results under the normal distributions. The performance
of the newly proposed empirical likelihood confidence interval ELB is satisfactory in
terms of coverage probability although the ELB tends to be slightly conservative for the
small sample sizes. ELP performs well for P2 ¼ 0:5 except at the sample size (10, 10,
10), but becomes conservative when P2 ¼ 0:9. BTII gives good estimates at P2 ¼ 0:5,
but when P2 increases to 0.9, BTII obtains a 0.8956 coverage probability at the sample
size (10, 10, 10), which is much lower than the 95% nominal level. In addition, as the
sample size increases, BTII grows conservative. The BTP interval is generally conserva-
tive. The normal approximation-based confidence interval APV is slightly conservative at
small sample sizes. The generalized inference method GI performs the best in the
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closeness of coverage probability to the nominal level and the length of the confidence
interval.

Table 2 presents simulation results for the beta distribution. The coverage prob-
ability of ELB remains conservative for the small sample sizes at P2 ¼ 0:5; however,
when P2 ¼ 0:9, for the small sample size (10, 10, 10), ELB attains coverage probability
which is very close to the nominal level, and is even better than the BCGI approach. The
other empirical likelihood method ELP yields satisfactory coverage probabilities when
P2 ¼ 0:5 except at the sample size (10, 10, 10), while it is conservative for medium
sample sizes when P2 ¼ 0:9. The nonparametric method BTII is satisfactory at P2 ¼ 0:5,
while at P2 ¼ 0:9, it changes from being liberal to being conservative as sample sizes
increase. The large sample method APV is generally liberal when sample sizes are small.
The generalized inference approach with Box–Cox transformation is usually satisfactory,
but it can be worse than ELB for a few scenarios, such as (100, 100, 50) at P2 ¼ 0:5 or
(10, 10, 10) at P2 ¼ 0:9.

In Table 3, the simulation results for the combined distribution are presented. For
such cases, the Box–Cox transformation fails to transform the data to the normal dis-
tributions. Therefore, as expected, the performance of BCGI is unsatisfactory. Generally
speaking, the ELB method is close to the 95% nominal level except being slightly
conservative at the sample size (10, 10, 10). The ELP method provides reasonable
coverage at P2 ¼ 0:5 except for the sample size (10, 10, 10); however, it becomes
conservative for P2 ¼ 0:9. BTII maintains the nominal level for most cases except for
the sample size (10, 10, 10), where the coverage probability can be as low as 0.7848. In
addition, for scenarios such as (100, 50, 50) and (100, 100, 50), BTII becomes more
conservative than ELB. The BTP method is generally conservative except at the sample
size (10, 10, 10) when P2 ¼ 0:9. The asymptotic approach APV remains liberal for most
of the cases; however, as the sample size increases to (100, 100, 100), the coverage
probability is very close to the 95% nominal level.

In summary, the GI method or the BCGI method works well for normal and beta
distributions, but becomes unusable for the combined distributions case, where the Box–
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Figure 1 Density functions for the nondiseased, early diseased and fully diseased group for the two simulation
scenarios in Table 3.
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Cox transformation fails to work. The performance of APV is very unstable as it is
slightly conservative for the normal case and is generally liberal for the non-normal ones.
The BTII, for large P2’s, is conservative under large unbalanced sample sizes and gives
very liberal estimates under small sample sizes. The BTP produces conservative con-
fidence intervals for most of the cases. The ELP performs well for scenarios with smaller
P2, but it turns out to be conservative for the cases with higher P2. Finally, the proposed
ELB method gives stable confidence interval estimation with coverage probability close
to the nominal level for almost all cases, except that it can be slightly conservative under
small sample sizes. Therefore, overall speaking, the ELB method is highly recommended,
especially for the cases when normality assumptions are violated and Box–Cox transfor-
mation fails to work.

5. EXAMPLE

AD is the most common form of dementia, and it is one of the most expensive
diseases for society in Europe and the United States. According to Wimo et al. (2013), the
total estimated worldwide cost of dementia was US$604 billion in 2010. About 70% of
the costs occurred in western Europe and North America. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is a research project that is designed to validate the use
of biomarkers including blood tests, tests of cerebrospinal fluid, and MRI/PET imaging
for AD clinical trials and diagnosis. It aims to define the rate of progress of MCI and AD,
to develop improved methods for clinical trials, and to provide a large database which will
improve design of clinical treatment trials.

