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Abstract
Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases
eligible for the study are nearly two times the Alzheimer’s disease (AD) patients for structural
magnetic resonance imaging (MRI) modality and six times the control cases for proteomics
modality. Constructing an accurate classifier from imbalanced data is a challenging task.
Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data
into the majority class. In this paper, we study an ensemble system of feature selection and data
sampling for the class imbalance problem. We systematically analyze various sampling techniques
by examining the efficacy of different rates and types of undersampling, oversampling, and a
combination of over and under sampling approaches. We thoroughly examine six widely used
feature selection algorithms to identify significant biomarkers and thereby reduce the complexity
of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers
including Random Forest and Support Vector Machines based on classification accuracy, area
under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our
extensive experimental results show that for various problem settings in ADNI, (1). a balanced
training set obtained with K-Medoids technique based undersampling gives the best overall
performance among different data sampling techniques and no sampling approach; and (2). sparse
logistic regression with stability selection achieves competitive performance among various
feature selection algorithms. Comprehensive experiments with various settings show that our
proposed ensemble model of multiple undersampled datasets yields stable and promising results.
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1. INTRODUCTION
Alzheimer’s disease (AD) is the most frequent form of dementia in elderly patients; it is a
neurodegenerative disease which causes irreversible damage to motor neurons and their
connectivity, resulting in cognitive failure and several other behavioral disorders which
severely impact day-to-day functioning of the patients (Alzheimer’s Association, 2012). As
the population is aging, by the year 2050, it is projected that there will be 13.5 million
clinical AD individuals accounting for a total care cost of $1.1 trillion (Alzheimer’s
Association, 2012). It is estimated that by the time the typical patient is diagnosed with AD,
the disease has been progressing for nearly a decade. Preclinical AD patients may not show
debilitating AD symptoms but the toxic changes in the brain and blood proteins have been
developing since inception of the disease (Vlkolinsk et al., 2001; Bartzokis, 2004). Early
diagnosis of AD is critical to prevent or delay the progression of the disease. Future
treatments could then target the disease in its earliest stages, before irreversible brain
damage or mental decline has occurred.

There are many studies which aim to capture the elusive biomarkers of AD for preclinical
AD research (Sperling et al., 2011). Several genetic, imaging and biochemical markers are
being studied to monitor progression of AD and explore treatment and detection options
(Mueller et al., 2005; Jack et al., 2008; Shaw et al., 2009; Frisoni et al., 2010; Reiman and
Jagust, 2011). For example, a genetic risk factor, Apolipoprotein E (APOE) gene, has been
shown to be associated with the late onset of AD. The APOE gene comes in different forms
or alleles; people with an APOE ε -4 allele have a 20% to 90% higher risk of developing
Alzheimer’s disease than those who do not have an APOE ε -4 (Corder et al., 1993; Mayeux
et al., 1998). Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission
tomography (FDG-PET) scans are powerful neuroimaging modalities which have been
shown by various cross-sectional and longitudinal studies to have the highest diagnostic and
prognostic power in identifying preclinical and clinical AD patients from control cases
(Dickerson et al., 2001; Devanand et al., 2007). MRI is a medical imaging technique
utilizing magnetic field to produce very clear 3-dimensional images enabling detailed study
of structural and functional changes in the body. MRI has become an essential tool in AD
research due to its non-invasive nature, widespread availability, and great potential in
predicting disease progression. Since the brain controls most functions of the body, it is
hypothesized that any changes in the brain are reflected in the proteins produced.
Proteomics, the study of proteins found in blood, is gaining momentum as an AD modality
due to its cost effectiveness, ease of availability, and ability to detect probable/positive AD
cases in simplistic initial screenings which could be followed up by other advanced clinical
modalities (Ray et al., 2007; O’Bryant et al., 2011).

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), a multi-pronged, longitudinal
study started as a 5 year project, is a collaborative effort by multiple research groups from
both the public and private sectors, including the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), 13 pharmaceutical companies, and 2 foundations that provided
support through the Foundation for the National Institutes of Health (NIH). It was launched
in 2003 as a $60 million, 5-year public-private partnership to help identify the combination
of biomarkers with the highest diagnostic and prognostic power. The primary goal of ADNI
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has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the time and cost of clinical
trials. This initiative has helped develop optimized methods and uniform standards for
acquiring biomarker data which includes MRI, PET, proteomics and genetics data on
patients with AD, mild cognitive impairment (MCI) and healthy controls (NC), and creating
an accessible data repository for the scientific community (Mueller et al., 2005). The
Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and
University of California – San Francisco.

One of the key challenges in designing good prediction models on ADNI data lies in the
class imbalance problem. A dataset is said to be imbalanced if there are significantly more
data points of one class and fewer occurrences of the other class. For example, the number
of control cases in the ADNI dataset is half of the number of AD cases for proteomics
measurement, whereas for MRI modality, there are 40% more control cases than AD cases.
Data imbalance is also ubiquitous in worldwide ADNI type initiatives from Europe, Japan
and Australia, etc. (Weiner et al., 2012). In addition, lots of medical research involves
dealing with rare, but important medical conditions/events or subject dropouts in the
longitudinal study (Duchesnay et al., 2011; Fitzmaurice et al., 2011; Jiang et al., 2011;
Bernal-Rusiel et al., 2012; Johnstone et al., 2012). It is commonly agreed that imbalanced
datasets adversely impact the performance of the classifiers as the learned model is biased
towards the majority class to minimize the overall error rate (Estabrooks, 2000; Japkowicz,
2000a). For example, in Cuingnet, et al. (2011), due to the imbalance in the number of
subjects in NC and MCIc (MCI Converter) groups, they achieved a much lower sensitivity
than specificity. Similarly, in our prior work (Yuan et al., 2012), due to the imbalance in the
number of subjects in NC, MCI and AD groups, we obtained imbalanced sensitivity and
specificity on AD/MCI and MCI/NC classification experiments. Recently, Johnstone et al.
(2012) studied pre-clinical AD prediction using proteomics features in the ADNI dataset.
They experimented with imbalanced and balanced datasets and observed that the sensitivity
and specificity gap significantly reduces when the training set is balanced.

