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Positive cerebrospinal fluid (CSF) biomarkers of tau and amyloid beta42 suggest possible active underlying
Alzheimer's disease (AD) including neurometabolic dysfunction and neurodegeneration leading to eventual
cognitive decline. But the temporal relationship between CSF, imaging markers of neural function, and cognition
has not been described. Using a statistical mediation model, we examined relationships between cerebro-
spinal fluid (CSF) analytes (hyperphosphorylated tau (p-Tau181p), β-amyloid peptides 1–42 (Aβ1–42), total tau
(t-Tau), and their ratios); change in cognitive function; and change in [18F]fluorodeoxyglucose (FDG) uptake
using positron emission tomography (PET). We hypothesized that a) abnormal CSF protein values at baseline,
result in cognitive declines by decreasing neuronal glucosemetabolism across time, and b) the role of altered glu-
cose metabolism in the assumed causal chain varies by brain region and the nature of CSF protein alteration.
Data from412 individuals participating in Alzheimer's Disease Neuroimaging (ADNI) cohort studieswere includ-
ed in analyses. At baseline, individuals were cognitively normal (N= 82), or impaired: 241 with mild cognitive
impairment, and 89with Alzheimer's disease. A parallel-process latent growth curvemodel was used to test me-
diational effects of changes in regional FDG-PET uptake over time in relation to baseline CSF biomarkers and
changes in cognition, measured with the 13-item Alzheimer Disease's Assessment Scale–cognitive subscale
(ADAS–Cog).
Findings suggested a causal sequence of events; specifically, FDG hypometabolism acted as a mediator between
antecedent CSF biomarker alterations and subsequent cognitive impairment. Higher baseline concentrations of t-
Tau, and p-Tau181p were more predictive of decline in cerebral glucose metabolism than lower baseline concen-
trations of Aβ1–42. FDG-PET changes appeared to mediate t-Tau or t-Tau/Aβ1–42-associated cognitive change
across all brain regions examined. Significant direct effects of alterations in Aβ1–42 levels on hypometabolism
were observed in a single brain region: middle/inferior temporal gyrus.
Results support a temporal framework model in which reduced CSF amyloid-related biomarkers occur earlier in
the pathogenic pathway, ultimately leading to detrimental cognitive effects. Also consistent with this temporal
framework model, baseline markers of neurofibrillary degeneration predicted changes in brain glucose metabo-
lism in turn causing longitudinal cognitive changes, suggesting that tau-related burden precedes neurometabolic
dysfunction. While intriguing, the hypothesized mediational relationships require further validation.
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Introduction

A number of studies have investigated the efficacy of specific
potential biomarkers of Alzheimer's disease (AD) pathology in the
cerebrospinal fluid (CSF) and regional cerebral glucose metabolic rate,
measured by positron emission tomography (PET) imaging with
[18F]fluorodeoxyglucose uptake (FDG-PET), to predict outcomes, dis-
criminate between disease stages, and assess prognosis (Choo et al.,
2013; Herholz, 2003; Landau et al., 2010). The most frequently studied
CSF analytes in AD for prognostic accuracy include markers for neurofi-
brillary degeneration (i.e., total tau [t-Tau] and hyperphosphorylated
tau at threonine 181 [p-Tau181p] proteins) and β-amyloid (Aβ) plaque
pathology (Aβ peptides 1 to 42 [Aβ1–42]). Compared to individual
markers, ratios combining CSF measures have been shown to be stron-
ger predictors of cognitive decline in different populations. For example,
elevated ratios of p-Tau181p/Aβ1–42 and/or t-Tau/Aβ1–42 predict cogni-
tive impairment within a few years of onset in non-demented older
adults (Craig-Schapiro et al., 2010; Fagan et al., 2007; Li et al., 2007;
Roe et al., 2013), conversion from mild cognitive impairment (MCI) to
AD (Hansson et al., 2006), and faster progression of functional and cog-
nitive deficits in individuals with incipient dementia of the Alzheimer
type (Snider et al., 2009). Similarly, in group studies FDG-PET has
been consistently shown to be sensitive in detecting neurometabolic
dysfunction even at the preclinical asymptomatic stage of AD, which
strongly suggests its suitability as amarker to study the effect of disease
pathology on brain metabolic function (de Leon et al., 2001; Drzezga
et al., 2011; Jagust et al., 2006; Mosconi et al., 2013, 2010, 2009;
Reiman et al., 2001). Furthermore, FDG-PET studies with cohorts of
cognitively intact middle-age and young Apolipoprotein E (ApoE) ε4
carriers have also revealed MCI- and AD-like patterns of metabolic
lesions in the same brain regions typically affected in clinical AD
(Mosconi et al., 2008; Reiman et al., 2001, 1996). FDG PET and tau-
related CSF analytes are both indicators of neural injury, but the tempo-
ral effects of thesemarkers on each other and on cognitive decline have
not been studied in amultimodal framework allowing for formal tests of
mediational hypotheses.

Over the past decade, many studies have focused on defining the
associations between symptom severity, alterations in CSF constituents
or Aβ deposition, and concomitant or co-occurring decreased FDG
uptake in several brain regions including parietal, temporal, and poste-
rior cingulate gyrus. These associations have been largely studied
in cognitively normal individuals (Petrie et al., 2009), those with MCI
and AD compared with normal controls (Arlt et al., 2009; Fellgiebel
et al., 2007, 2004; Hunt et al., 2006), or asymptomaticmiddle-age adults
at increased risk for AD (Mosconi et al., 2013, 2008). Despite the consis-
tent longitudinal research evidence on key AD-related biological chang-
es, only a few studies have investigated longitudinal dynamic changes in
multiple biomarkers associated with AD pathology (see, for example,
de Leon et al., 2006; Lo et al., 2011; Sluimer et al., 2010; Zhang and
Shen, 2011, 2012). One of these studies (Lo et al., 2011) used separate
models, instead of a single multiple-group growth model (Muthén and
Curran, 1997), to examine the relative associations between rates of
change in Aβ1–42 levels, FDG uptake, hippocampal volume, and rates of
change in cognitive function in individuals enrolled in the Alzheimer's
Disease Neuroimaging Initiative (ADNI) study. The authors concluded
that the pattern of changes across diagnostic groups (cognitively normal,
CN; MCI; and AD) obtained in separate analyses provided evidence in
support of a sequential association of events in which Aβ amyloid deposi-
tion preceded hypometabolism or hippocampal atrophy. However, to the
best of our knowledge, no studies have applied longitudinal mediation
models to explicate possible causal relationships between multiple bio-
markers and their effect on cognitive outcomes in a heterogeneous spo-
radic disease population. The application of these modeling approaches
is important in exploring and testing hypotheses on the role of biologi-
cal markers in the chain of events that ultimately cause axonal dysfunc-
tion and neuronal degeneration. Although the mechanisms underlying
these effects are still unknown, model-based hypothesis testing may
elucidate causal relationships as possible explanations of these effects.