In the ADNI database, there are many biomarkers to measure the disease
progress of AD. Here we use a small subset which includes ratio of levels of protein
Tau and protein Aβ42 (TAU/ABETA), Fluoro Deoxy Glucose (FDG), and Alzheimer’s
Disease Assessment Scale (ADAS11) at the 24th month visit. The clinical dementia
rating (CDR) denotes the severity of dementia and a global CDR is derived from
individual ratings in multiple domains by an experienced clinician. CDR 0 indicates
no dementia and CDR 0.5, 1, 2, and 3 represent very mild, mild, moderate, and severe
dementia, respectively. Since patients with large CDR such as 2 or 3 are rarely
available, patients with CDR greater than or equal to 1 are referred as the fully
diseased group. CDR 0 and 0.5 refer to the nondiseased group and the early diseased
group, respectively. This subset contains 194, 290, and 183 subjects for the nondi-
seased, the early diseased, and the fully diseased group, respectively. Due to missing
values, the actual sample sizes for each variable may vary, as reported in Table 4.
Figure 2 presents the estimated kernel densities of the three disease groups for TAU/
ABETA, FDG, and ADAS11, respectively. By utilizing the Shapiro–Wilk’s normality
test, TAU/ABETA is found to satisfy the normality assumptions after the Box–Cox
transformation; for FDG, the original data meet the normality assumptions, and for
ADAS11, the data either with or without the Box–Cox transformation cannot achieve
the normality assumptions for all three groups simultaneously. Since the parametric
assumptions are not met, GI/BCGI cannot be rationally applied. Therefore, only the
other methods are used to analyze this variable. Table 5 presents the estimated
confidence intervals of P2 for each variable. Under the recommended ELB approach,
ADAS11 achieves (0.4660, 0.6657) as its 95% confidence interval for P2, suggesting
it gives a mediocre performance to diagnose the early stage AD patients.
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6. SUMMARY AND DISCUSSION

For disease processes with three ordinal stages, the sensitivity to the early diseased
stage given specificity and sensitivity to the fully diseased stage, P2, is considered as an
important diagnostic accuracy index, especially for early disease detection. The higher P2,
is, the better will be the diagnostic ability of the diagnostic test or biomarker for
identifying the early diseased stage. Therefore, an accurate estimation of the confidence
interval for P2 will facilitate investigators to identify the good biomarkers. This article

Table 4 Summary statistcs for ADNI data

CDR 0 CDR 0.5 CDR 1

Biomarker N Mean Std N Mean Std N Mean Std VUS

TAU/ABETA 24 0.37 0.21 48 0.72 0.48 26 0.89 0.48 0.3890

FDG 82 6.37 0.56 130 5.86 0.68 70 4.95 0.74 0.5560

ADAS11 193 5.44 2.83 288 12.26 5.84 180 26.23 11.70 0.7575

−0.5 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

Kernel densities for TAU/ABETA

TAU/ABETA

D
en

si
ty

Non−diseased
Early diseased
Fully diseased

−2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

Kernel densities for FDG

FDG

D
en

si
ty

Non−diseased
Early diseased
Fully diseased

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

Kernel densities for ADAS11

ADAS11

D
en

si
ty

Non−diseased
Early diseased
Fully diseased

Figure 2 Estimated kernel densities for TAU/ABETA, FDG, and ADAS11 in the ADNI data.
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proposes the ELB approach and compares it with the existing confidence intervals.
Simulation studies show that ELB is not only more robust than parametric methods
which heavily rely on the normality assumptions, but also generally gives more accurate
confidence intervals than nonparametric methods, especially for unbalanced datasets.
Therefore, the ELB method is highly recommended in practice.

For future work, following the same vein of Dong et al. (2014), we would like to
develop the semiparametric inference procedure for the difference of two correlated P2’s,
based on the empirical likelihood technique.

APPENDIX A: PROOF OF VARIANCE OF �̂P2 IN (4)

The asymptotic variance of �̂P2 is shown in (4). The following is the proof.
Proof:

σ2�̂P2
¼ Eĉ1;ĉ2 VarF̂2

F̂2 ĉ1 � Y � ĉ2ð Þ� �n o
þ Varĉ1;ĉ2 EF̂2

F̂2 ĉ1 � Y � ĉ2ð Þ� �n o
¼ Eĉ1;ĉ2

P2 ĉ1 � Y � ĉ2ð Þ 1� P2 ĉ1 � Y � ĉ2ð Þ½ �
n2

� �
þ Varĉ1;ĉ2 P2 ĉ1 � Y � ĉ2ð Þ½ �:

As ĉ1 �!P c1 and ĉ2 �!P c2, and we assume P2 is continuous, so

Eĉ1;ĉ2
P2 ĉ1Y ĉ2ð Þ 1� P2 ĉ1Y ĉ2ð Þ½ �

n2

� �
�!P P2 c1Yc2ð Þ 1� P2 c1Yc2ð Þ½ �

n2

¼ P2 1� P2ð Þ
n2

Table 5 Estimated confidence intervals for the probability of detecting early diseased individuals using TAU/
ABETA, FDG and ADAS11 of the ADNI data (sensitivity to fully diseased stage and specificity are assumed to
equal to 0.8)

