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Abstract. A variety of imaging, neuropsychological, and genetic biomarkers have been suggested as potential biomarkers
for the identification of mild cognitive impairment (MCI) in patients who later develop Alzheimer’s disease (AD). Here, we
systematically evaluated the most promising combinations of these biomarkers regarding discrimination between stable and
converter MCI and reflection of disease staging. Alzheimer’s Disease Neuroimaging Initiative data of AD (n = 144), controls
(n = 112), stable (n = 265) and converter (n = 177) MCI, for which apolipoprotein E status, neuropsychological evaluation, and
structural, glucose, and amyloid imaging were available, were included in this study. Naı̈ve Bayes classifiers were built on
AD and controls data for all possible combinations of these biomarkers, with and without stratification by amyloid status. All
classifiers were then applied to the MCI cohorts. We obtained an accuracy of 76% for discrimination between converter and stable
MCI with glucose positron emission tomography as a single biomarker. This accuracy increased to about 87% when including
further imaging modalities and genetic information. We also identified several biomarker combinations as strong predictors
of time to conversion. Use of amyloid validated training data resulted in increased sensitivities and decreased specificities
for differentiation between stable and converter MCI when amyloid was included as a biomarker but not for other classifier
combinations. Our results indicate that fully independent classifiers built only on AD and controls data and combining imaging,
genetic, and/or neuropsychological biomarkers can more reliably discriminate between stable and converter MCI than single
modality classifiers. Several biomarker combinations are identified as strongly predictive for the time to conversion to AD.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Keywords: Florbetapir, [18F]fluorodeoxyglucose positron emission tomography, mild cognitive impairment, structural magnetic
resonance imaging

25

26

1Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing
of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-content/uploads/how to
apply/ADNI Acknowledgement List.pdf.

∗Correspondence to: Juergen Dukart, PhD, Biomarkers &
Clinical Imaging, NORD DTA, F. Hoffmann-La Roche, Grenzach-

INTRODUCTION 27

Alzheimer’s disease (AD) is a complex disorder 28

of deteriorating cognition with multiple known neu- 29

ropathological mechanisms which include amyloid-� 30

(A�) and tau deposition and neurodegeneration. 31

Numerous genetic and nongenetic risk factors of this 32
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neuropathology such as apolipoprotein E (APOE)33

