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Randomized, placebo-controlled trials often use time-to-event as the primary endpoint, even
when a continuous measure of disease severity is available. We compare the power to detect a
treatment effect using either rate of change, as estimated by linear models of longitudinal
continuous data, or time-to-event estimated by Cox proportional hazards models. We propose
an analytic inflation factor for comparing the two types of analyses assuming that the time-to-
event can be expressed as a time-to-threshold of the continuous measure. We conduct
simulations based on a publicly available Alzheimer's disease data set in which the time-to-
event is algorithmically defined based on a battery of assessments. A Cox proportional hazards
model of the time-to-event endpoint is compared to a linear model of a single assessment from
the battery. The simulations also explore the impact of baseline covariates in either analysis.
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1. Introduction

We explore the relative efficiency of linear models of
repeated measures of a continuous outcome and the Cox
proportional hazards model (PHM) [1] of time-to-threshold
of a continuous outcome in randomized placebo-controlled
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studies. This comparison has practical implications for clinical
trial design for Alzheimer's disease (AD) and human
immunodeficiency virus (HIV), among other diseases. For
instance, in the study of AD in pre-dementia elderly withmild
cognitive impairment (MCI), clinical trials have historically
used either the rate of progression to dementia over a period
of time (typically three to 24 months) [2] or PHM of time-to-
progression [3–5] as the primary analysis. There is no
algorithmic definition of dementia, however, and in clinical
trials a panel of experts is convened to review case reports to
determine a consensus diagnosis at each visit (usually every
six months). The time-to-progression endpoint has been
preferred for its tangible clinical importance, as well as its
acceptability to regulatory authorities. Though the dementia
endpoint has face validity, it can be difficult to implement,
subjective, variable from visit to visit, and analytically
problematic due to non-proportional hazards [3] and interval
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censoring. We posit that a linear model of a continuous
assessment of disease severity, for example the Alzheimer's
Disease Assessment Scale, may be more efficient than a
subjective dichotomization (“not demented” versus “de-
mented”). To this end, we quantify the relative efficiency of
a linear model analysis of rate of change of a repeated
continuousmeasure and a PHM analysis of time-to-threshold.
“Time-to-threshold” is also known as “time-to-event” in
survival analysis literature, butwe use the former to emphasize
that we will model the event of interest as an observed
continuous measure exceeding a predetermined threshold.

The issue is not new or unique to AD research. McKay et al.
[6] analyzed continuous, categorical, and time-to-event cocaine
use outcomes and found continuous outcomes to express the
greatest effect sizes. A meta-analysis of the orthopedic surgery
randomized trial literature found those trials with continuous
outcomes had greater power on average than those with a
dichotomous outcome, an outcome analytically equivalent to
time-to-event [7], and a greater proportion of the continuous
outcome trials attained acceptable power (N80%) [8]. Similar
observationsweremade in thefields of rheumatoid arthritis [9]
and stroke [10]. Reliable continuous biomarker surrogates have
accelerated the study of HIV [11], and are still actively being
sought, for example, for prostate cancer [12,13] and AD [14].

Lee and Whitmore [15] provide an extensive review of
threshold regressionorfirst-hitting-timemodelswhich areused
to analyze the relationship between covariates and the time at
which an observed or latent stochastic process first crosses a
boundary. Thoughwewill be exploiting aspects of this literature,
we are not proposing a threshold regressionmethod. Rather, we
consider cases in which the threshold might be considered an
arbitrary dichotomization of an observable continuous process.
Such dichotomizationsmay facilitate interpretation, but it is our
primary goal to elucidate whether this ease of interpretation
comes at the cost of analytic efficiency.

Section 2 introduces an inflation factor for quantifying
relative efficiency, in terms of the required sample size, for
the true marginal linear model (MLM) [16] and the PHM in
general terms when we can assume an underlying Wiener
process with drift. Section 3 provides simulation studies to
demonstrate the utility of the inflation factor, and other
comparisons for which the inflation factor does not directly
apply because the underlying process is not a Wiener process
or is not linear. In the simulations we apply linear mixed
models (LMM) [17] that are commonly used in practice. In
Section 4 we present an example of an event, onset of
dementia, defined bymultiple continuous outcomes based on
publicly available data from a large MCI cohort.