The present study applied a parallel-process latent growth curve
(PPLGC) model (Cheong et al., 2003; MacKinnon et al., 2004) to test
whether the relationship between several analytes in CSF, including
p-Tau181p, Aβ1–42, t-Tau, and their ratios, and changes in cognitive
function was mediated by changes in glucose metabolism in subjects
diagnosed at baseline as CN,MCI, or AD.Wehypothesized that a) abnor-
mal CSF protein values at baseline increase the rate of decline in cogni-
tive function by decreasing glucose metabolism across time, and b) the
role of the mediator in the assumed causal chain varies across brain
regions and the form of CSF protein level affected at baseline.

Materials and methods

Participants

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as to lessen the time and cost of clinical trials. The Principal
Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California — San Francisco. ADNI is the result
of efforts ofmany co-investigators from a broad range of academic insti-
tutions and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited over 1500
adults, ages 55 to 90, to participate in the research, consisting of cogni-
tively normal older individuals, people with early or late MCI, and
people with early AD. The follow up duration of each group is specified
in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally
recruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org. The study
obtained written informed consent from all participants and was con-
ductedwith prior institutional reviewboard approval at each participat-
ing center.

The population for this study included all participants with FDG-PET
measures (up to the 24-month visit) and neuropsychological data
(up to the 36-month follow-up visit) for at least two time points and
available baseline CSF data. FDGmeasures that “failed” local quality con-
trol standards, had missing quality assessments, or obtained a “partial”
assessment were excluded from the analysis. The study comprised
85.5% of the total sample in ADNI who underwent lumbar puncture
at baseline. As shown in Table 1, the final analytical sample included
412 older adults with available data on variables of interest (1363 per-
son–time observations) diagnosed at study entry as NC (N = 82), MCI
(N = 241), and AD (N = 89). The participants were mostly male
(57.5%), ranged in age from 48 to 89 years (M= 72.28, SD= 7.32), re-
ported an average of 16.33 years of education (SD = 2.62; range, 8–
20 years), and roughly 54% were carriers of at least one ApoE-ε4 allele.
Table 1 also reports global cognition at baseline measured by the Mini
Mental State Examination (MMSE; Folstein et al., 1975). As a way
of evaluating the selectivity of the studied sample, we compared its
demographic characteristics with those of the full ADNI participant

http://www.adni-info.org


Table 1
Descriptive statistics of study variables at baseline.

Variable Total NC MCI AD

(N = 412) (N = 82) (N = 241) (N = 89)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Demographic characteristicsa

Gender (male %) 57.5% 51.2% 60.2% 56.2%
ApoE ε4 status (carrier %) 54.6% 34.2% 54.0% 75.3%
Age in years 72.28 (7.32) 72.45 (6.66) 71.49 (7.41) 74.25 (7.35)
Education in years 16.33 (2.62) 16.61 (2.59) 16.45 (2.59) 15.72 (2.64)

Global cognitionb

MMSE 27.03 (2.71) 29.06 (1.18) 27.74 (1.82) 23.22 (2.00)
FDG ROIb

Posterior cingulate 1.30 (0.19) 1.40 (0.16) 1.33 (0.17) 1.15 (0.16)
L temporal 1.17 (0.18) 1.27 (0.13) 1.20 (0.15) 1.00 (0.18)
R temporal 1.18 (0.16) 1.25 (0.12) 1.20 (0.14) 1.06 (0.17)
L angular 1.22 (0.19) 1.32 (0.14) 1.24 (0.16) 1.05 (0.18)
R angular 1.22 (0.18) 1.32 (0.14) 1.25 (0.16) 1.07 (0.19)
Composite ROI 1.22 (0.16) 1.31 (0.12) 1.24 (0.14) 1.06 (0.15)

Neuropsychological outcomeb,c

ADAS–Cog-13 17.67 (10.25) 8.67 (4.53) 15.88 (6.96) 31.22 (8.61)
CSF biomarkersb

Aβ1–42 169.89 (56.39) 211.15 (51.03) 169.46 (54.95) 132.61 (34.95)
t-Tau 98.33 (59.01) 67.68 (34.21) 94.42 (54.86) 138.12 (67.12)
p-Tau181p 41.54 (24.80) 31.39 (21.53) 39.85 (21.34) 55.60 (30.06)
t-Tau/Aβ1–42 0.69 (0.56) 0.35 (0.25) 0.66 (0.50) 1.11 (0.64)
p-Tau181p/Aβ1–42 0.29 (0.23) 0.17 (0.18) 0.28 (0.19) 0.45 (0.30)

Key: NC = normal control; MCI = mild cognitive impairment; AD = Alzheimer's disease; ApoE = apolipoprotein E; CSF = cerebrospinal fluid; Aβ = beta amyloid; p-
Tau = phosphorylated tau; t-Tau = total tau.

a The omnibus F-test was significant for age (F = 4.725, p = 0.009). Hochberg-adjusted agemean difference between theMCI and AD groupswas significant (p = 0.007). ApoE status
was associated with diagnosis at baseline (χ2 = 26.790, p b 0.001).

b The omnibus F-test was significant as well as all Hochberg-adjusted post-hoc pairwise comparisons.
c Lower scores reflect higher functioning or better performance.
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population at baseline. The analytical sample did not differ from the
general participant population in terms of age (MADNI = 72.79,
SDADNI = 7.67;Msample = 72.28; SDsample = 7.32; p= 0.905) and gen-
der (MADNI = 0.54, SDADNI = 0.49; Msample = 0.58; SDsample = 0.49;
p = 0.063). However, the studied sample was, on average, more edu-
cated (MADNI = 15.80, SDADNI = 2.92; Msample = 16.33; SDsample =
2.62; p b 0.001) and had a higher prevalence of ApoE-ε4 carriers
(MADNI = 0.47, SDADNI = 0.49; Msample = 0.55; SDsample = 0.49; p =
0.003). Therefore, results from the current data set are most applicable
to a group of individuals who, on average, have a college-level degree
and close to 50% have, at least, one copy of the ε4 allele.

FDG-PET measures

Longitudinal summary measurements of hypometabolism were
obtained from images preprocessed at the University of California,
Berkeley (UC Berkeley), following a standard four-step procedure
described in http://adni.loni.usc.edu/methods/pet-analysis/pre-
processing/. Further details on the quality control analyses and proce-
dures to enhance uniformity and reduce variability in PET images across
centers are provided in Joshi et al. (2009). The full standardized protocol
for image analysis is described in http://www.adni-info.org/Scientists/
ADNIStudyProcedures.aspx. FDG-PET data analyzed at UC Berkeley
used pre-specified regions of interest (ROIs) generated through a
meta-analysis of PubMed longitudinal and cross-sectional studies iden-
tifying the location of FDG-PET changes in the brainmost commonly af-
fected in AD and MCI patients or that were correlated with cognitive
performance. Detailed procedures for the FDG-ROI generation and sub-
sequent smoothing and normalization of volumes are explained else-
where (Jagust et al., 2010, 2009; Landau et al., 2010). The analytical
approach resulted in a set of five regions located in bilateral posterior
cingulate gyrus, right and left angular gyri, and middle/inferior tempo-
ral gyrus (denoted here as right and left temporal). Given the high bi-
variate correlations between the five FDG-ROIs at baseline and across
assessment waves (0.425 to 0.876), a unit-weighted composite was
also generated by averaging across all five ROIs for each participant
at each observation time-point. Longitudinal FDG measures collected
at baseline, 6-month, 12-month, 18-month (only MCI), and 24-month
were modeled as mediators in all subsequent parallel growth process
models. The collection of FDG-PET images varied slightly per study
protocol: ADNI 1 followed the schedule mentioned above; ADNI 1 CN
and late MCI individuals meeting the follow-up eligibility criteria for
inclusion in ADNI-GO, continued with yearly FDG imaging events; PET
scans for earlyMCI subjects newly enrolled in ADNI-GO (approximately
200 in themain study) were obtained at baseline; and ADNI-2 obtained
PET scans at baseline and every two years thereafter. Baseline mean
values for the five FDG-ROIs and the composite ROI included in the
present study are presented in Table 1.