Confidence Intervals for the test covariates

BTII BTP ELB GI BCGI

Biomarkers P̂NP
2 lb ub lb ub lb ub lb ub lb ub

TAU/ABETA 0.1335 0.0052 0.2614 0.0371 0.2685 0.0073 0.3712 — — 0.0000 0.2104

FDG 0.2011 0.0875 0.3388 0.1001 0.3620 0.0724 0.3716 0.0349 0.3152 — —

ADAS11 0.5754 0.4806 0.6927 0.4829 0.6834 0.4660 0.6657 — — — —

TAU/ABETA: Ratio of the CSF parameters: protein Tau and protein Aβ42.
FDG: Fluoro Deoxy Glucose.
ADAS11: Alzheimer’s Disease Assessment Scale.
BTII: Confidence interval is computed by the BTII approach.
BTII: Confidence interval is computed by the BTII approach.
ELB: Confidence interval is computed by the ELB approach.
ELP: Confidence interval is computed by the ELP approach.
APV: Confidence interval is computed by the APV approach.
P̂NP
2 : The nonparametric estimation of P2 in Equation (3).
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Furthermore, since ĉ1?ĉ2, we have

Varĉ1;ĉ2 P2 ĉ1 � Y � ĉ2ð Þ½ � ¼ Varĉ1;ĉ2 F2 ĉ2ð Þ � F2 ĉ1ð Þ½ �
¼ Varĉ2 F2 ĉ2ð Þ½ � þ Varĉ1 F2 ĉ1ð Þ½ �
¼ f 22 ĉ2ð Þ � Var ĉ2ð Þ þ f 22 ĉ1ð Þ � Var ĉ1ð Þ

¼ P3 1� P3ð Þ
n3 � f 23 ĉ2ð Þ � f 22 ĉ2ð Þ þ P1 1� P1ð Þ

n1 � f 21 ĉ1ð Þ � f 22 ĉ1ð Þ

�!P P3 1� P3ð Þ
n3 � f 23 c2ð Þ � f 22 c2ð Þ þ P1 1� P1ð Þ

n1 � f 21 c1ð Þ � f 22 c1ð Þ

Hence

σ2�̂P2
¼ P2 1� P2ð Þ

n2
þ P1 1� P1ð Þ

n1
� f

2
2 F�1

1 P1ð Þ� �
f 21 F�1

1 P1ð Þ� �þ P3 1� P3ð Þ
n3

� f
2
2 F�1

3 1� P3ð Þ� �
f 23 F�1

3 1� P3ð Þ� �

APPENDIX B: PROOF OF THEOREM IN SECTION 3

Proof:
By similar arguments used in Owen (1990), we can easily show that λj j ¼

Op n�1=2
2

� �
and max1�j�n2 Ûj � P2

�� �� ¼ O 1ð Þ a.s. Then we have

l P2ð Þ ¼ 2
Xn2
j¼1

log 1þ ~λ Ûj � P2


 �� �
¼ 2

Xn2
j¼1

λ Ûj � P2


 �� 1

2
λ2 Ûj � P2


 �2� �
þ rn2

where rn2j j � c
P n2

j¼1 λ Ûj � P2


 ��� ��3� c λ3
�� ��n2 ¼ Op n�1=2

2

� �
:

From (6),

λ ¼
P n2

j¼1 Ûj � P2


 �
P n2

j¼1 Ûj � P2


 �2 þ Op n�1=2
2

� �
;

Xn2
j¼1

λ Ûj � P2


 � ¼ Xn2
j¼1

λ Ûj � P2


 �þ Op 1ð Þ
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Therefore,

l P2ð Þ ¼
Xn2
j¼1

λ Ûj � P2


 �þ Op 1ð Þ

¼
P n2

j¼1 Ûj � P2


 �2h i
P n2

j¼1 Ûj � P2


 �2 þ Op 1ð Þ

¼
ffiffiffiffiffi
n2

p
P̂2 � P2


 �� �2
1
n2

Pn2
j¼1 Ûj � P2


 �2 þ Op 1ð Þ

where ϕ is defined in (6) and P̂2 is a three-sample statistic and

P̂2 ¼ 1

n2

Xn2
j¼1

ϕ F̂�1
1 P1ð Þ; yj; F̂�1

3 1� P3ð Þ� �
From the previous proof and the central limit theorem, we know that

ffiffiffiffiffi
n2

p
P̂2 � P2


 �� �2
is

asymptotically normal with the variance n2 � σ2�̂P2
. From the law of large numbers, we have

1

n2

Xn2
j¼1

Uj � P2


 �2�!P Var Uj


 �
It is easy to check

1

n2

Xn2
j¼1

Ûj � P2


 �2� 1

n2

Xn2
j¼1

Uj � P2


 �2�����
����� �!P 0

Therefore, by the Slutsky Theorem,

rP1;P2;P3 � l P2ð Þ �!L χ21

where the scale constant rP1; P2; P3 is

rP1; P2; P3 ¼
σ2
Ûi

n2 � σ2�̂P2
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