2. Inflation factor forPHMversusMLMassumingunderlying
Wiener process with drift

Assume that clinical disease progression for an individual i
follows an underlying Wiener process with drift,

Yi tð Þ = tθ + σWit ; ð1Þ

where i=1,…,n, tN0, θ is a treatment-specific modifying
effect on the rate of decline, and Wit is a standard Wiener
process. The advantage of model (1), is that it allows a closed
form expression for the distribution of the time-to-threshold,
as seen below. Model (1), which was considered in Ref. [18],
also allows for the variance of Yi(t) to increase with time as in
amixed-effect model with subject specific random slopes.We
can observe disease progression in one of two ways: as
continuous repeatedmeasures with added error σWt or as the
time that the measurements cross a threshold c, Ti=mint

{Yi≥c}. Each measure can be thought of as an imperfect
observation of an underlying and unobservable latent
variable representing, for example, disease state. We assume
that the process is observed at times tj, where j=1b⋯bm and
there are two groups, A and B, with possibly different slope
parameters, θA and θB. We will assume throughout that the
two groups have equal sample size, n. This observed data is
analyzed in one of two ways: a PHM of time-to-threshold or a
MLM of the continuous repeated measures. The parameter of
interest under PHM is the hazard ratio for the two groups,
with inference obtained by the score test (equivalent to the
log-rank test). The parameter of interest under theMLM is the
estimated group difference in slopes: θB−θA. More specifi-
cally, we apply the PHM, which assumes an instantaneous
probability of event via the hazard function

λ t; Zið Þdt=P t ≤ Ti b t + dt jTi ≥ t; Zi½ �=λ0 tð Þexp ZiθHRf gdt; ð2Þ

where Ti is defined above, Zi=1{subject i in group A} is a
group indicator variable, and θHR represents the log hazard
ratio. Alternatively, we model the observations for an
individual from group A with the MLM:

Yij = tjθA + �ij; i = 1;…;n; j = 1;…;m; ð3Þ

with independently and identically distributed subject-
specific vectors of residual errors, (�i1⋯ �im)∼N(0,Σ); and
similarly for individuals from group B. Note that, by
the properties of the assumed Wiener process, Var(Yij)=
σ 2tj, Cov(Yij, Yik)=σ 2Cov(Wtj,Wtk)=σ 2min(tj, tk), and

Cor Yij;Yik
� �

= min tj; tk
� �

=
ffiffiffiffiffiffiffi
tjtk

p
. Equivalently, the true

variance–covariance matrix is

Σ = σ 2

t1 t1 t1 ⋯ t1
t1 t2 t2 ⋯ t2
t1 t2 t3
⋮ ⋮ ⋱
t1 t2 tm

0
BBBB@

1
CCCCA: ð4Þ

Assuming equal group sizes, the required total number of
events for a two-tailed Cox proportional hazards score test
with specified power 1−β, Type I error α, and log hazard
ratio θHR can be estimated for the PHM design using
Schoenfeld's [19] formula:

EPH =
4 zα=2 + zβ
� �2

θ2HR
; ð5Þ

where p=Φ(zp) and Φ is the standard normal cumulative
distribution function. Similarly, we can use the formula from
Ref. [20] for the total sample size under the MLM

nLM =
4 zα=2 + zβ
� �2

ξ

θB−θAð Þ2 ; ð6Þ
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where

ξ = 0 1ð Þ 1 ⋯ 1
t1 ⋯ tm

� �
Σ−1

1 t1
⋮ ⋮
1 tm

0
@

1
A

2
4

3
5
−1

0
1

� �
: ð7Þ

In order to relate the two sample sizes, we need to
represent the effect under one model as an effect under the
other. The time-to-threshold assumption, i.e. Ti=mint{Yi≥c},
provides the framework for discerning this connection under
model (1). Since Ti is a so-called “first passage time” of a
Wiener process with drift, it is known to have an inverse
Gaussian (or Wald) distribution with location parameter
μ=c/θ and scale parameter γ=c2/σ2 [21]. The resulting
event time distribution function is