Cognitive measures

The Alzheimer's Disease Assessment Scale–cognitive subscale
(ADAS–Cog) (Mohs et al., 1983; Rosen et al., 1984) was used as the tar-
get outcome measure. The ADAS–Cog is a rating instrument commonly
used tomeasure cognitive dysfunction in clinical trials and for detecting,
tracking, and staging AD. It was administered by trained individuals
at each study site. Scores are obtained from written and verbal re-
sponses to items measuring key areas of cognition in AD including ver-
bal episodic memory, language, comprehension, and ideomotor praxis.
The standard ADAS–Cog includes 11 items and the expanded scale
(ADAS–Cog-13) includes two additional items measuring visual atten-
tion and concentration (digit cancellation) and delayed verbal recall.
The expanded ADAS–Cog-13 scale was selected as the longitudinal out-
comemeasure. The 13 itemswere combined into a unit-weighted com-
posite score ranging from 0 to 85 with lower scores indicating better
cognitive performance. This measure was selected because it is a global
cognitive scale assessing multiple domains and is more precise in mea-
suring mild degrees of impairment than other global cognitive impair-
ment measures such as the MMSE (Tombaugh and McIntyre, 1992;
Wouters et al., 2010). The study included outcome observations from

http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
http://www.adni-info.org/Scientists/ADNIStudyProcedures.aspx
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all participants taken at five data collection time points: baseline, 6-
month, 12-month, 18-month, 24-month, and 36-month. Note that com-
pared to the FDGmediation process, assumed to unfold frombaseline to
month 24, the cognitive outcome change process extended the span of
time to include an extra year to attenuate issues involving concurrent
causation (Salthouse, 2011; Selig and Preacher, 2009).

The ADNI study administers alternate test forms at each visit in
which only the word lists are varied to minimize practice effects. To
insure unambiguous interpretation of changes in the ADAS–Cog-13 be-
tween time points, we conducted longitudinal measurement invariance
tests over a 36-month interval to determine whether the test items
assessed the same attribute across time (Horn and McArdle, 1992;
Meredith, 1993). Longitudinal invariance was evaluated using a confir-
matory factor analysis within the framework of structural equation
modeling (SEM; Meredith, 1993; Schaie et al., 1998). We tested and
compared a series of nested models that sequentially imposed more
restrictive constraints on the model parameters across time. That is,
we assessed the degree to which ADAS–Cog-13 factor structure
(configural invariance), factor loadings (metric invariance), factor
variance/covariance and item means (scalar invariance), and item
error variances were similar across time. The results provided evidence
in support of the test's longitudinal factorial invariance over the 36-
month period. (Results are available upon request from thefirst author.)
Means and standard deviations of the ADAS–Cog-13 at baseline are
reported in Table 1. The test reliability estimate of a 12-month test-
retest correlation was 0.86.

CSF biomarker measures

The standardized protocol for CSF sample collection and analysis in
ADNI is available at http://www.adni-info.org/Scientists/ADNIStudy
Procedures.aspx. Briefly, baseline CSF samples were collected at each
Fig. 1. Schematic representation of the parallel process growthmodel estimated to test the long
regional glucose metabolism over time. The model equations are notationally described in Ma
represented by circles, were regressed on six observed (squares) variables: age, gender, ApoE,
by two-headed curved arrows going towards observed and latent variables. Numbers on th
point indicate factor loadings. The asterisk (*) indicates that the loading was estimated. Th
Tau181p, t-Tau/Aβ1–42, and p-Tau181p/Aβ1–42. Themodels also included direct paths from each co
purposes.
study center and placed in polypropylene transfer tubes followed by
aliquoting, freezing at −80 °C, and shipping on dry ice to the ADNI
Biomarker Core laboratory at the University of Pennsylvania Medical
Center for banking, processing, and analysis (Shaw, 2008). After
implementing the necessary quality control studies and establishing
the validity of the analytical platform, the baseline CSF t-Tau, Aβ1–42,
and p-Tau181p were measured using the multiplex xMAP Luminex
platform and Innogenetics (INNO-BIA AlzBio3, Ghent, Belgium) immu-
noassay kit-based reagents. This system measures the biomarkers si-
multaneously in the same sample aliquot in ADNI individuals and in
an independent age-matched cohort of autopsy-confirmed AD cases
with premortem CSF samples (Shaw et al., 2009).

As displayed in Fig. 1, themediational processwasmodeled by asso-
ciating baseline CSFmeasures (predictors) and latent growth factors for
FDG-PET measures (capturing changes in the metabolic rate for glu-
cose) and cognitive function also indexing changes over time. Baseline
means and standard deviations for raw CSF variables are presented in
Table 1 by clinical group. Prior to statistical modeling, CSF biomarker
data were log-transformed to normalize their distribution.

To strengthen the validity of the mediation analysis, all models
controlled for the following covariates: initial clinical diagnosis, age at
baseline, gender (coded as 1 for Male), education level, and ApoE status
coded as ε4 present versus absent. A contrast coding scheme was used
for the three-level clinical diagnosis variable assigning “normal control”
as the reference level.

Statistical analysis

A SEM approach of building and evaluating latent growth curve
models (LGC; Meredith and Tisak, 1990; Muthén and Curran, 1997;
Singer and Willet, 2003) was used to tease apart direct versus indirect
effects of CSF biomarkers on the rate of decline in cognitive function
itudinal effects of CSFmeasures on the rate of change in cognition via the rate of change in
terials and Methods section. Latent variable intercepts (α0 and θ0) and slopes (α1 and θ1),
education, clinical diagnosis at baseline, and CSF(xi). Residual error variances are shown
e arrows going from the latent growth parameters to observed measures at each time
e CSF measures were assessed separately in the model and included: Aβ1–42, t-Tau, p-
variate (cj) to all the growth parameters, but have been omitted in the figure for simplicity

http://www.adni-info.org/Scientists/ADNIStudyProcedures.aspx
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and the potential mediating effects of changes in brain glucosemetabo-
lism when included in the causal pathway in a parallel change process.
In the LGCmodel applied in this study, performance at a givenmeasure-
ment time-point was determined by two factors (Tucker-Drob and
Salthouse, 2011): 1) an initial level factor representing baseline perfor-
mance, and 2) a change or “growth” curve slope factor, which repre-
sented annual change in the outcome over the span of the study. A
PPLGCmodel allows the simultaneousmodeling of the growth trajecto-
ries of the mediator and outcome and the assessment of mediational
processes (Cheong et al., 2003; MacKinnon et al., 2004). In this study,
hypotheses concerning indirect or mediational effects were tested by
usingparameter estimates obtained from the effect of baseline CSFmea-
sures (xi) on the growth rate factor of the mediator (brain glucose me-
tabolism) and the growth rate factor of the outcome (cognitive
function). This tenable explanatorymechanismwasmodeled and tested
using the two-wave PPLGCmediationmodel with non-equidistant time
points shown graphically in Fig. 1. Assuming linear relationships, the
growth of the measured variable for the cognitive outcome and the
FDG-PET mediator (measurement models) is expressed, respectively
as:

Yit¼θoiþθ1i timetþε1i and Mit¼α0iþα1i timetþε2i ð1Þ

where Y andM represent the vector of repeatedmeasures for individual
i over the t time points (0, 6, 12,…,T). The growth parameters include
vectors for initial status (θ0 for cognition and α0 for the mediator) and
for the linear slope (θ1 andα1) (Muthén and Curran, 1997). The follow-
ing regression equations are estimated to obtain themediation-relevant
portions of the model:

θ1i¼β0þβ1α1iþβ2xiþβ3ci1þ…þβ7ci5þζ1i ; ð2Þ

α1i¼γ0þγ1xiþγ2c1þ…þγ6c5þζ2i: ð3Þ

The residuals ζ1 and ζ2 are assumed to be normally distributed with
zeromeans, variancesσ2

1 andσ2
2 are uncorrelatedwith each other and

the covariates (cij; j = 1,…,5) (Muthén and Asparouhov, forthcoming).
Inserting Eq. (3) in Eq. (2) yields:

θ1i¼β0þβ1γ0þβ1γ1xiþβ1γ2c1þ…þβ1γ6c5þβ1ε2iþβ2xiþβ3c1þ…þβ7c5þε2i:

ð4Þ

Eq. (4) states that the “direct” effect of CSF (xi) (obtained at baseline)
on the cognitive slope (θ1), which captures the linear change in cogni-
tion over three years, is β2 and the “indirect” or “mediation” effect
through the FDG-PET slope, which also captures linear change but
over a 2-year period, is β1γ1. Both of these effects are conditional on
the joint effect of all the predictors in the model.

Some of the advantages of using a LGCmodeling framework to study
individual differences in growth parameters and assess mediational
mechanisms over similar approaches (e.g., hierarchical modeling or
mixed effects techniques) include the capability to (1) model more
complex multivariate relationships containing, for example, multiple
independent measures and time-invariant or variant mediation
influencing the underlying random effects of an outcome trajectory,
(2) define change over time in terms of unobserved latent factors
(Singer and Willet, 2003), (3) estimate model parameters simulta-
neously, and (4) incorporate in the model the unreliability of observed
measures (measurement error) (Rovine and Molenaar, 2001).

The PPLGCmodeling scheme for testingmediation proceeded in sev-
eral steps. First, using a univariate two-factor LGC model, we examined
the presence and type (linear, quadratic, etc.) of change in the outcome
(cognitive function) and the mediator (regional brain glucose uptake)
over data collection time points and whether or not change trajectories
varied as a function of the type of CSF biomarker. That is, we estimated
single-outcome latent growth models for a) cognition and b) FDG-PET
measures in each of six regions (bilateral posterior cingulate gyrus,
right and left angular gyri, right and left temporal gyri, and the average
of all regions) each with two latent factors defining, respectively, the
level (intercept) and the slope of the “growth” curve. Control variables
(clinical diagnosis, age at baseline, gender, education, and ApoE) were
also included in these models. Subject-specific mean functions were
plotted to explore growth shape and marginal growth trends. We
used a time-based LGC model in which the rates of change were as-
sumed to be person-specific functions of time since baseline evaluation
or the number of data collection time points (for other approaches, see
McArdle et al., 2002). That is, we centered time scores at time point 1.
The factor loadings of the growth factor were first fixed to represent
“linear” change and the fit of the model was examined. The inclusion
of higher-order terms in the growth curves and freely estimated time
points (represented with an asterisk * in Fig. 1) were also examined.
Second, after confirming growth and examining the shape of the trajec-
tories, we combined the models to include two outcomes at once and
tested for the longitudinalmediational effects of regional FDG-PETmea-
sures estimating the parameters simultaneously.

In all PPLGC models, the significance of mediation (indirect) effects
was examined using 95% bias-corrected (Bc) bootstrapped asymmetric
confidence intervals (CIs) (Efron and Tibshirani, 1993;MacKinnon et al.,
2004; Preacher and Hayes, 2008). Bc bootstrapped asymmetric CIs
do not require normality of the sampling distribution of the indirect
(mediation) effect estimates and the constituent paths of the indirect
effects and coverage properties of estimates are good even in small
samples (Kilian, 1998; Mackinnon et al., 2008, 2004). Additionally, Bc
bootstrapped CIs take into account possible correlations among all the
explanatory variables included in the model, allow dependencies be-
tween the standard error of the estimated effect and the effect parame-
ter, and efficiently single outmediational effects, possibly improving the
validity of statistical inferences. All mediational tests were performed
with 10,000 bootstrap replications. If the 95% Bc CI for a given point es-
timate failed to include 0, the effect was said to be significant. The nor-
mal approximation CIs were provided for all the single direct paths in
the model.

The fit of hypothesized models was assessed using multiple fit
indexes that were sensitive to model misspecification in growth curve
models and did not depend on sample size as much as the χ2 test
(Schermelleh-Engel et al., 2003; Wu et al., 2009). These included: the
root mean square error of approximation (RMSEA; Browne and
Cudeck, 1993), the comparative fit index (CFI; Bentler and Bonett,
1980), and the Tucker–Lewis Index (TLI; Tucker and Lewis, 1973).
Models with CFI and TLI values greater than 0.95 were considered to
adequately fit the data and a RMSEA less than 0.08 indicated satisfactory
fit (Hu andBentler, 1995).We also used residual diagnostics procedures
to assess possible model misspecification (Wang et al., 2005). Descrip-
tive analyses and exploration of growth trajectories were performed
in R, Version 3.0.2 (R Foundation for Statistical Computing, Vienna,
Austria). Growth model analyses were conducted in Mplus, Version
7.11 (Muthén and Muthén, 2013) using a full information maximum
likelihood estimator.

Results

Table 2 reports the bivariate correlations among the baseline predic-
tors, the mediators across five assessment points and the neuro-
cognitive outcomes measured at six time points. It can be seen that
FDG-PET mediators for the average measures across regions and cogni-
tive ability outcomes were strongly and negatively correlated both
within and across data collection time points. Most CSF measures
were correlated with both longitudinal cognitive and FDG metabolic
measures. All variables appeared to be correlated with outcomes of
interest, prior to or after multiple comparison adjustments, justifying
their inclusion in the analyses.