genotype, neuropsychological measures, and in vivo34

measures of atrophy, glucose utilization, and amy-35

loid depositions have been identified in studies on AD36

[1–6]. Considering several of these biomarkers have37

been shown to be a promising way for improving diag-38

nostic accuracy, researchers are now integrating them39

into the revised diagnostic criteria for AD [7, 8]. How-40

ever, the understanding on which biomarkers provide41

an additive value when combined with others is rather42

limited. This applies even more for the early stages of43

the disease.44

A large proportion of patients with amnestic mild45

cognitive impairment (MCI) are now considered to46

represent an early AD stage [7, 9]. A series of stud-47

ies have been performed with the aim of increasing the48

diagnostic accuracy in MCI. Whilst most studies have49

focused on single biomarkers [10–17], multiple studies50

have also applied machine learning algorithms to com-51

pare biomarkers and their combinations with the intent52

of capturing different aspects of the complex patho-53

physiology of AD [18–27]. A consistent finding across54

the multimodal studies is increased accuracy ranging55

between 60 and 90 % for discrimination between stable56

mild cognitive impairment (sMCI) and MCI convert-57

ing to AD (cMCI) when information from different58

biomarkers is combined. However, none of these stud-59

ies systematically evaluated the additive value of all of60

these biomarkers and their combinations in the same61

MCI population. Furthermore, applications of exten-62

sive parameter optimization procedures to increase63

cross-validation performance might have led to an64

overestimate of accuracies achievable for new data –65

a problem that is commonly referred to as overfitting.66

Accuracies reported when performing a strict separa-67

tion of training and testing data, which is considered68

as the gold standard of machine learning, are typi-69

cally lower, ranging below 80% [20, 27, 28]. A further70

aspect that has been commonly shown is that classi-71

fiers trained on AD and healthy controls can be applied72

to reliably discriminate between cMCI and sMCI.73

Another common limitation of most of the above men-74

tioned studies is the use of non-histopathologically75

validated training cohorts to establish the classifiers.76

The known limited accuracy of clinical diagnoses may77

lead to the inclusion of other dementias in the AD78

groups or of preclinical AD as healthy controls [29,79

30]. Both could reduce the capability of the classifiers80

to discriminate between new AD and control cases.81

While there are still no sufficiently large histopatho-82

logically confirmed datasets available for most of the83

biomarkers, novel amyloid positron emission tomog-84

raphy tracers provide a close in vivo approximation 85

of the corresponding AD histopathology [31]. Thus, 86

using this information to identify AD and control train- 87

ing cases may further increase accuracies reported for 88

different biomarkers. 89

A further aspect neglected in previous studies is the 90

sensitivity of identified biomarkers to disease staging. 91

Earlier studies have mostly focused on the categorical 92

question of conversion versus non-conversion, with- 93

out evaluating if the identified biomarkers also reflect 94

disease staging as indicated, for example by the time 95

to conversion to AD (TTC). This aspect might yet 96

be essential to monitor progression in clinical trials 97

focusing on early disease stages and because poten- 98

tial treatment is considered to be more beneficial for 99

patients when loss of function is not yet strongly 100

advanced. 101

Given that genetic risk, deterioration of cognition, 102

A� deposition, and brain structural and functional 103

biomarkers contribute to the diagnosis of AD, we sys- 104

tematically evaluated the potential of combinations of 105

these factors to accurately stratify the MCI population 106

according to risk of conversion to AD and disease stag- 107

ing. We hypothesize that a combination of biomarkers 108

covering several genetic, behavioral, and neuropatho- 109

logical factors will provide higher sensitivity for early 110

AD detection and disease staging as compared to 111

best performing single modality biomarker. Further, 112

we hypothesize that the use of only amyloid negative 113

healthy controls and amyloid positive AD for training 114

the classifiers will further improve the discrimination 115

accuracies for cMCI and sMCI. 116

METHODS 117

Subjects 118

All available ADNI1, ADNI-GO and ADNI2 119

(ADNI: Alzheimer’s Disease Neuroimaging Initiative) 120

data as of December 2013, of AD, healthy control sub- 121

jects (HC), amnestic sMCI and cMCI having APOE 122

genotype and neuropsychological evaluation were 123

included in the study. Additionally, an imaging sub- 124

cohort was identified from these data for which each 125

of the following imaging biomarkers was available for 126

at least one of the time points: Structural magnetic 127

resonance imaging (sMRI), [18F]fluorodeoxyglucose 128

positron emission tomography (FDG-PET) and/or 129

[18F]AV45-PET (florbetapir) (Table 1). To avoid biases 130

in accuracies due to use of different amyloid com- 131

pounds, we restricted our analyses to AV45-PET as 132

a tracer with greater availability in the ADNI database 133
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[32]. For sMCI, an inclusion criterion of at least 2 y of134

follow-up was applied to ensure stability of the diagno-135

sis over time. For cMCI, all three imaging modalities136

had to be available prior to or at conversion to AD. The137

final dataset for APOE and neuropsychology included138

data of 144 AD, 112 NL, 177 cMCI, and 265 sMCI,139

with overall 958 observations (number of subjects140

times number of visits) for MCI and 750 observations141

for AD and HC (Table 1, Supplementary Material 1).142

Diagnosis of AD was based on National Institute143

of Neurological and Communicative Disorders and144

Stroke and the Alzheimer’s Disease and Related Dis-145

orders Association (NINCDS/ADRDA) criteria [33].146

Imaging and genetic biomarkers evaluated in our147

study were not part of criteria used by the ADNI148

to establish diagnostic labels of MCI or AD. The149

study was conducted according to the Declaration150

of Helsinki. Written informed consent was obtained151

from all participants before protocol-specific proce-152

dures were performed.153

Data used in the preparation of this article were 154

obtained from the Alzheimer’s Disease Neuroimag- 155

ing Initiative (ADNI) database (adni.loni.usc.edu). The 156

ADNI was launched in 2003 by the National Institute 157

on Aging (NIA), the National Institute of Biomedi- 158

cal Imaging and Bioengineering (NIBIB), the Food 159

and Drug Administration (FDA), private pharmaceu- 160

tical companies, and non-profit organizations, as a 161

$60 million, 5-year public-private partnership. The pri- 162

mary goal of ADNI has been to test whether serial 163

magnetic resonance imaging (MRI), positron emis- 164

sion tomography (PET), other biological markers, and 165

clinical and neuropsychological assessment, can be 166

combined to measure the progression of mild cogni- 167

tive impairment (MCI) and early AD. Determination 168

of sensitive and specific markers of very early AD pro- 169

gression is intended to aid researchers and clinicians 170

to develop new treatments and monitor their effective- 171

ness, as well as lessen the time and cost of clinical 172

trials. 173

Table 1
Clinical and demographic characteristics for training and testing data

All data Training data Testing data Statistical test

HC AD sMCI cMCI (test value,df,p)