F t; μ ;γð Þ = P T≤t½ � = Φ
ffiffiffiffiffiffiffiffiffi
γ= t

p
t = μ−1ð Þ

� �

+ exp 2γ= μð ÞΦ −
ffiffiffiffiffiffiffiffiffi
γ= t

p
t = μ + 1ð Þ

� �
:

ð8Þ

Let the random variable TA represent the time-to-
threshold for an individual randomized to group A and TB
represent that of an individual randomized to group B. Then
for any time t, under the PHM, the log hazard ratio is

θHR = log
log P TA N t½ �ð Þ
log P TB N t½ �ð Þ

� �

= log
log 1−FA tð Þð Þ
log 1−FB tð Þð Þ

� �
:

ð9Þ

If we let r denote the overall event rate, so that nPH=EPH/r,
and substitute the above expression for θHR into (5), we have
the inflation factor

ψ =
nPH

nLM
=

EPH
rnLM

=
θB−θAð Þ2

ξr
log

log 1−FA tð Þð Þ
log 1−FB tð Þð Þ

� �2
: ð10Þ

Note that themean event rate r, assuming no censoring up
to the maximum follow-up time τ, can be expressed in terms
of F as r=(FA(τ)+FB(τ))/2. The modal design in AD clinical
trials has every subject followed for a predetermined
maximum duration, but dropout, which is common, must
also be considered. Also note that the relation (9) should be
constant in t to satisfy the proportional hazards assumption.
The fact that it is not constant implies we should expect the
assumption to be violated for time-to-threshold of an
underlying linear process (3). Inference based on the PHM
score (log-rank) test is still valid under the null hypothesis,
but non-proportionality can introduce bias that might affect
power [22]. On the left panel of Fig. 1 we plot the hazard ratio
exp(θHR(t)) for various values of c with σ=0.5, θA=0.2, and
θB=0.1. The right panel depicts the resulting total sample
sizes. We see that even though the lower thresholds result in
greater event rates, which should improve power and reduce
sample size, it can also shrink the hazard ratio closer to one
and the net effect can be a decrease in power. This is not
always the case, as we see the sample size curves for c=2.0
and c=3.0 intersect.
The plots in Fig. 2 demonstrate that ψ is not always greater
than 1, which would indicate that MLM generally dominates
PHM in efficiency. However, the only cases we found in which
the inflation factor favored PHMwere in impractical scenarios
in which the required sample size approached zero due to
large effect size (or small variance).

3. Simulations

3.1. A Wiener process

Wegenerated data based on aWiener process with drift as
in Eq. (1). Group A (placebo) had slope parameter θA=0.2
and Group B (active) had slope parameter θB=0.1, yielding
more rapid progression in Group A. We also assumed σ=0.5,
t=1,…,10, and varied the threshold from 1/2 to 3, yielding
expected mean event rates in the placebo group from 85.5%
(low threshold for event) to 20.9% (high threshold).

Using Eq. (6) and the known data generating parameters,
we calculated the required sample size to be n=88 under a
MLM (α=5%, power=80%) with a correlation structure as in
Eq. (3). Alternatively, given σ=0.5 and applying a threshold
of c=1, the log hazard ratio θHR ranged from θHR=0.371 at
t=1 to θHR=0.483 at t=10, which translates to a hazard
ratio in the range exp(θHR)=1.45 to 1.62. If we assume no
loss to follow-up, resulting in an overall event rate of (FA(10)+
FB(10))/2=80.4%; we arrive at a required sample size under
PHM in the range of n=168 to 284, or an inflation of factor in
the range of ψ=1.92 to 3.26.