Table 2
Bivariate correlation statistics between predictors and longitudinal mediator and outcome variables.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Target outcome
1 ADAS–Cog M0 –

2 ADAS–Cog M6 0.90 –

3 ADAS–Cog M12 0.86 0.89 –

4 ADAS–Cog M18 0.73 0.82 0.75 –

5 ADAS–Cog M24 0.84 0.89 0.88 0.87 –

6 ADAS–Cog M36 0.75 0.85 0.81 0.82 0.91 –

Mediator
7 Av FDG-PET M0 −0.63 −0.63 −0.58 −0.48 −0.55 −0.47 –

8 Av FDG-PET M6 −0.52 −0.55 −0.52 −0.56 −0.59 −0.52 0.91 –

9 Av FDG-PET M12 −0.53 −0.55 −0.49 −0.51 −0.63 −0.50 0.91 0.91 –

10 Av FDG-PET M18 −0.33 −0.33 −0.31 −0.51 −0.50 −0.51 0.90 0.89 0.92 –

11 Av FDG-PET M24 −0.58 −0.59 −0.56 −0.48 −0.66 −0.56 0.86 0.87 0.91 0.93 –

CSF measures(predictor)
12 Aβ1–42 −0.47 −0.51 −0.48 −0.31 −0.52 −0.53 0.40 0.26 0.33 0.22 0.35 –

13 t-Tau 0.42 0.43 0.46 0.01 0.34 0.28 −0.29 −0.10 −0.24 −0.03 −0.17 −0.45 –

14 p-Tau181p 0.35 0.40 0.37 0.13 0.42 0.42 −0.26 −0.14 −0.25 −0.03 −0.27 −0.46 0.69 –

15 p-Tau181p/Aβ1–42 0.40 0.46 0.43 0.23 0.44 0.52 −0.34 −0.18 −0.26 −0.05 −0.25 −0.64 0.67 0.93 –

16 t-Tau/Aβ1–42 0.47 0.48 0.50 0.11 0.40 0.37 −0.35 −0.16 −0.30 −0.07 −0.18 −0.65 0.93 0.69 0.78 –

Demographics
17 Male 0.08 0.06 0.04 0.02 −0.01 0.04 −0.05 0.09 0.15 −0.03 0.02 −0.08 −0.22 −0.10 −0.05 −0.14 –

18 Education −0.13 −0.12 −0.14 −0.05 −0.08 0.02 0.10 0.10 0.11 0.03 0.03 0.08 −0.14 −0.05 −0.05 −0.13 0.21 –

19 Age 0.22 0.21 0.20 0.07 0.08 0.15 −0.11 −0.09 0.03 −0.21 −0.31 −0.13 0.06 −0.01 0.01 0.06 0.14 −0.08 –

20 ApoE ε4 0.26 0.29 0.26 0.16 0.28 0.30 −0.17 −0.12 −0.22 −0.02 −0.15 −0.43 0.32 0.33 0.38 0.39 0.00 −0.11 −0.15 –

21 dxMCI −0.21 −0.19 −0.14 0.02 0.26 0.19 −0.06 −0.10 0.06 −0.01 −0.08 −0.08 −0.08 −0.07 0.06 0.06 −0.13 −0.01 −
22 dxAD 0.68 0.67 0.63 0.64 0.35 −0.50 −0.34 −0.39 −0.40 −0.35 0.35 0.30 0.35 0.39 −0.01 −0.12 0.14 0.21 −0.62 –

Note. Correlations greater than the absolute value of ρ = 0.19 were significant using a per-test Sidak-adjusted p b 0.00047 and a family-wise alpha of 0.10.
Key. ADAS–Cog = Alzheimer's disease assessment scale-cognitive subscale-13 items; Av FDG-PET = Average or composite [18F]fluorodeoxyglucose positron emission tomography obtained from serial measurements (baseline; M0, to Month 24;
M24) in the following five brain regions: right and left angular gyri, bilateral posterior cingulate gyrus, and left middle/inferior temporal gyrus. CSF = cerebrospinal fluid; Aβ = beta amyloid; p-Tau = phosphorylated tau; t-Tau = total tau
ApoE = apolipoprotein E; MCI = mild cognitive impaired; AD = Alzheimer's disease.
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Univariate growth curve models

ADAS–Cog-13 outcome
Detailed results for all univariate LGC models including ADAS–Cog-

13 as the outcome are reported in the supplemental materials,
Table A.1, Appendix A. All models produced a good fit according to
established criteria. The CFI and TLI indices varied from 0.996 to 1 and
RMSEA values ranged from 0 to 0.032. The mean “growth” trajectory
or change factor estimate for the unconditional (no covariates) model
was positive and highly significant (1.87, p b 0.001) indicating an aver-
age decline of about two units per year in the ADAS–Cog-13. All the
conditional models also produced statistically significant mean growth
trajectories. The variances of the intercept and growth factors ex-
hibited statistically significant individual variability in initial status
and change in cognition over time (all ps b 0.05). All but Aβ1–42 CSF
measures yielded a positive and statistically significant effect on both
level (initial status) and change in cognitive performance over time.
The effect of Aβ1–42 on both growth factorswas negative and also signif-
icant; that is, low baseline amyloid beta protein levels predicted poor
baseline cognitive performance (higher scores in the test) and faster
decline over time. After testing alternative models, a linear growth sys-
tem with additive random coefficients was appropriate for the target
cognitive outcome. A linear trend was also observed in the panel of in-
dividual plots for the response variable over the time periods included
in this study.

FDG-PET mediator
Table A2, Appendix A, summarizes the results of the univariate LG

models for the FDG-PET mediator as an outcome organized by regional
brain measure (posterior cingulate gyrus, right and left angular gyri,
right and left temporal gyri, and the average of all regions). The overall
fit indices strongly suggested that the models fit the data well (CFI,
range: 0.985 to 1; TLI, range: 0.979 to 1; RMSEA, 0 to 0.035). A linear
LGC model also provided a good fit and was deemed appropriate for
the data. The shape of the growth curve was also inspected using indi-
vidual and mean plots.

The mean of the slope growth factor for all unconditional models
across brain regions was negative and statistically significant ranging
from (−0.025, p b 0.001; Average regional FDG-PET effect) to
(−0.031, p b 0.001; Posterior cingulate effect). The negative rate of
change in the slope indicated that, on average, FDG-PET scores de-
creased about 0.03 points between each assessment. Statistically sig-
nificant variance of intercepts and slopes suggested non-trivial
individual variability in both intercept and slopes around their mean
values across the five time points. Participants varied in their initial glu-
cosemetabolism scores and their rates of change over time. Interesting-
ly, the effect of CSF measures on initial and longitudinal changes in
cerebral metabolic rates of glucose utilization, varied by brain region.
For example, Aβ1–42 CSF measures had a significant positive regression
coefficient for the FDG-PET slope growth factor only in the left temporal
region. That is, low Aβ1–42 levels were associated with faster decline in
glucose metabolism specifically in the left temporal gyrus. The same
relationship was not observed in the other brain regions under study.
Notably, however, in all brain regions, low baseline levels of Aβ1–42

were associatedwith low initial glucosemetabolism. Similarly, the effect
of higher levels of p-Tau181p/Aβ1–42 on a significant reduction of glucose
uptake was observed in all but the right and left angular gyri. As shown
in Table A2, all the other baseline CSF measures (p-Tau181p, t-Tau,
and t-Tau/Aβ1–42) were highly predictive of changes in glucose meta-
bolic rates over time in all five brain regions and their composite (all
ps b 0.01).