In machine learning field, many approaches have been developed in the past to deal with the
imbalanced data (Chan and Stolfo, 1998; Provost, 2000; Japkowicz and Stephen, 2002;
Chawla et al., 2003; Ko cz et al., 2003; Maloof, 2003; Chawla et al., 2004; Jo and
Japkowicz, 2004; Lee et al., 2004; Visa and Ralescu, 2005; Yang and Wu, 2006; Ertekin et
al., 2007; Van Hulse et al., 2007; He and Garcia, 2009; Liu et al., 2009c). They can be
broadly classified as internal or algorithmic level and external or data level. The algorithmic
level approaches involve either designing new classification algorithms or modifying the
existing ones to handle the bias introduced due to the class imbalance. Many researchers
studied the class imbalance problem in relation to the cost-sensitive learning problem,
wherein the penalty of misclassification is different for different class instances, and
proposed solutions to the class imbalance problem by increasing the misclassification cost of
the minority class and/or by adjusting the estimate at leaf nodes in case of decision trees
such as Random Forest (RF) (Knoll et al., 1994; Pazzani et al., 1994; Bradford et al., 1998;
Elkan, 2001; Chen et al., 2004). Akbani et al. proposed an algorithm for learning from
imbalanced data in case of Support Vector Machines (SVM) by updating the kernel function
(Akbani et al., 2004). Recognition based (one-class) learning was identified as a better
solution for certain imbalanced datasets instead of two-class learning approaches
(Japkowicz, 2001). The external or data level solutions include different types of data
resampling techniques such as undersampling and oversampling. Random resampling
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techniques randomly select data points to be replicated (oversampling with or without
replacement) or removed (undersampling). These approaches incur the cost of over-fitting or
losing the important information respectively. Directed or focused sampling techniques
select specific data points to replicate or remove. Japkowicz proposed to resample minority
class instances lying close to the class boundary (Japkowicz, 2000b) whereas Kubat and
Matwin (1997) proposed resampling majority class such that borderline and noisy data
points are eliminated from the selection. Yen and Lee (2006) proposed cluster-based under-
sampling approaches for selecting the representative data as training data to improve the
classification accuracy. Liu et al. (2009) developed two ensemble learning systems to
overcome the deficiency of information loss introduced in the traditional random
undersampling method. Chawla et al. (2002) designed a sophisticated algorithm based on
nearest neighbors to generate synthetic data for oversampling (SMOTE) and combined it
with undersampling approaches and achieved significant improvements over random
sampling techniques. Padmaja et al. (2008) proposed an algorithm, called Majority filter-
based minority prediction (MFMP), and achieved better performance than random
resampling approaches. Estabrooks et al. (2004) dealt with the rate of resampling required
and proposed a combination scheme heavily biased towards under-represented class to
mitigate the classifier’s bias towards the majority class. Joshi et al. (2001) combined results
from several weak classifiers and concluded that boosting algorithms such as RareBoost and
AdaBoost effectively handle rare cases. Zheng and Srihari (2003) proposed a novel feature
level solution based on selecting and optimally combining positive and negative features.
This approach was specifically devised to solve the imbalanced data problem in text
categorization.

Apart from the internal and external solutions, evaluation of the classifier for imbalanced
datasets has always remained a big challenge (Elkan, 2003). Provost and Fawcett (2001)
proposed the ROC convex hull method for estimating classifier performance. Ling and Li
(1998) used lift analysis as the performance measure, for marketing analysis problem, which
is a customized version of ROC curve. Kubat and Matwin (1997) used the geometric mean
to assess the classifier performance. The internal approaches are quite effective; for
example, Zadronzy et al. (2003) proposed a cost-sensitive ensemble classifier Costing which
yielded better results than random sampling methods. However, the greatest disadvantage of
internal level solutions is that they are very specific to the classification algorithm. On the
other hand, the external or data level solutions are classifier independent, portable, and
therefore more adaptable. In this work, we focus on developing and evaluating ensemble
models based on data level methods.

While ubiquitous and important, imbalanced data analysis has not received enough attention
in the neuroimaging field, at least for the ADNI dataset. This paper aims to fill this gap by
studying an ensemble technique to tackle the class imbalance problem in the ADNI dataset.
The resampling approaches that we studied include random undersampling and
oversampling (Jo and Japkowicz, 2004; Yen and Lee, 2006; Van Hulse et al., 2007; He and
Garcia, 2009; Liu et al., 2009c), SMOTE oversampling (Chawla et al., 2002), and K-
Medoids based undersampling. We extended our study by varying rates of undersampling
and oversampling independently, and a combination of different rates of oversampling and
undersampling to generate balanced training sets. In AD research, it is crucial to determine a
few significant bio-markers that can help develop therapeutic treatment. In this paper, we
examine six state-of-the-art feature selection algorithms including Student’s t-test, Relief-F,
Gini Index, Information Gain, Chi-Square, and Sparse Logistic Regression with stability
selection. The classifiers studied are decision tree based Random Forest (RF) classifier and
decision boundary based Support Vector Machine (SVM) classifier. The classification
evaluation criterion is a combination of test accuracy, AUC, sensitivity, and specificity. As
an illustration, we study clinical group (diagnostic) classification problems using the ADNI
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baseline MR imaging and proteomics data. The multitude of experiments conducted
corroborated the efficacy of the ensemble system which includes an ensemble of multiple
completely undersampled datasets (majority class is reduced to match minority class count)
using K-Medoids together with feature selection based on sparse logistic regression and
stability selection.

2. SUBJECTS AND METHODS
2.1. Subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). ADNI is the result of efforts
of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in
the research, including approximately 200 cognitively normal older individuals, 400 people
with MCI, and 200 people with early AD. For up-to-date information, see www.adni-
info.org.

In our experiments, we used the baseline MRI and proteomics data as the input features
because of their wide availability. The MRI image features in this study were based on the
imaging data from the ADNI database processed by the UCSF team, who performed cortical
reconstruction and volumetric segmentations with the FreeSurfer image analysis suite
(http://surfer.nmr.mgh.harvard.edu/). The processed MRI features come from a total of 648
subjects (138AD, 319 MCI and 191 NC), and can be grouped into 5 categories: average
cortical thickness, standard deviation in cortical thickness, the volumes of cortical
parcellations (based on regions of interest automatically segmented in the cortex), the
volumes of specific white matter parcellations, and the total surface area of the cortex. There
were 305 MRI features in total. Details of the analysis procedure are available at http://
adni.loni.ucla.edu/research/mri-post-processing/. More details on ADNI MRI imaging
instrumentation and procedures (Jack et al., 2008) may be found at the ADNI web site
(http://adni.loni.ucla.edu). The proteomics data set (112 AD, 396 MCI, and 58 NC) was
produced by the Biomarkers Consortium Project “Use of Targeted Multiplex Proteomic
Strategies to Identify Plasma-Based Biomarkers in Alzheimer’s Disease”1 (see URL in the
footnote). We use 147 measures from the proteomic data downloaded from the ADNI web
site.

The subjects of interest in AD research are divided into three broad categories: Control or
normal cases (NC), mild cognitive impairment (MCI) cases and AD cases. The MCI cases,
based on their status when followed-up over the course of a 4 year period, are further
divided into MCI stable or non-converter cases (MCI NC), i.e., those MCI individuals who
remain at MCI status and MCI converter cases (MCI C), i.e., those MCI patients who
subsequently progress to AD. The summary of the number of samples for MRI and
proteomics modalities, which passed the quality control and were available for the current
study, and their baseline features together with disease status, are listed in Table 1. The data
imbalance problem is clearly shown in Table 1. For example, in Table 1, AD cases are
nearly double the number of control cases for the proteomics modality.