To study the accuracy of these sample size estimates
under reasonable departures from the presumedMLMmodel,
we simulated 1000 trials with total sample sizes of n=90,
n=170, and n=290; to examine whether the linear model
attains simulated power of 80% with n=90. Rather than
using the known Wiener process correlation structure, we
used the common mixed effects model with random
intercept and slope:

Yij = θ + b0i + tj θA + b1ið Þ + �ij: ð11Þ

In contrast to the marginal model, �ij was assumed to be
independently distributed N(0,σ2) and the within subject
correlation was modeled by the random intercept and slope,
b0i and b1i. Also in contrast to the marginal model covari-
ance structure of the MLM (4), the LMM assumes VAR(Yt)=
VAR(b0)2+t2VAR(b1)2+VAR(�) and COV(Ys,Yt)=VAR(b0)+
stVar(b1)+(s+t)Cov(b0,b1). Though the correlation structures
are not identical, this model is particularly appropriate since
it models a variance that grows with time, as in the Wiener
process.

Table 1 demonstrates that the calculated power as
described earlier (lower half of the table) is very consistent
with the simulated results (upper half of the table). We also
simulated data assuming no treatment (θA=θB=0.2) to
verify the specified Type I error (α). In particular the power of
77.9% with LMM at n=90 was close to the power of 83.5%
with PHM at n=170 and a threshold of c=1. This supports
the conservative estimate of an inflation factor of ψ=1.92.
We also see that at all sample sizes, power for PHM reached a
maximum at a threshold of c=2. This is also reflected in Fig. 1
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where we see the sample size curves for c=2 and c=3
intersect.

3.2. An autoregressive process

We repeated the previous simulation study, but generated
data based on an autoregressive model, Yi(0)∼N(0,1), Yi(t)=
θ+Yi(t−1)+εi(t), where t=1,…,10 and Var(ε)=0.25. The
event threshold was again set at 1 and we let θ, the slope
parameter for each group, be either θB=0.2 or θA=0.1.
Because we did not assume an underlying Wiener process,
the survival times were no longer distributed according to
the inverse Gaussian distribution. To approximate the
required sample size under both models, we generated a
large sample (n=2000) and fit a mixed effects model with
random intercept and slope to inform the LMM calculation
and used the observed event rates to inform the PHM
sample size calculation. Using pilot estimates from the LMM
fit and assuming Var(Yt)≈Var(b0)+ t2Var(b1)+Var(�)
and Cov(Ys,Yt)≈Var(b0)+stVar(b1)+(s+ t)Cov(b0,b1), we
arrive at a marginal model variance–covariance matrix that
we can apply to Eq. (6). We found a sample size of nLM=189
was necessary to attain 80% power with α=5% and a two
tailed test. We also found an event rate of r̂ = 71:7% and θHR
(10)=0.259. Applying these estimates to Eq. (5), we find
nPH=652. Therefore we simulated 1000 trials with the
sample sizes of 170 and 650, and again modeled the data
with either PHM (log-rank test) or LMM with random slope
and intercept. Table 2 summarizes the results. As expected,
the simulations attained about 80% powerwith n=170 under
LMM and nPH=650 under PHM, verifying the inflation factor
of about ψ=3.82.

3.3. A non-linear trajectory

Nextwe simulated continuous longitudinal data according
to a non-linear trajectory with random intercepts and slopes
that flatten out once a threshold is met. More specifically, for
an individual i in group A at time tj:

Yij =
b0i + θA + b1ið Þtj + εij if b0i + θA + b1ið Þtj b c
c + εij if b0i + θA + b1ið Þtj ≥ c

�

where t=1,…,10, b0i∼N(0,σ0
2), b1i∼N(0,σ1

2), and ε∼N(0,σ2).
We simulate two groups with θA=0.2 and θB=0.1 and let
VAR(b0)=VAR(b1)=0.1 and Var(ε)=0.25. We varied c from
1/2 to 3.
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Table 1
Power (α) in percent out of 1000 simulated trials for the given total sample
size, analysis method, and event threshold. The event rates associated with
the thresholds ranged from a mean of 85.5% (c=1/2) to a mean of 20.9%
(c=3).