Parallel process latent growth curve models and mediation tests

The main goal of this study was to formally test the mediational ef-
fect of changes in FDG-PET uptake in the relationship between baseline
CSF biomarkers and changes in cognitive performance. That is, we set
out to test the hypothesis that altered CSF measures would result in
regional glucose hypometabolism in the brain and this metabolic
change, in turn, would increase cognitive decline over a three-year pe-
riod. To this end, the FDG-PET mediator LGC model described above
was combined with the cognitive function outcome growth model
into a PPLGC model and regressed on baseline CSF biomarkers, gender,
education, age, ApoE, and diagnosis at entry. The hypothesized relation-
ships among the latent growth factors and predictors describing the
mediational process depicted in Fig. 1 were estimated separately for
each analyte andmean glucosemetabolic rate in each ROI. The point es-
timates of these relationships and corresponding 95% CIs are reported in
Table 3 by brain region and CSF biomarker predictor.

FDG-PET as mediator
The role of decline in FDG-PETmetabolism as a process variable me-

diating the effects of alterations in baseline CSF biomarkers on changes
in cognitive function varied by CSF analyte and brain region. However,
the effect of changes in metabolic function on changes in cognition
was statistically significant across all ROIs. That is, in all models, in-
creased metabolic dysfunction was associated with cognitive decline
over time, irrespective of the CSF biomarker predictor or measured
brain region. All the direct paths from metabolic function measures to
cognitive performance were significant (see Table 2). Interestingly, the
estimated mediated effects of FDG uptake in the left temporal region
were significant for all the CSF biomarker predictors evaluated in this
study. Compared to the effect of biomarkers of Aβ accumulation, such
as Aβ1–42, biomarkers of neuronal degeneration or injury (t-Tau, p-
Tau181p, and ratios including these analytes) had a stronger effect on
changes in FDG as a mediator across all brain regions. In all ROIs, the
tests of FDG-PET change rate as a mediator of the effects of t-Tau and
t-Tau/Aβ1–42 on cognitive change were statistically significant. For ex-
ample, in the right temporal region illustrating mediation of t-Tau/
Aβ1–42 effects, the significance of direct and indirect paths suggested a
mediational process such that high baseline Tau/Aβ1–42 levels negative-
ly affected FDG-metabolism by decreasing glucose metabolic rate,
which in turn had a detrimental effect on changes in cognitive function
over the studied time period.

The effect of alterations in Aβ1–42 as a predictor of cognitive decline
was only mediated by the effect of FDG uptake assessed in the left tem-
poral brain region. As depicted in Fig. 2, the mediational effects of met-
abolic function in the “composite” or average FDG uptake over five
regions (middle/inferior temporal, bilateral posterior cingulate, and lat-
eral angular)were significant for all CSF biomarker predictors except for
Aβ1–42. This finding suggests that a composite FDG score may be more
reliable but not necessarily a valid or representative measure of meta-
bolic activity in specific brain regions included in the average possibly
having an important role in the causal chain (or sequence) of neuro-
pathological events leading to AD.

Discussion

This study sought to investigate themechanisms behind the dynam-
ic association between alterations in CSF biomarkers and longitudinal
changes in cognitive performance and FDG uptake over time. In our
principal analysis we used a multimodal framework to simultaneously
model the longitudinal changes in brain glucosemetabolism, longitudi-
nal changes in cognition, their association over time, and the impact of
baselineCSFmeasures on these associationswhile controlling for demo-
graphic variables, baseline clinical diagnosis, andApoE ε4 status.We for-
mally tested whether the relationship between CSF analytes and the
growth (change) trajectory for cognitive function was mediated by
the growth (change) trajectories of glucose uptake and how themedia-
tion process varied by target brain region. In all models, altered levels of
CSF peptides were hypothesized to have a neurotoxic effect leading to
decreased glucose utilization and impaired cell function, indexed at an



Table 3
Mediation tests.

Mediational process Posterior cingulate Temporal (right)

Model fit (range) Model fit (range)

CFI: 0.996–1.0; TLI = 1.0; RMSEA = 0.0 CFI: 0.989–0.996; TLI = 0.987–0.992;
RMSEA = 0.016–0.026

Estimate 95% BC bootstrap CI Estimate 95% BC bootstrap CI

Direct paths
Aβ1–42 → FDG-PET slope 0.020 (−0.005, 0.044) 0.015 (−0.012, 0.042)
FDG-PET slope → cognitive slope −57.883a (−93.615, −22.919) −36.883a (−66.276, −7.490)
Aβ1–42 → cognitive slope 0.452 (−2.227, 4.701) −1.22 (−2.644, 0.203)

Estimated mediational effects (indirect paths)
Aβ1–42 FDG-PET slope → cognitive slope −1.140 (−6.140, 0.161) −0.536 (−3.556, 0.494)
Direct paths
p-Tau181p → FDG-PET slope −0.017 (−0.037, 0.004) −0.018a (−0.034, −0.001)
FDG-PET slope → cognitive slope −74.804a (−105,175, −44.432) −27.866a (−51.811, −3.921)
p-Tau181p → cognitive slope −0.025 (−3.97, 0.542) 0.525 (−2.583, 1.445)

Estimated mediational effects
p-Tau181p → FDG-PET slope → cognitive slope 1.257 (−0.255, 4.603) 0.493a 0.002, 4.276)
Direct paths
t-Tau → FDG–FDG-PET slope −0.020a (−0.038, −0.002) −0.028a (−0.044, −0.013)
FDG-PET slope → cognitive slope −64.539a (−92.664, −36.413) −33.944a (−67.085, −0.804)
t-Tau → cognitive slope −0.698 (−3.308, 0.513) −0.058 (−1.129, 1.333)

Estimated mediational effects (indirect paths)
t-Tau → FDG-PET slope → cognitive slope 1.317a (0.117, 4.064) 0.953a (0.134, 6.727)
Direct paths
t-Tau/Aβ1–42 FDG-PET slope −0.016a (−0.027, −0.005) −0.020a (−0.032, −0.008)
FDG-PET slope → cognitive slope −66.115a (−98.921, −27.028) −28.837a (−48.818, −8.855)
t-Tau/Aβ1–42 → cognitive slope −0.354 (−1.282, 0.573) 0.214 (−0.423, 0.850)

Estimated mediational effects (indirect paths)
t-Tau/Aβ1–42 → FDG-PET slope → cognitive slope 1.036a (0.180, 3.672) 0.570a (0.100, 1.588)
Direct paths
p-Tau181p/Aβ1–42 → FDG-PET slope −0.010 (−0.023, 0.002) −0.014 (−0.028, 0.001)
FDG-PET slope → cognitive slope −57.879a (−101.183, −14.576) −25.630a (−47.969, −3.291)
p-Tau181p/Aβ1–42 → cognitive slope 0.186 (−0.640, 1.012) 0.554 (−1.026, 1.274)

Estimated mediational effects (indirect paths)
p-Tau181p/Aβ1–42 → FDG-PET slope → cognitive slope 0.589 (−0.020, 2.819) 0.356 (−0.141. 1.371)

Mediational process Temporal (left) Angular (right)

Model fit (range) Model fit (range)