We examined both negative and positive class imbalances depending upon the prediction
task and the feature set used. In proteomics measurements, there are 58 control cases
(treated as negative class) versus 391 MCI cases (including both stable and converters;
treated as positive class). For MRI modality, there are 191 control cases (treated as negative

1http://adni.loni.ucla.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf
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class) and 138 AD cases (treated as positive class). Disease prognosis is a critical task as the
penalty attached to incorrect prediction is more than monetary. AD studies are targeted to
provide early treatment to probable AD cases and to prevent or delay AD progression in AD
cases. Incorrectly predicting an AD case as normal will prevent the patient from getting the
required (or timely) medical treatment thereby reducing the patient’s life expectancy. On the
other hand, incorrect prediction of AD as a control case might cause distress to the patient
and the family. Hence, it is challenging to determine the optimal costs to positive or negative
class instances. Given the subtle and critical nature of the domain, in this study, we
thoroughly examined different data re-sampling approaches and proposed a simple and
versatile ensemble model approach to effectively handle class imbalance situation in the
ADNI dataset.

2.2. Ensemble Framework
The ensemble system proposed in this study is a combination of data re-sampling technique,
feature selection algorithm, and binary prediction model. The proposed ensemble system
belongs to the class of external approaches with algorithmic level solutions. As noted earlier,
external approaches for class imbalance problems are easily adaptable and are independent
of the feature selection or classification algorithms. Furthermore, based on the domain
requirements, algorithmic level solutions can be integrated with the proposed model to
generate customized sophisticated learning model. This demonstrates the simplicity and
versatility of our ensemble system. Within the proposed ensemble system, we analyze four
basic data sampling approaches in addition to the no sampling approach, six feature
selection algorithms, and two classification algorithms. The following are the data sampling
approaches studied in this paper:

1. No Sampling: All of the data points from majority and minority training sets are
used.

2. Random Undersampling: All of the training data points from the minority class are
used. Instances are randomly removed from the majority training set till the desired
balance is achieved. One disadvantage of this approach is that some useful
information might be lost from the majority class due to the undersampling. This
will be referred to as “Random US” in the following tables and figures.

3. Random Oversampling: All data points from majority and minority training sets are
used. Additionally, instances are randomly picked, with replacement, from the
minority training set till the desired balance is achieved. Adding the same minority
samples might result in overfitting, thereby reducing the generalization ability of
the classifier. This will be referred to as “Random OS” in the following tables and
figures.

4. K-Medoids Undersampling: This is based on an unsupervised clustering algorithm
in which the cluster centers are the actual data points. The majority training set is
clustered where the number of clusters equals the number of minority training
examples. Since, the initial cluster centers are chosen randomly, the process is
repeated and the best result (the one with the minimum cost) is selected. The final
training set is a combination of all data from the minority training set and the
cluster centers from the majority training set. This approach is used only for
undersampling, hence it will be referred as “K-Medoids” for the rest of this paper.

5. SMOTE Oversampling: SMOTE is the acronym for “Synthetic Minority Over-
sampling Technique” which generates new synthetic data by randomly
interpolating pairs of nearest neighbors. Details of the SMOTE algorithm can be
found in the work by Chawla et al. (2002). This study used SMOTE to generate
new synthetic data for the minority training set. The final training set is a
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combination of all data from the majority and minority training sets and,
additionally, the new synthetic minority data such that final training set is balanced.
In this paper we use SMOTE only for oversampling, and it will be referred as
“SMOTE” in the following figures and tables.

As noted earlier, an important goal of AD research is to identify key bio-signatures. The bio-
signature discovery is done through feature selection which is defined as the process of
finding a subset of relevant features (biomarkers) to develop efficient and robust learning
models. Feature selection is an active research topic in the machine learning field. Based on
prior work involving analysis of feature selection algorithms for bio-signature discovery in
ADNI data (Dubey, 2012), this work explored the following six top-performing state-of-the-
art feature selection algorithms: (1) two tailed Student’s t-test 2 (referred to as T-Test); (2)
Relief-F 3 based on relevance of features using k-nearest neighbors; (3) Gini Index3 based
on measure of inequality in the frequency distribution values; (4) Information Gain3 which
measures the reduction in uncertainty in predicting the class label; (5) Chi-Square3 test for
independence to determine whether the outcome is dependent on a feature; and (6) sparse
logistic regression with stability selection (Meinshausen and Bühlmann, 2010) (referred to
as SLR+SS) to select relevant features. A detailed description of feature selection algorithms
can be found in Appendix.

In addition, two classifiers including Random Forest (RF) and Support Vector Machine
(SVM) were used for classification using the top features selected. The framework for the
ensemble system is illustrated in Figure 1. The graphical illustration of the basic data
resampling techniques discussed above is shown in Figure 2 and Figure 3. Intuitively, one of
the advantages of the undersampling over oversampling approach is that it reduces the
overall training data size thereby saving memory and speeding up the classification process.
In many empirical studies, undersampling has outperformed oversampling (Japkowicz,
2000a; Drummond and Holte, 2003). In addition to these basic re-sampling approaches,
different rates of re-sampling and combination re-sampling approaches were also explored
in our study.

2.3. Detailed Ensemble Procedure
The mathematical formulation of the problem statement and the solution is defined as
follows:

Set of feature selection algorithms:

F = {T-Test, Relief-F, Gini Index, Information Gain, Chi-Square, SLR+SS}

Set of class-imbalance handling approaches:

S = {Different types and rates of data re-sampling techniques}

Set of classification algorithms:

C = {Random Forest, Support Vector Machine}

An ensemble system is defined as follows:

E= {f, s, c}, where f ∈ F, s ∈ S, and c ∈ C

For any set X, |X| is defined as the cardinality of the set.

2Matlab’s ttest2 function was used.
3We used the Feature Selection package in Zhao, et al. (2011)
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Hence there were |F|×|S|×|C| ensemble systems studied in this paper for a given prediction
task as illustrated in Figure 1. In this work, the experiments were designed such that we
evaluated each ensemble system using k-fold cross validation. The training set in each cross
fold was sampled multiple times to reduce the bias due to random dataset generation, thus
producing multiple learning models. These models were combined using majority voting,
where the final label of an instance is decided based on the majority votes received from all
the models. In case of tie, the probability of the estimation given by the model is taken into
consideration. For example, if 30 models (using the same re-sampling technique on the
training set) are trained to estimate the labels of a test set and 20 models assign a test data
point to class 1 whereas remaining 10 models assign it to class 2, then the final label of this
particular test data point is taken as class 1. We also reported the averaged performance of
all models and used it as the baseline for comparison.