LMM PHM

c=0.5 c=1 c=2 c=3

Simulated
n=90 77.9 (5.2) 42.2 (4.5) 56.1 (4.6) 64.4 (5.3) 53.6 (6.6)
n=170 96.9 (4.7) 64.3 (5.5) 83.5 (4) 90.2 (4.5) 80.1 (5.4)
n=290 100 (6.9) 87.7 (5.4) 96.5 (4.1) 98.3 (4.4) 95.5 (4.2)

Calculated
n=90 81 41 53 63 58
n=170 97 66 80 88 84
n=290 99 87 95 98 97
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To the longitudinal data we applied two misspecified
linear models: (1) the random intercept and slope LMM as
used in the previous examples, and (2) a random intercept
and slope model with quadratic fixed effect for time allowing
Table 2
Power (α) in percent based on 1000 simulated trials for the given total
sample size, analysis method, and event threshold. The event rates
associated with the thresholds ranged from a mean of 81.8% (c=1/2) to a
mean of 34.25% (c=3).

LMM PHM

c=0.5 c=1 c=2 c=3

n=170 77.5 (5.9) 17.8 (4.7) 26 (5.2) 42.5 (4.5) 44.8 (4.5)
n=650 100 (7.3) 57.4 (5.3) 76.9 (4.3) 93.7 (4.6) 94.5 (4.6)



690 M.C. Donohue et al. / Contemporary Clinical Trials 32 (2011) 685–693
for a non-linear trajectory (LMM2). The parameter of interest
from LMM is the group difference in slopes. The parameter of
interest from LMM2 is the estimated group difference at
t=10. Finally, we used the known value of c as the threshold
to define the events to be modeled via PHM. With c in the
range 1/2 to 3, we found the overall event rates in the range
87.5% (low threshold) to 8.9% (high threshold). We let
n=100 and 200.

The results are summarized inTable 3.We found therewasa
clear advantage to PHM when there was a low threshold and
highevent rate, but this reversed as the threshold increasedand
event rate decreased. We also see that the quadratic time
model, LMM2, was consistently better than the standard LMM,
especially when the threshold was low.

4. Example: mild cognitive impairment and
time-to-progression

The Alzheimer's Disease Neuroimaging Initiative (ADNI),
which began in 2004, is a collaborative project funded by
National Institute on Aging and National Institute of Bioima-
ging and Bioengineering, the pharmaceutical and imaging
industry, and several foundations (see www.adni-info.org).
The study design and baseline characteristics are described in
Ref. [23]. Briefly, the objective of ADNI is to study the rate of
change of cognition, function, brain structure, and biomarkers
in 200 elderly controls, 400 subjects with MCI, and 200 with
Alzheimer's disease. For this analysis, publicly available data
were downloaded from the ADNI web site adni.loni.ucla.edu
on November 30, 2009. The data set contains repeated
continuous measures of key assessments and progression
events at 6-month intervals over 2 to 3 years, and is ideal for a
more complex, clinically realistic simulation of our compar-
ison of interest. Namely, we will simulate clinical trials to
determine which experimental design can more efficiently
detect a hypothesized intervention to slow cognitive and
functional decline in a population with MCI.

In clinical practice and trials, the dementia endpoint is not
algorithmically defined. It is a subjective transition based on
the review of a battery of cognitive and functional assess-
ments. Studies typically employ the consensus opinion of an
expert panel. We took advantage of the rich ADNI data to
develop a multivariate mixed-effects model for disease
progression using multiple cognitive and functional mea-
Table 3
Power (α) in percent based on 1000 simulated trials for the given tota
sample size, analysis method, and event threshold as described in Section 3.3
The event rates associated with the thresholds ranged from a mean o
87.5% (c=1/2) to a mean of 8.9% (c=3).

c=0.5 c=1 c=2 c=3

n=100
PHM 88.4 (5.5) 97.3 (6.3) 95.0 (5.4) 64.9 (2.3)
LMM 7.0 (5.4) 38.1 (5.4) 98.6 (6.2) 99.7 (6)
LMM2 53.5 (3.3) 80.7 (2.7) 99.0 (4.7) 99.6 (5.4)

n=200
PHM 99.7 (5.3) 99.9 (5.8) 100 (5) 93.2 (4.3)
LMM 9.5 (5.2) 68.3 (6.4) 100 (5.4) 100 (5)
LMM2 88.8 (4.7) 98.0 (4.1) 100 (3.6) 100 (4.9)
l
.
f