CFI: 0.996–1.0; TLI: 0.998–1.0;
RMSEA: 0.011–0.0

CFI: 1.0; TLI: 1.0; RMSEA: 0.0

Estimate 95% BC bootstrap CI Estimate 95% BC bootstrap CI

Direct paths
Aβ1–42 → FDG-PET slope 0.027a (0.005, 0.050) −0.012 (−0.015, 0.039)
FDG-PET slope → cognitive slope −43.082a (−80.079, −6.086) −61.703a (−89.417, 33.988)
Aβ1–42 → cognitive slope −0.336 (−2.211, 3.037) −0.647 (−2.223, 0.929)

Estimated mediational effects (indirect paths)
Aβ1–42 → FDG-PET slope → cognitive slope −1.166a (−5.166, −0.139) −0.729 (−2.824, 1.063)
Direct paths
p-Tau181p → FDG-PET slope −0.023a (−0.041, −0.006) −0.025a (−0.044, −0.006)
FDG-PET slope → cognitive slope −63.248a (−95.434, −31.062) −50.894a (−73.720, −28.067)
p-Tau181p → cognitive slope −0.796 (−2.162, 0.569) −0.488 (−1.625, 0.649)

Estimated mediational effects (indirect paths)
p-Tau181p → FDG-PET slope → cognitive slope 1.474a (0.167, 5.181) 1.278a (0.109, 3.794)
Direct paths
t-Tau → FDG-PET slope −0.022a (−0.036, −0.009) −0.025a (−0.041, −0.009)
FDG-PET slope → cognitive slope −64.073a (−94.484, −27.840) −53.939a (−75.890, −31.989)
t-Tau → cognitive slope −0.855 (−1.944, 0.234) −0.695 (−1.637, 0.248)

Estimated mediational effects (indirect paths)
t-Tau → FDG-PET slope → cognitive slope 1.441a (0.359, 5.605) 1.343a (0.340, 3.282)
Direct paths
t-Tau/Aβ1–42 FDG-PET slope −0.018a (−0.029, −0.007) −0.017a (−0.030, −0.003)
FDG-PET slope → cognitive slope −49.434a (−79.774, −19.133) −62.965a (−92.526, −33.405)
t-Tau/Aβ1–42 → cognitive slope −0.23 (−3.518, 0.648) −0.383 (−1.289, 0.524)

Estimated mediational effects (indirect paths)
t-Tau/Aβ1–42 → FDG-PET slope → cognitive slope 0.896a (0.155, 4.244) 1.042a (0.139, 2.749)
Direct paths
p-Tau181p/Aβ1–42 FDG-PET slope −0.013a (−0.023, −0.002) −0.011 (−0.024, 0.001)
FDG-PET slope → cognitive slope −49.484a (−83.657, −15.321) −65.349a (−100.101, −29.899)
p-Tau181p/Aβ1–42 → cognitive slope 0.073 (−1.240, 1.387) −0.126 (−0.987, 0.735)

Estimated mediational effects (indirect paths)
p-Tau181p/Aβ1–42 → FDG-PET slope → cognitive slope 0.633a (0.066, 3.636) 0.736 (−0.059, 2.683)
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Mediational process Angular (left) Composite ROIs

Model fit (range) Model fit (range)

CFI: 0.996–1.0; TLI: 0.998–1.0; RMSEA:
0.012–0.0

CFI: 1.0; TLI: 1.0; RMSEA: 0.0

Estimate 95% BC bootstrap CI Estimate 95% BC bootstrap CI

Direct paths
Aβ1–42 → FDG-PET slope 0.015 (−0.006, 0.037) 0.019 (−0.002, 0.039)
FDG-PET slope → cognitive slope −26.891a (−46.483, −7.299) −43.825a (−68.895, −18.756)
Aβ1–42 → cognitive slope −1.217a (−2.270, −0.163) −0.988 (−2.309, 0.334)

Estimated mediational effects (indirect paths)
Aβ1–42 → FDG-PET slope → cognitive slope −0.412 (−2.175, 0.269) −0.818 (−2.805, 0.234)
Direct paths
p-Tau181p → FDG-PET slope −0.013 (−0.031, 0.005) −0.021a (−0.037, −0.005)
FDG-PET slope → cognitive slope −26.538a (−47.613, −5.462) −36.973a (−57.285, −16.662)
p-Tau181p → cognitive slope 0.651 (−0.146, 1.447) 0.14 (−0.712, 0.992)

Estimated mediational effects (indirect paths)
p-Tau181p → FDG-PET slope → cognitive slope 0.338 (−0.201, 2.791) 0.765a (−0.076, −2.448)
Direct paths
t-Tau → FDG-PET slope −0.023a (−0.040, −0.005) −0.024a (−0.039, −0.009)
FDG-PET slope → cognitive slope −38.243a (−68.157, −8.330) −52.321a (−86.690, −17.943)
t-Tau → cognitive slope −0.145 (−0.983, 1.273) −0.26 (−1.418, 0.897)

Estimated mediational effects (indirect paths)
t-Tau → FDG-PET slope → cognitive slope 0.886a (0.073, 4.528) 1.269a (0.157, 4.165)
Direct paths
t-Tau/Aβ1–42 → FDG-PET slope −0.016a (−0.029, −0.003) −0.018a (−0.029, −0.007)
FDG-PET slope → cognitive slope −26.318a (−47.407, −5.229) −44.872a (−72.476, −17.267)
t-Tau/Aβ1–42 → cognitive slope 0.375 (−2.112, 1.009) −0.126 (−0.613, 0.865)

Estimated mediational effects (indirect paths)
t-Tau/Aβ1–42 → FDG-PET slope → cognitive slope 0.424a (0.046, 3.292) 0.807a (0.129, 2.971)
Direct paths
p-Tau181p/Aβ1–42 → FDG-PET slope −0.011 (−0.025, 0.003) −0.013a (−0.025, −0.001)
FDG-PET slope → cognitive slope −22.578a (−40.826, −4.329) −36.043a (−58.134, −10.484)
p-Tau181p/Aβ1–42 cognitive slope 0.643 (−0.086, 1.200) 0.376 (−0.258, 1.011)

Estimated mediational effects (indirect paths)
p-Tau181p/Aβ1–42 → FDG-PET slope → cognitive slope 0.250 (−0.138, 2.013) 0.467a (0.031, 2.458)

a Statistically significantly different from 0 based on the asymmetric 95% bias-corrected bootstrap confidence interval.

Table 3 (continued)
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aggregate level by FDG-PET, causing in turn cognitive decline as mea-
sured by ADAS–Cog-13.