2.4. Experimental Setup
The experiments conducted in this study were designed to maximally reduce the bias
introduced due to randomness and to generate empirically comparable ensemble models.
The pre-processed data was then divided into majority and minority sub-datasets. 10-fold
cross validation was used such that each sub-dataset was partitioned into a fixed 9:1 train-
test ratio. The train and test sets from the respective classes were combined to generate a
training dataset and a testing dataset. Data resampling techniques were applied to the
training dataset whereas for a given prediction task, the testing dataset was kept constant
between different resampling techniques for a fair comparison. For example, for the task of
discriminating control from AD cases, random undersampling and SMOTE oversampling
techniques used the same test set for a given cross fold. This approach facilitates accurate
comparison of the efficacy of different models (refer to Figure 1). Each cross-fold had
multiple training sets for various resampling techniques (except for no-sampling approach,
where each cross fold had just 1 dataset) wherein the test set remained the same and the
training set varied based on the type of data re-sampling technique employed. In case of K-
Medoids undersampling, the process of choosing the cluster center is repeated 10 times and
the set of cluster centers which gives the minimum cost is selected. The SMOTE
oversampling algorithm can have many variations in the choice of the new data point
(synthetic data) lying on the line segment joining two nearest neighbors. In this paper, we
used the basic approach which randomly chooses the synthetic data point on the line
segment. The stability selection procedure used 1000 bootstrap runs and selected those
prominent features. The classifiers with default settings were used for all experiments in this
study. The predictions obtained from the ensemble model were compared with clinical
diagnosis to evaluate the efficacy of the model. The probability of the prediction, obtained
from the classifier for each test instance was recorded for later use. The efficacy of different
ensemble systems was compared using various performance metrics including accuracy,
sensitivity, specificity, and area under the ROC curve (AUC). These metrics are defined as
follows:

where TP refers to the number of samples correctly identified as positive (True Positive), FP
refers to the number of samples incorrectly identified as positive (False Positive), TN refers
to the number of samples correctly identified as negative (True Negative), and FN refers to
the number of samples incorrectly identified as negative (False Negative). Accuracy
measures the percentage of correct classifications by the model. Sensitivity, also known as
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recall rate or True Positive Rate (TPR), is the proportion of positive samples who are
correctly identified as positive. Specificity is the proportion of negative samples who are
correctly identified as negative. It is also known as False Positive Rate (FPR). AUC is
computed by averaging the trapezoidal approximations for the curve created by TPR and
FPR. Multiple classification models were generated for every cross fold, each of which
provides a prediction, positive or negative, for the given class instance. Accuracy,
sensitivity, specificity, and AUC are computed by utilizing the majority labels as discussed
in Section 2.3.

3. RESULTS
This section provides the details of the comprehensive experiments performed and results
obtained to compare efficacy of different ensemble systems. This study was focused on
binary classification problem of identifying control, MCI, and AD cases from one another.
Only MRI and proteomics modalities were studied as these are among the most easily
available features in the AD domain. This section is divided into four subsections where
each subsection compares the proposed ensemble framework with traditional and/or
sophisticated solutions for the class imbalance problem. In Section 3.1, feature selection
algorithms and basic data re-sampling approaches (refer to Section 2.2) were compared for
different prediction tasks and modalities. Some researchers examined the use of combination
approaches where different resampling techniques were combined to achieve a balanced
training set (Chawla et al., 2002). In Section 3.2 we studied such an approach and compared
it with our proposed model. On the other hand, some researchers have questioned the need
of a balanced training set and essayed imbalanced training sets obtained by different rates of
data sampling (Estabrooks et al., 2004); we examined the effect of rate of resampling in
Section 3.3. Finally, in Section 3.4 we compared the proposed approach with the multi-
classifier multi-learner approach (Chan and Stolfo, 1998).

In the following tables and figures, “(−)” is used to represent the negative class, whereas
“(+)” is used to represent the positive class. “RF Avg” and “SVM Avg” represent averaged
performance measures and “RF MajVote” and “SVM MajVote” represent majority voting
performance measures using RF and SVM classifiers.

3.1. Comparing basic data resampling techniques
For the task of predicting NC from MCI cases using proteomics measurements, we used 5
basic data re-sampling techniques (refer to Section 2.2) and each approach used 6 feature
selection algorithms and 2 different classifiers, thus generating 60 (= 5×6×2) ensemble
systems. Each ensemble system used 10 fold cross-validation and 30 random datasets in
each cross-fold except the no-sampling approach, yielding 300 (=10×30) classification
models. The data distribution for no sampling, undersampling (random and K-Medoids), and
oversampling (random and SMOTE) techniques is summarized in Table 2. To evaluate the
six feature selection algorithms, we compared the performance of the top features obtained
from each of these algorithms. A few selected comparison graphs are illustrated in Figure 4.
All other data resampling techniques produced similar results (Dubey, 2012). As seen from
this figure, the performance metric increases smoothly and stabilizes after selecting top 10–
12 features; hence the results reported in this study are for top 10 features. Comparison of
the 6 feature selection algorithms for top 10 features using SVM classifier (since SVM gave
better classification measures than RF in most cases), is illustrated in Figure 5. The absolute
difference between sensitivity and specificity (referred to as Sensitivity Specificity gap) is
displayed for each feature selection algorithm, which illustrates the classifier’s effectiveness
in handling the class imbalance. A smaller gap between sensitivity and specificity is
desirable. Clearly, SLR+SS outperformed other feature selection algorithms in all
experiments; the overall performance of T-Test and GiniIndex was better than the remaining

Dubey et al. Page 9

Neuroimage. Author manuscript; available in PMC 2015 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ones. Since T-Test is very popular in the neuroimaging domain, this work reports its
performance along with SLR+SS for all following experiments. The results are summarized
in Table 3. Note that for the sake of brevity, we only report the most significant and
illustrating results here.

From Figure 5 and Table 3, undersampling approaches, specifically K-Medoids, obtained
better classification performance for imbalanced ADNI data. SLR+SS performed better in
K-Medoids than random under-sampling whereas other feature selection algorithms showed
similar or slightly better performance for random under-sampling. These results corroborate
the efficacy of the ensemble system composed of SLR+SS feature selection algorithm, K-
Medoids data re-sampling method, and SVM classifier. Also, majority voting results were
better than the respective averaged performance measures.

Similar observations were made for the NC/MCI prediction task using MRI features. The
summary of datasets used is provided in Table 4 and the classification results are given in
Table 5. Table 6 and Table 7 represent data distribution and prediction performance,
respectively, of the classical NC/AD prediction task using proteomics features. The data and
the performance measures of NC/AD task using MRI features are summarized in Table 8
and Table 9, respectively. In this case, we encountered negative class majority. The task of
predicting NC from MCI Converters & AD cases experiences a significant class-imbalance
situation. Table 10 and Table 11 summarize the data details and performance measures for
this task using proteomics features. The MRI counterparts of this task are given in Table 12
and Table 13. From these six classification tasks, we conclude that the K-Medoids
undersampling approach dominated the overall efficacy of the ensemble system more than
any other factor.