sures, and to develop an algorithmic definition of progression
for this process using the observed clinical diagnosis data. Our
model of disease progression, richer than that hypothesized
in Section 2, incorporated multiple measures: Alzheimer's
Disease Assessment Scale, Cognitive Sub-scale, (ADAS-Cog;
[3,24]),Clinical Dementia Rating Sum of Boxes (CDR-SB, log
transformed), and Functional Activities Questionnaire (FAQ)
[25]. These measures were selected because they provide
assessment of primary aspects of AD progression: cognitive
performance, global clinical status and functional abilities.
Each measure is converted to a z score to provide a common
scale, and a multivariate mixed-effects model is fitted [26] to
estimate mean rates of change, random variation in slopes
and intercepts, and effects on slopes and intercepts of the
presence of an apolipoprotein E4 (ApoE4) allele and baseline
hippocampal volume. Specifically, the mixed effects model is
of the form:

Yik tijk
� �

= Xiktijkβ + Zikb0i + Ziktijkb1i + εijk ð12Þ

for individual i, at time t, outcome k=1,2,3 (ADAS-Cog, CDR-SB,
or FAQ), and covariate vectors

Xik = 1 k = 1f g;1 k = 2f g;1 k = 3f g;Hippocampusi;ApoE4ið Þ;

Zik = 1 k = 1f g;1 k = 2f g;1 k = 3f gð Þ;

where Hippocampusi and ApoE4i are the standardized hippo-
campal volume at baseline andApoE4 status for individual i. The
vector β represents the fixed effects for time for each of the 3
outcomes and the shared time-by-hippocampus and time-by-
ApoE4 effects. The 3 random intercepts and 3 random slopes for
the 3 outcomes are represented by the vector bi=(b0i,b1i),
which is assumed to distributed N(0,Σ). The residuals, εijk, are
assumed independent N(0,σ 2).

Because progression to dementia is subjective and not
algorithmically defined, we derived a diagnostic algorithm for
progression diagnosis based on baseline and follow-up ADAS-
Cog, CDR-SB, and FAQ z-scores, using a repeated binary
outcome Generalized Estimating Equation (GEE) logistic
regression model [27] we regressed the observed progression
outcomes on the z-scores:

logit Wij

� �
= ADASi0;CDRi0; FAQ i0;ADASij;CDRij; FAQ ij

� �
β:

ð13Þ

HereWij=1 if progression to AD is observed for individual
i at time tj and 0 otherwise. The right hand side of model (13)
provides a continuous linear predictor of progression, to
which a progression threshold can be applied. The progres-
sion threshold was tuned to produce about a 40% progression
rate over two years in simulated placebo group data,
comparable to the actual progression rate observed in ADNI.
Our modeled progression rule was in agreement with actual
clinical decisions for 315/391=80.6% of MCI subjects with
follow-up data. The sensitivity and specificity of the algorithm
for detecting clinical progression decisions was 115/134=
85.8% and 200/257=77.8%.

http://www.adni-info.org
http://adni.loni.ucla.edu
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We simulated data based on the multivariate linear mixed
model (12) to produce simultaneous cognitive and functional
measures. All three simulated measures were then entered
into our derived progression algorithm, the predictive model
(13). We also added a treatment effect to model (12)
resulting in a 25% or 50% reduction in the rate of decline.
We then apply LMMs to the simulated continuous outcomes
to derive an estimated treatment effect for ADAS-Cog and
CDR-SB. Likewise, we applied the PHM to the simulated
progression events to estimate the treatment effect on the
time-to-progression. Note that the PHM utilized information
from two assessments that are not available to the two
univariate LMMs for longitudinal ADAS and CDR.

We also explored the efficiency of a pre-specified sample
enrichment strategy in which the inclusion criteria requires
subjects to exhibit amyloid beta (Aβ) dysregulation at
baseline. Such a strategy would be particularly appropriate
for testing anti-amyloid interventions. Simulations were
repeated using estimates from the ADNI MCI subgroup,
which we denote MCI-Aβ, defined by a cerebral spinal fluid
(CSF) Aβ1−42 cutpoint of 192 pg/Ml, independently derived
by Ref. [28]. We also used baseline FreeSurfer hippocampal
volumes provided by University of California, San Francisco,
and serial ADAS-Cog, CDR-SB, and FAQ assessed every six
months for two years. The available sample size with
complete data necessary for estimating themodel parameters
was n=393 for MCI and n=144 for MCI-Aβ.