Our findings suggest a regional causal sequence of events that iden-
tifies change in FDG hypometabolism as a mediator between anteced-
ent alterations in the production of CSF biomarkers and subsequent
cognitive impairment. Reduced glucose uptake also implies either a re-
duction in the number of synapses or a reduced synaptic metabolic ac-
tivity over time mediating the effect of early measures of CSF markers
on changes in cognitive function. In all pre-defined ROIs, which were
selected based on an extensive meta-analysis (Landau et al., 2011) sug-
gesting these are commonly-implicated regions in symptomatic AD,
Fig. 2. Estimates of the significant mediation test results for FDG-PET change rate as the mediator of the effects of alterations in CSF measures on cognitive decline over time across 5 dif
ferent brain regions.
higher baseline concentrations of putative indicators of neuronal dam-
age, such as t-Tau, p-Tau181p, and ratios including these measures,
were more predictive of decline in cerebral glucose metabolism,
which caused in turn decline in cognition, than lower baseline concen-
trations of Aβ1–42; a known marker of Aβ sequestration in neuritic
plaques. Mediational tests modeling changes in cerebral metabolic
rate for glucose, as the mediator of the effect of t-Tau or t-Tau/Aβ1–42

on cognitive change across time, were significant across all brain re-
gions. Consistent with previous findings, primarily in cross-sectional
studies, a significant direct effect of alterations in Aβ1–42 levels on
hypometabolism was observed in a single brain region: the middle/
-

image of Fig.�2
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inferior temporal gyrus (Okamura et al., 1999; Petrie et al., 2009). Sim-
ilarly, after including cerebral glucose uptake as amediator in the causal
path, the association between baseline Aβ1–42 or tau-related measures
and cognitive decline observed in the univariate growthmodels became
insignificant. These findings provide support for the revised temporal
framework model posited by Jack et al. (2013) in which reduced CSF
levels of the Aβ1–42 peptide (amyloid-related biomarkers reflecting
extracellular amyloid burden)may occurmuch earlier in thepathogenic
chain of events and are thus weakly correlated with concurrent cog-
nition, but may ultimately lead to detrimental effects on cognition.
Congruent with this theory of a temporal sequence of pathological
changes, we also showed that baseline markers of intra-neuronal neu-
rofibrillary degeneration (t-Tau, p-Tau181p, and ratios including these
biomarkers) predicted changes in brain glucose metabolism (a bio-
marker of neuronal function and structure) causing in turn changes in
cognitive performance across time. Using an extension of the recently-
introduced event-based model (Fonteijn et al., 2012) with multimodal
data, but focusing on “ordering” of events rather than longitudinal me-
diation, Young et al., 2014 also found a sequence of events strongly plac-
ing CSF and atrophy rates before cognitive test scores.

This study examined longitudinal data from a sample representing
the full range of the AD spectrum from healthy controls to mild demen-
tia and provided new information regarding the broad temporal chain
of events across the disease continuum. The study was not designed to
assess relatively early or transient nonlinear signal in presymptomatic
subjects. For example, some studies (Landau et al., 2012) have shown
a greater association between Aβ deposition and cognitive decline in
CN individuals than in individuals at later stages of the disease for
whom hypometabolism may become more prominent consequently
affecting cognitive abilities. Yet, other studies suggest the presence of
upregulated FDG metabolism in individuals with a positive β-amyloid
PET imaging result, but cognitively normal (Oh et al., 2014). The revised
hypothetical biomarker curvemodel proposed by Jack et al. (2013) also
conveys the idea that early increases in metabolism may pre-date
amyloid accumulation. To formally study such early FDG changes it
would be necessary to target people who will eventually develop AD
and examine their serial FDG metabolic patterns in the preclinical
phase. Several ongoing projects are studying this phase and the applica-
tion of the types of models we have described here to establish and test
competing causality hypotheseswould be of interest in that phase of the
disease (Johnson et al., 2014; Reiman et al., 2012; Villemagne et al.,
2013).

As we have noted above, the results are highly consistent with prior
work demonstrating stronger associations between cognition and tau-
related pathology rather than amyloid-related pathology. Presumably
this is linked to the fact that neurofibrillary tangles are intracellular
and the detection of these analytes in the CSF may be from the break-
down and clearance of such affected cells. A consistently replicatedfind-
ing is that a large portion of cognitively healthy older adults and people
at risk harbor amyloid in the brain (Johnson et al., 2014; Villemagne
et al., 2013). In a recent study of brain banked cases, Perez-Nievas
et al. (2013) showed that compared to AD, cognitively normal but am-
yloid harboring control brains were more likely to have diffuse rather
than neuritic plaques, less inflammation and microglial activation,
fewer neurofibrillary tangles, and more neurons and synapses. These
and other studies (Niedowicz et al., 2012) suggest that this type of
amyloid formation may be predictive of subsequent neurofibrillary
pathology and eventual neurometabolic decline. However, CSF amyloid
analytes and amyloid imaging are not sufficiently sensitive to dissociate
benign from toxic amyloid formations accruing in the brain. Tau imag-
ing with PET (Chien et al., 2014; Okamura et al., 2014; Xia et al., 2013)
is a new technique that can be done serially over time in individual pa-
tients. While, like amyloid biomarkers, the specificity to the various tau
forms has not been established, such methods will likely be helpful in
characterizing the accumulation and spread of fibrillary tau-related pa-
thology in the development of AD.
This study has some limitations that should be noted. The ADNI sam-
ple used in the analysis had a larger ApoE ε4 prevalence rate (55%) than
the total study population (48%). Previous research (Reiman et al., 2001,
1996; Small et al., 2000) has demonstrated a link between ApoE ε4 car-
riers and lower cerebral glucose metabolism as compared to ApoE ε4
non-carriers. Higher prevalence increases positive predictive value
and the interpretation of findings should take into account the charac-
teristics of the sample. It is also possible that there are other variables
not measured in the present study that may be causally affecting both
the brain glucose metabolism mediator and the longitudinal cognitive
outcome even after conditioning on the covariates we controlled for
(Imai et al., 2010). Limitations inherent to observational studies curb
the ability to infer causality with the certainty of randomized or exper-
imental designs. Sequential tests of different predictors of the mediator
theory set forth in the present study (e.g., tau and amyloid imaging as
described above; structural measures, such as hippocampal volume
and other measures of atrophy; genetic profiles of resilience genes
and susceptibility genes; markers of microglial-mediated inflammation
in the brain, such as YKL-40 or plasma-based markers) may be neces-
sary to strengthen the results of the analysis. A natural extension of
this study would include a third growth process representing the longi-
tudinal effect of changes in CSF biomarker predictors on FDG uptake
changes as a mediator and cognitive changes as the outcome. To mini-
mize issues related to “concurrent causation” and test a hypothesis of
a “temporal sequence of events,” a better design would include longitu-
dinal CSF biomarkers collected prior to the serial FDG-PET evaluations
and repeated cognitive assessments after the collection of PET imaging
biomarkers using time intervals that allow for the evolution of clinically
meaningful disease-associated events, which, of course, may vary ac-
cording to disease status. Still, advanced causal inference models may
also be required to increase the evidence of a true causal mediation
(Imai et al., 2010; Jo, 2008). However, despite the outlined study design
limitations, the results of the present mediation analysis examining si-
multaneously the effect of change processes in the mediator (FDG-
PET) on changes in cognition (ADAS–Cog-13) do provide
information that can be utilized to increase the evidence for causal in-
ference. Other modeling approaches using statistical machine learning
techniques showing promise in optimizing classification and regression
performance with multimodal baseline and longitudinal data (see, for
example, Zhang & Zheng, 2012)may also be further explored to test hy-
potheses of temporal sequence of events in disease progression. More
longitudinal studies and appropriatemodeling approaches are required,
aswell as relevant clinical information, to examine and validate hypoth-
esized mediational relationships explaining the complex sequence of
events leading to neurodegeneration in AD.
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