3.2. Comparison with a combination scheme
Chawla et al. (2002) proposed a combination scheme by mixing different rates of
oversampling (using SMOTE) and random undersampling to reverse the initial bias of the
learner towards the majority class in favor of the minority class. The training set was not
always balanced with respect to two classes; the approach forced the learner to experience
varying degrees of undersampling such that at some higher degree of undersampling the
minority class had larger presence in the training set. We examined their combination
scheme approach for NC/MCI prediction task using proteomics data. The training set was
re-sampled (undersampled/oversampled) at 0%, 10%, 20%, … 100%. 0% re-sampling is
equivalent to “No Sampling” and 100% re-sampling is known as complete sampling or full
sampling. Hence, in 100% undersampling, the majority class is reduced to match the
minority class count and 100% oversampling increases the minority samples in the training
set to match the majority class count. The computation of the resampling rate is a slightly
modified version of the resampling rate calculation proposed by Estabrooks et al.
(Estabrooks et al., 2004). Mathematically, the gap between majority and minority count is
divided by the desired number of resamplings and is referred to as diffCount in this study.
We started resampling the data at 10%, in increments of 10% till 100% resampling is
achieved, hence the difference between majority and minority count was divided by 10. In
case of undersampling, the majority class count is reduced by a multiple of diffCount.
Similarly, a multiple of diffCount is used to increment the minority count in oversampling
case. For example, if there are 52 negative samples and 356 positive samples available for
training, and we are resampling at 10% as explained earlier, then the diffCount = (356 – 52)/
10 = 30.4. Therefore, 40% undersampling gives 234 (≈ 356 – 4 × 30.4) majority class count
and a 30% oversampling gives 143 (≈52 + 3 × 30.4)minority samples in the training set. In
our experimental setup, the training set was always balanced using different rates of K-
Medoids undersampling and SMOTE oversampling. Hence if the majority class was 20%
undersampled, then the minority class was 80% oversampled. The data used in different
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sampling rates is summarized in Table 14 and the data distribution is illustrated in Figure 6.
As before, 144 (=6×12×2) ensemble systems were generated using six feature selection
algorithms, 12 resampling techniques, and RF and SVM classifiers. From the classification
results, summarized in Table 15, it is evident that complete K-Medoids undersampling
(referred to as S0_K100) performs better than other resampling rates. Also, SLR+SS and
SVM gave superior learning models and majority voting was more effective than simple
averaging. These results are compared in Figure 7.

3.3. Comparing different rates of data resampling
Estabrooks et al. (2004) proposed a multiple resampling method, to efficiently learn from
imbalanced data. They experimented with independently varying rates of oversampling and
undersampling. They generated 20 datasets, 10 each for oversampling and undersampling,
by increasing the resampling rate in increments of 10% till 100% resampling is achieved.
From the experiments conducted on various domains, they concluded that optimal
resampling rate depends upon the resampling strategy and it varies from domain to domain.
In this paper, we studied effects of varying rates of oversampling and undersampling on NC/
MCI prediction task for proteomics features. The experimental setup consisted of 10 cross
folds, each having 10 datasets and 9:1 train-test ratio in each dataset. Only one of the two
resampling approaches is utilized for a particular rate of resampling. Hence, the training set
was not balanced except in the event of complete oversampling and undersampling. We
used diffCount measure, as explained in previous experiments, to achieve varying rates of
resampling and examined 20 resampling techniques. Table 16, Table 17 and Figure 8
summarize the data distribution used in this experiment. The results of comparison of
classification efficacy for independently varying rates of under and over sampling
approaches are provided in Table 18. This dataset was dominated by positive class samples;
hence high sensitivity and low specificity were expected. As noted earlier, the effectiveness
of a classification model is inversely proportional to the sensitivity-specificity gap. We used
this criterion and observed that in the ADNI data set, the gap decreased with increasing level
of oversampling (SMOTE) till 40% SMOTE and started increasing again. Whereas, the gap
gradually decreased with increasing degrees of undersampling (K-Medoids) and the best
results were achieved at 100% K-Medoids with high sensitivity (0.89), good specificity
(0.812), high AUC (0.97), and accuracy (88%). Only the complete K-Medoids
undersampling approach increased the specificity by more than 51%. The results for
majority performance metrics are illustrated in Figure 9.

3.4. Comparison with a multi-classifier learning approach
Chan and Stolfo (1998) proposed a multi-classifier meta-learning approach and concluded
that the training class distribution affects the performance of the learned classifiers and the
natural distribution can be different from the desired training distribution that maximizes
performance. Their model ensured that none of the data points were discarded. They split
the majority class into non-overlapping subsets such that each subset is roughly the size of
minority class. A classifier was trained on each of these subsets and the minority training
set. Later, these classifiers were stacked together to build a final ensemble classifier. In our
study on ADNI data for NC/MCI prediction task using proteomics modality, we studied
Chan and Stolfo’s approach. We used 52 (−) minority training samples and 356 (+) majority
training samples, which gives, roughly, 1:7 minority-majority class ratios. We generated 7
datasets utilizing 7 non-overlapping subsets from majority training set for a given minority
training set. The data distribution is graphically depicted in Figure 10. Three data resampling
techniques were examined, namely, random undersampling, K-Medoids, and Chan and
Stolfo’s approach. The 7 datasets created in each cross fold utilized the respective
resampling approach keeping the testing set fixed between all three techniques for a given
cross fold. We used a simple combination scheme where the classifier performance from all
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7 classification models for a cross fold was either averaged or taken as a majority vote. The
results displayed here are averaged over all 10 cross folds. The results are summarized in
Table 19 and Figure 11. We can observe from these results that Chan and stolfo’s approach
gave better accuracy but did not remove the bias towards minority class resulting in
comparatively poor AUC value and sensitivity-specificity gap. K-Medoids and Random
undersampling were able to bridge the gap between sensitivity and specificity with 88%
accuracy and 0.93 AUC. This further demonstrates the effectiveness of our simple ensemble
system for handling the imbalanced data.

4. DISCUSSION
This paper has two major contributions. First, we introduced a robust yet simple framework
to address imbalance problem in classification study. Secondly, by a comprehensive set of
experiments we demonstrated the supremacy of K-Medoid undersampling approach over
other basic data re-sampling techniques in the ADNI dataset. We used the approach of
completely balancing the training set with respect to the two classes by utilizing only one
type of data resampling technique. To the best of our knowledge, this is the first study to
systematically investigate the data imbalance issue in the ADNI dataset. In this pilot work,
we used MRI and proteomics modalities in ADNI to assess whether one can still achieve
reasonably balanced classification results on an imbalanced dataset. We also implemented
and applied several state-of-the-art imbalanced data processing methods, applied them to
ADNI dataset and compared their performance with our proposed ensemble framework. Our
discovery may provide guidance for future experimental design and statistical integration on
large scale neuroimaging datasets. ADNI provides us an ideal testbed for the developed
algorithms and tools as the data is so diverse and complex, and its universal availability.
Moreover, it is also becoming a model for other large data collection projects, and clinical
trials, so there will be a flood of data with similar complexities. We hope our work will
increase the interest in this ubiquitous and important problem and other groups may consider
using this approach to deal with the imbalance in the training dataset when performing
future classification studies on imbalanced datasets.