Dropout was simulated by assuming exponentially dis-
tributed dropout times resulting in about 30% attrition over
2 years. This is a conservative estimate of dropout consistent
with the 230/769=29.9% dropout rate observed in the 3-year
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Fig. 3. Simulated power for studies in MCI and MCI with amyloid dysregulatio
donepezil and vitamin E trial [3]; and the 656/1457=45%
dropout rate observed in the 4-year Rofecoxib trial [4].

We simulated data from 1000 clinical trials over a range of
sample sizes, analyzed using LMMand PHMwith andwithout
presence of an ApoE4 allele and/or baseline hippocampal
volumes, and estimated statistical power by the proportion of
trials that rejected the null hypothesis of no treatment effect
(pb0.05). The model fitting and simulation were done in the
“R” statistical computing environment [29].

4.1. Results

Fig. 3 summarizes the results in terms of power per total
sample size n from simulated trials in MCI populations
(bottom 2 panels) and MCI-Aβ populations with amyloid
dysregulation (top two panels). Results from a simulated 25%
treatment effect are displayed on the left and results from a
40% treatment effect are displayed on the right. The LMM
results (“○” and “△”) are clearly separated from the PHM
results (“+”), demonstrating consistently greater power
across all sample sizes simulated. Including baseline hippo-
campal volumes or ApoE4 status (not shown) provides a
small, but consistent, improvement in power that is more
delineated in the MCI population.

5. Discussion

We found a quantifiable degradation of power with PHM
compared to the alternative linear models in our scenarios,
except when the underlying data was nonlinear and event
rate was high. The inflation factor (10) demonstrates that this
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n (MCI-Aβ) versus total sample size, n. Lines represent LOESS smooths.
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degradation is a function of the event rate, r, and the log
hazard ratio, which can be expressed as a function of the
threshold, slope, and variance parameters from an assumed
underlying Wiener process with drift. The simulations also
showed that the MLM power calculations, assuming known
variance–covariance matrix, provided good estimates for the
LMM. The autoregressive simulations demonstrated that
power under the PHM was not monotone in the threshold
or event rate. The MCI example showed that the degradation
of power with PHM can have meaningful impact on the
efficiency and costs of clinical trials in a realistic setting, even
when clinical diagnosis is based onmore outcome data than a
single quantitative outcome measurement. These costs and
comparisons should be considered, along with face validity,
when evaluating the choice of endpoint in clinical trials.

In addition to the loss of power to detect a treatment
effect, the MLM and LMM are generally more appropriate,
robust, and efficient in many settings, particularly in studies
of AD in MCI populations. The standard PHM analysis is not
appropriate for the interval censored data that arise in these
clinical trial settings; and the linear models obviate any bias
that might be introduced by violations of the proportional
hazards assumption. PHM also does not account for multi-
state transitions, which are common. There are, of course,
other analysis techniques that can handle the above issues,
and their efficiency relative to the LMM is a question for
future study. Another issue left to future study is a direct
assessment of the effects of missing data on the inflation
factor ψ, though the MCI simulation did attempt to replicate
missingness observed in ADNI. Heuristically, the LMM and
MLM make more efficient use of partially complete data,
which should only amplify their relative efficiency over PHM
given missing data. For the same reason, biases induced by
informative missingness may be exacerbated by PHM relative
to LMM. More specifically, the PHM uses no information
regarding changes in performance that are below the
threshold of the event of interest, whereas the LMM is
informed by such changes. The fact that mixed-models use all
available data helps make it robust in the face of data missing
at random [30]. Using all of the data also makes the mixed-
model less susceptible, relative to the Cox model, to bias
induced by missing data mechanisms of all types. These open
issues notwithstanding, the LMM and MLM are common,
easily accessible, and robust alternatives to PHM; and the
proposed inflation factor provides a means for making
analytic efficiency comparisons with the PHM.
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