In the study, six feature selection algorithms and five basic data resampling techniques were
compared for different prediction tasks and modalities. It was concluded that undersampling,
in particular K-Medoids, yields better learning models than other resampling approaches.
“No sampling” approach gave the highest test accuracy, but the results were biased towards
the majority class as the classifiers tend to minimize the misclassification costs by
classifying all samples into the majority class. This results in a huge gap between sensitivity
and specificity measures. Data re-sampling approaches performed better in the class
imbalance scenario. Random oversampling tends to overfit the training data as the data
points were duplicated, whereas random undersampling may lead to loss of vital information
as data points were randomly removed. SMOTE and K-Medoids sampling methods use
heuristics to select/eliminate the data points, hence their performance was superior
compared with the corresponding random resampling techniques. Undersampling performed
better than the oversampling approach for all prediction tasks. This could potentially be due
to that in undersampling the data points selected in the training set accurately represented
the original class distribution, and the bias introduced, if any, in selecting the data points
from the majority class was minimized. On the other hand, oversampling approaches could
disturb the data distribution within the class either by overfitting or generating synthetic data
points which do not follow the original class distribution as we have very little information
about the minority class. Also, the majority voting results were shown to be better than the
respective averaged performance measures, which demonstrates the effectiveness of
performing multiple undersampling.
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To corroborate our findings, we extended our study to include a few other data re-sampling
approaches proposed by different researchers. The first experiment performed in this series
was the comparison of our ensemble framework with the combination scheme proposed by
Chawla et al. (2002) for the ADNI dataset. In our experimental setup, we ensured balanced
training sets with varying degrees of undersampling (using K-Medoids) and oversampling
(using SMOTE) as noted in Section 3.2. The results support our ensemble system where
complete K-Medoids undersampling outperformed all other resampling approaches. These
findings suggest that the complexity of ADNI dataset makes it difficult to generate synthetic
data points which fit the natural class distribution well. On the other hand, undersampling
selects the data points from the original class distribution and hence has lesser impact, most
of which is taken care by repeated application of K-Medoids.

In analysis of different rates of data resampling where training data need not be balanced,
we made the same observation of the superior performance of the ensemble system using
complete K-Medoids undersampling (Section 3.3). The decreasing performance of
oversampling as amount of SMOTE is increased, which again indicates the failure of
synthetic data generation techniques for ADNI. The increasing percentage of K-Medoids not
only reduces the gap between sensitivity and specificity, but it also tries to eliminate/reduce
the class bias due to the majority class, which is a desirable property. We further compared
our approach with multi-classifier meta-learning approach proposed by Chan and Stolfo
(1998). Their approach splits the majority class into non-overlapping subsets such that each
subset is roughly the size of minority class, different from random undersampling and our
K-Medoids undersampling. Our experiments on ADNI data showed that both random and
K-Medoids undersampling approaches outperformed Chan’s approach.

Comparison with pioneering disease diagnosis research in ADNI
We compared our ensemble system’s performance with some of the earlier work done on
ADNI dataset. As noted earlier, MRI features are very popular among researchers owing to
their widespread availability and high discriminative power (Dickerson et al., 2001;
Devanand et al., 2007). Seminal research by (Ray et al., 2007) laid the ground for blood
based proteins as biomarkers for early AD diagnosis (Gomez Ravetti and Moscato, 2008;
O’Bryant et al., 2011; Johnstone et al., 2012).

Early identification of potential AD cases before any cognitive decline symptoms are visible
has been examined by several studies. Ray and colleagues used molecular tests to identify
18 signaling proteins which could discriminate between control and AD cases with nearly
90% accuracy (Ray et al., 2007). Gomez Ravetti and Moscato (2008) identified a 5-protein
signature from Ray et al.’s 18-protein set which achieved 96% accuracy in predicting non-
demented from AD cases. Johnstone et al. (2012) identified an 11 protein signature on
ADNI dataset using a multivariate approach based on combinatorial optimization ((α, β)-k
Feature Set Selection). They achieved 86% sensitivity and 65% specificity when assessed on
the full set of control and AD samples (54 and 112). They also studied balanced approaches
using 54 samples from both classes and demonstrated balanced sensitivity and specificity
measures of 73.1%. Shen et al. (2011) proposed elastic net classifiers based on regularized
logistic regression. Shen and his group utilized ADNI dataset with 146 proteomics features,
57 total control subjects, and 106 total AD cases and achieved best accuracy of 83.7% and
an AUC of 89.9%. These results are very close to our observations where our ensemble
system composed of SLR+SS and no sampling approach yielded best accuracy of 84.86%,
91.67% sensitivity, 72.5% specificity, and 91.25% AUC using top 10 features (See Table 7).
In terms of a balanced dataset using the undersampling approach and top 10 features, we
achieved best accuracy of 84.16%, 83.33% sensitivity and 85.83% specificity, and an AUC
of 91.94%.
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Shen et al. (2011) used reduced MRI features and a subset of control and AD subjects (54
and 106) from ADNI samples reporting 86.6% prediction accuracy. Yang et al. (Yang et al.,
2011) proposed an independent component analysis (ICA) based method for studying the
discriminative power of MRI features by coupling ICA with the SVM classifier. Their
experiments on ADNI dataset resulted in highest accuracy of 76.9% with 74% sensitivity
and 79.5% specificity for control vs AD (236 vs 202) prediction task on ADNI dataset. Our
ensemble framework for MRI features performed significantly better giving 87.38%
accuracy, 83.3% sensitivity and 90.18% specificity using K-Medoids sampling approach and
SLR+SS feature selection algorithm.

An intermediate stage of AD progression is MCI when the patient starts depicting signs of
cognitive decline but is not completely demented. An examination of control and prodromal
AD cases can give valuable information about initial signs and factors responsible for
memory impairment. There are many prior works on the automated disease diagnosis
problem, that include partial least square based feature selection on MRI (Zhou et al., 2011),
feature extraction methods based on MRI data (Cuingnet et al., 2011), and support vector
machines to combine MRI, PET and CSF, etc. (Kohannim et al., 2010). In a recent work on
ADNI dataset, Johnstone et al. (2012) achieved 93.5% sensitivity and 66.9% specificity for
the prediction task of control vs MCI converters (54 vs 163) using their multivariate
approach. With balanced training data using 54 samples for both categories, they reported
74.3% sensitivity and 79.3% specificity. Shen et al. (2011) studied control vs MCI (57 vs
110) ADNI subjects for proteomics modality and observed highest accuracy of 87.4% and
95.3% AUC. We applied our algorithm to predict control from MCI subjects (including both
converters and non-converters). The ensemble system of K-Medoids with SLR+SS
algorithm resulted in 87.63% accuracy, with 87.58% sensitivity, and 88.33% specificity for
top 10 features. The data imbalance ratio was 7:1 in our case but we still managed to get
>85% values for all performance metrics. This clearly demonstrates the validity and
potential of our method.

Many researchers have explored control vs MCI classification using MRI features where
MCI cases include both converters and non-converters (Fan et al., 2008; Davatzikos et al.,
2010; Liu et al., 2011; Shen et al., 2011; Yang et al., 2011). Shen and others (Shen et al.,
2011) observed 74.3% classification accuracy for control vs MCI (57 vs 110) prediction task
on ADNI dataset using reduced MRI feature set. Yang et al.’s ICA method coupled with
SVM classifier on ADNI dataset was able to discriminate control from MCI cases (236 vs
410) with highest accuracy of 72%, 71.3% sensitivity, and 68.6% specificity (Yang et al.,
2011). Our proposed ensemble framework composed of K-Medoids and SLR+SS gave
69.46% accuracy, 64% sensitivity, 79.5% specificity, and 77.15% AUC for the same
prediction task.

In summary, although a direct head-to-head comparison is difficult (e.g. even the MRI
features are different between studies), our experimental results were comparable or
outperformed those of some state-of-the-art algorithms, e.g. (Cuingnet et al., 2011). More
importantly, since we address a fundamental problem, we believe our work could be
complementary to these existing research efforts and may help others to achieve a balanced
and improved performance on the ADNI or other biomedical datasets.

5. CONCLUSION
Here we present a novel study in which different sampling approaches were thoroughly
analyzed to determine their effectiveness in handling imbalanced neuroimaging data. This
work demonstrates the efficacy of undersampling approach for class imbalance problem in
ADNI dataset. In this work, several simple and robust ensemble systems were built based on
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different data sampling approaches. Each ensemble system was composed of a feature
selection algorithm and a data level solution for class imbalance problems (i.e. data
resampling approach). We studied six state-of-the-art feature selection algorithms, namely,
two tailed Student’s t-test, Relief-F based on relevance of features using k-nearest
neighbors, Gini Index based on measure of inequality in the frequency distribution values,
Information Gain which measures the reduction in uncertainty in predicting the class label,
Chi-Square test for independence to determine whether the outcome is dependent on a
feature, and sparse logistic regression with stability selection. The data level resampling
solutions studied in this work included random undersampling, random oversampling, K-
Medoids based undersampling, and Synthetic Minority Oversampling Technique. We also
experimented with different rates of under and over sampling and examined a combination
data resampling approach where different rates of under and over sampling were combined
together. The classification model was built using decision tree based Random Forest
algorithm and decision boundary based Support Vector Machine classifiers. The key
evaluation criteria used were accuracy and AUC curve along with sensitivity and specificity
values. Since most resampling approaches randomly select the data points to remove or
duplicate, the process was repeated a couple of times to remove any bias due to random
selection. We compared the classification metrics obtained using averaged results and
majority voting for all repetitions. The experiments conducted as a part of this study
demonstrated the dominance of undersampling approaches over oversampling techniques. In
general, sophisticated techniques such as K-Medoids and SMOTE gave better AUC and
balanced sensitivity and specificity measures than the corresponding random resampling
methods. This paper concludes that the ensemble system consisting of sparse logistic
regression with stability selection as feature selection algorithm and K-Medoids complete
undersampling approach (balanced train set with respect to the two classes) elegantly
handles class imbalance problem in case of ADNI dataset. Performance metric based on
majority voting dominates the corresponding averaged metric.

A concerted effort is needed to investigate the class imbalance problem in ADNI dataset. To
the best of our knowledge, this is the first effort in that direction. This work studied
proteomics and MRI modalities; future work will involve other MRI data features such as
detailed tensor-based morphometry (TBM) features that were used in our voxelwise
genome-wide association study (Stein et al., 2010a; Stein et al., 2010b; Hibar et al., 2011)
and our surface multivariate TBM studies (Wang et al., 2011). Other modalities would also
be considered, such as genomics, psychometric assessment scores, and clinical data. An
integrative approach which uses a combination of different modalities can also be studied.
Additionally, experiments can be performed on Alzheimer’s disease datasets from other
sources to check for common patterns.

In this study, we investigate feature selection for imbalanced data. Another popular
approach for dimensionality reduction is feature extraction, e.g., principal component
analysis or independent component analysis, which transforms the data into a different
domain. The presented ensemble system can be extended to perform feature extraction and
classification for imbalanced data. The current study focuses on binary classification. An
interesting future direction is to extend the sampling techniques to the case of predictive
regression (e.g., prediction of clinical measures). In this case, the distribution of the clinical
measure should be taken into account when resampling the data. To the best of our
knowledge, data resampling for regression has not been well studied in the literature. We
plan to explore this in our future work.
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APPENDIX
In this appendix, we detail the six feature selection algorithms which were adopted in our
experiments.

Student’s t-test
It is a statistical hypothesis test in which the test statistic follows a Student’s t-distribution if
the null hypothesis, denoted by H0, is supported. The alternative hypothesis, denoted by H1,
checks for the condition that H0 does not hold. This test is suited for distributions which are
smaller in size, symmetric to normal distribution but with unknown variance. This work
employed unpaired two-tailed t-test which compares two samples which are independent
and identically distributed. For example, one sample is drawn from the population of control
subjects and another sample is drawn from the population of subjects with illness. The null
hypothesis states that the two samples have equal means and equal variance. The p-value is
computed for each feature independently using t-score (test statistics) and is defined as the
probability of observing a sample statistic as extreme or more extreme as test statistic under
the null hypothesis. The null hypothesis is rejected if p-value is less than or equal to the
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significance level, usually denoted by α ≤0.05. Features are arranged in increasing order of
p-value such that the most important feature has least p-value. The matlab’s builtin T-Test
function is used for this algorithm.

Relief-F
Relief-F is an extension of one of the most successful feature subset selection algorithms,
Relief [26] based on relevance of features. The majority of feature selection algorithms
estimate the quality of a feature based on its conditional independence upon the target class.
Relief algorithm assesses the significance of a feature based on its ability to distinguish the
neighboring instances. The underlying principle states that for each feature, if the distance
between data points from the same classes is large, then the feature distinguishes data points
within the same class. Such a feature is of no use and hence its weight should be reduced.
Whereas if the difference between data points from different classes is large, then the feature
distinguishes the data points from two different classes which serves the feature selection
problem formulation well. The weights of such features are increased. Thus, the significant
features are arranged in descending order of their weights. The Relief-F algorithm improves
the Relief algorithm by introducing k-nearest neighbors from each class (Robnik-ikonja and
Kononenko, 2003).

Gini Index
Gini Index (GI), also known as Gini Coefficient or Gini Ratio, measures the inequality in the
frequency distribution values. This statistical measure of dispersion is commonly used to
measure wealth or income inequality within the population or among countries. It can be
applied to various other fields as well. Mathematically it is defined as the ratio of the area
within the Lorenz curve and the line of equality [18]. GI measures the ability of a feature to
differentiate between target classes. When all the samples belong to the same target class, GI
is zero indicating maximum inequality thereby giving most useful information. On the other
hand, if all samples are equally distributed between target classes, then GI reaches its
maximum value denoting minimum information which can be obtained from this feature.
Hence, features are arranged in increasing order of GI where most significant feature has
least GI.

Information Gain
Information Gain (IG) is also known as information divergence, Kullback-Leibler
divergence, or relative entropy. Information gain is commonly used as a surrogate for
approximating a conditional distribution in classification setting (Cover and Thomas, 1991).
It represents the reduction in uncertainty of predicting class label (Y) given a feature vector
(xa) which can take up to k possible values. In other words, IG measures the reduction in
entropy in moving from a prior distribution P(Y) to a posterior distribution P(Y|xa). Both Y
and xa are assumed to be discrete. An attribute with higher value of IG is considered to be
more relevant and is assigned a higher weight. Features are arranged in decreasing order of
their IG values. This is an asymmetric method, i.e. IG(Y|xa) ≠ IG(xa|Y), and is not suitable
for attributes (feature vectors) which can take a large number of discrete values as it might
cause overfitting problems.

Chi-Square Test
The Chi-Square (χ2) test is a statistical test performed on samples that follow χ2 distribution,
a special case of gamma distribution. It is a continuous, asymmetrical, skewed to right
distribution, and has K degrees of freedom such that the mean of the distribution is equal to
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and K the variance is 2K. The χ2 distribution is widely used in χ2 test to compute goodness
of fit, independence of criteria, and estimating confidence interval and standard deviation. In
feature selection, χ2 test for independence is employed to determine whether the outcome is
dependent on a feature. The null hypothesis states that the occurrences of the outcomes of an
observation are statistically independent. P-value is the probability of obtaining a test
statistic as extreme as the observed value under null hypothesis and is computed from
distribution χ2 table given χ2 test statistic and K. The null hypothesis is rejected if p-value is
less than the specified significance level α, which is often α ≤ 0.05. Rejecting the hypothesis
makes the result statistically significant and confirms the dependence of the outcome on the
feature value. Features are arranged in increasing order of p-value.

Sparse Logistic Regression
Sparse Logistic Regression (SLR) is an embedded feature selection algorithm which uses ℓ1-
norm regularization in Logistic Regression. It is one of the most attractive feature selection
algorithms in applications which deal with high dimensional data. Logistic Regression (LR)
is a classification technique using linear discriminative model to maximize the quality of
output on training data. For a two class (binomial) classification problem, it assigns a
probability to class labels using sigmoid function (hθ(x)) such that if hθ(x) ≥ 0.5, the class
label is positive otherwise it is negative. LR tends to overfit when the sample size is limited
and the data is very high dimensional. To reduce overfitting and obtain better LR classifiers,
regularization is applied to the LR’s objective function. The guiding principle in sparse
logistic regression is to use regularization in Logistic loss function such that irrelevant
features are given a zero weight (Liu et al., 2009a). To induce sparsity, ℓ1-norm regularized
logistic loss function is used (Fu, 1998; Duchi et al., 2008; Friedman et al., 2010). Features
are ranked in decreasing order of their weights. The matlab code is taken from the SLEP
package (Liu et al., 2009b).
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Figure 1.
Illustrating the proposed ensemble system for imbalance data classification. In this proposed
model, a training and a testing set is derived from the given data using data points from both
majority and minority classes as illustrated in the top rectangle (solid line) of the figure.
Different data re-sampling techniques are applied to the training set to generate a “re-
sampled training set” on which a feature selection algorithm is applied to select relevant
features resulting in a reduced dimension training set. Subsequently a classification
algorithm is applied to generate a prediction model which is tested on the test set to evaluate
its efficacy. The steps shown in double blue bordered rectangle are repeated for each feature
selection algorithm and prediction model. The steps in dotted black bordered rectangle are
repeated for each data resampling technique.
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Figure 2.
This example illustrates class imbalance problem and the basic data resampling techniques
used in the ADNI dataset for predicting MCI from Control cases on proteomics features
(refer Table 1). The bar labeled “Complete” represents the data available for analysis. The
“Train” bar represents training data taken from both classes for different resampling
approaches and “Test” bar represents the test data. A dataset is formed by combining a
training set and a test set (test set is kept fixed between different sampling approaches, and it
need not be balanced).
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Figure 3.
Illustrating three different sampling approaches used in an ensemble system for an
experimental setup for predicting control cases (marked by blue, for training and red, for
testing asterisk symbols) from AD cases (marked by orange, for training and green, for
testing asterisk symbols) using proteomics modality (refer to Table 1). Each class is divided
into a training and test set in a ratio of 9:1. X-axis represents 10 cross folds and Y-axis
represents samples. Fig. (a) depicts actual or no sampling scenario where training data is
unbalanced with respect to the two classes. Fig. (b) depicts undersampling scenario where
training set is balanced by removing data points from the majority class as shown by the
sparse orange columns for each cross fold compared to other two cases. Fig (c) depicts
oversampling scenario where minority class is duplicated as shown by extra length of blue
columns for each cross fold. Note that only one dataset is shown for each cross fold, but 30
datasets were used except in training for no sampling case.
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Figure 4.
NC/MCI prediction task: Comparison of feature selection algorithms for different
performance metrics, classifiers, and sampling approaches. The results were averaged across
10 cross folds for top 20 features.
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Figure 5.
NC/MCI majority voting classification performance comparison of SVM classifier,
averaged across 10 cross folds, using top 10 features from six feature selection algorithms
for different data sampling approaches.
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Figure 6.
The bar labeled “Complete” represents the data available for analysis. The “Test” bar
represents the test data and the remaining bars in between represents the training data taken
from both classes at different resampling rates. For brevity bar labels are abbreviated, for
example 10% SMOTE oversampling of minority class and 90% K-Medoids undersampling
of majority class is labeled as “S10_K90”. A train-test dataset is formed by combining a
train set and a test set (test set is kept fixed between different sampling approaches, and it
need not be balanced).
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Figure 7.
NC/MCI majority voting classification performance comparison of SVM classifier,
averaged across 10 cross folds, using top 10 features from SLR+SS for different rates of
data sampling.

Dubey et al. Page 29

Neuroimage. Author manuscript; available in PMC 2015 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
The bar labeled “Complete” represents the data available for analysis. The “Test” bar
represents the test data and the remaining bars in between represents the training data taken
from both classes at different resampling rates. For brevity bar label are abbreviated, for
example “S30_K0” corresponds to 30% SMOTE oversampling of minority class and no
undersampling majority class. A train-test dataset is formed by combining a train set and a
test set (test set is kept fixed between different sampling approaches, and it need not be
balanced).
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Figure 9.
NC/MCI majority voting classification performance comparison of SVM classifier,
averaged across 10 cross folds, using top 10 features from SLR+SS for different rates of
data sampling. Note the decreasing sensitivity-specificity gap as the rate of undersampling is
increased. Complete undersampled dataset (labeled as S0_K100) showed least gap.
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Figure 10.
Generation of classification models for imbalanced data using Chan and Stolfo (1998)
approach. The majority class (represented by Orange colored rectangles in the figure) is
evenly divided into minority class sized non-overlapping subsets.
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Figure 11.
NC/MCI majority voting classification performance comparison of SVM classifier for
different undersampling approaches, averaged across 10 cross folds, using top 10 features
from SLR+SS for different rates of data sampling depicting efficacy of K-Medoids and
random undersampling approach over Chan and Stolfo proposed solution (Chan and Stolfo,
1998).
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Table 1

Summary of ADNI data used in the study

ADNI Baseline Data Details

Proteomics MRI

Feature Count 147 305

Control Cases (NC) 58 191

MCI Stable Cases 233 177

MCI Convertor Cases 163 142

AD Cases 112 138
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