n 112 144 265 177 –
N observations 471 279 657 301
Age (mean ± SD [range], y) 74.4 ± 5.2 [62–96] 75.4 ± 8.1 [55–92] 74.6 ± 7.5 [48–89] 75 ± 7.1 [55–89] ANOVA (0.5, 3, 0.650)
Gender (male/female) 55/57 84/60 170/95 107/70 χ2 (7.6, 3, 0.056)
Education (mean ± SD, [range] y) 16.4 ± 2.6 [10–20] 15.2 ± 3.0 [6–20] 15.8 ± 3.0 [7–20] 15.7 ± 2.8 [6–20] ANOVA (3.9, 3, 0.009)
MMSE (mean ± SD) 29 ± 1.2 23.4 ± 2∗ 27.7 ± 1.8 26.7 ± 1.7∗ ANOVA (263.8, 3,<0.001)
GDS (mean ± SD) 0.7 ± 1.0 1.7 ± 1.3∗ 1.6 ± 1.3 1.6 ± 1.5 ANOVA (16.7, 3,<0.001)
ADAS (mean ± SD) 11.4 ± 4.7 34.3 ± 8.9∗ 19.8 ± 7.0 24.9 ± 6.7∗ ANOVA (263.8, 3,<0.001)
RAVLT 5.9 ± 2.4 1.9 ± 1.8∗ 4.3 ± 2.6 2.7 ± 2.2∗ ANOVA (78.5, 3,<0.001)
RAVLT im 44.0 ± 8.5 22.6 ± 7.0∗ 34.3 ± 10.2 28.3 ± 7.5∗ ANOVA (143.7, 3,<0.001)
FAQ 0.1 ± 0.5 13.2 ± 6.8∗ 2.7 ± 3.6 5.3 ± 4.7∗ ANOVA (227.4,<0.001)
TTC (mean ± SD, y) – – – 2 ± 1.4 –

Imaging sub-cohort Training data Testing data Statistical test

HC AD sMCI cMCI (test value, df, p)

N 83 36 135 29 –
N observations (sMRI/FDG/AV) 359/208/112 63/37/36 354/223/164 73/53/31 –
Age (mean ± SD [range], y) 74.3 ± 5.1 [65–90] 76 ± 8.3 [56–91] 73.3 ± 7.5 [48–88] 73 ± 8.1 [55–85] ANOVA (1.6, 3, 0.185)
Gender (male/female) 42/41 21/15 84/51 18/11 χ2 (3.0, 3, 0.384)
Education (mean ± SD [range], y) 16.5 ± 2.7 [10–20] 15.2 ± 2.6 [9–20] 15.7 ± 2.8 [8–20] 16.3 ± 2.6 [9–20] ANOVA (2.9, 3, 0.034)
MMSE (mean ± SD) 29 ± 1.2 22.9 ± 2.1∗ 28.1 ± 1.6 27 ± 1.7∗ ANOVA (125.3, 3,<0.001)
GDS (mean ± SD) 0.7 ± 1.0 1.6 ± 1.2∗ 1.6 ± 1.2 1.7 ± 1.9 ANOVA (11.4, 3,<0.001)
ADAS (mean ± SD) 11.7 ± 4.5 37.3 ± 10.0∗ 18.6 ± 6.9 23.3 ± 9.1∗ ANOVA (113.7, 3,<0.001)
RAVLT 5.6 ± 2.3 1.9 ± 1.8∗ 4.9 ± 2.7 3.1 ± 2.2∗ ANOVA (23.3, 3,<0.001)
RAVLT im 43.9 ± 9.2 20.6 ± 6.1∗ 36.6 ± 10.3 31.8 ± 8.1 ANOVA (53.5, 3,<0.001)
FAQ 0.1 ± 0.6 14.6 ± 7.3∗ 2.3 ± 3.2 6.6 ± 5.0∗ ANOVA (137.4, 3,<0.001)
TTC (mean ± SD, y) – – – 2.4 ± 2.1 –
% amyloid positive 23% 92% 36% 83% χ2 (69.1, 3,<0.001)

AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; AV, florbetapir positron emission tomography; df, degrees of freedom;
FAQ, Functional Activities Questionnaire; FDG, fluorodeoxyglucose positron emission tomography; GDS, Geriatric Depression Scale; HC,
healthy control subjects; cMCI, mild cognitive impairment converters to AD; GDS, Geriatric Depression Scale; MMSE, Mini Mental State
Examination; RAVLT, Rey Auditory Verbal Learning Test delayed recall; RAVLT im, RAVLT immediate recall; sMCI, stable MCI; sMRI,
structural magnetic resonance imaging; SD, standard deviation; TTC, time to conversion to Alzheimer’s disease. ∗indicates significant differences
in post-hoc t-tests relative to HC (for AD) and sMCI (for cMCI).
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The Principal Investigator of this initiative is174

Michael W. Weiner, MD, VA Medical Center and Uni-175

versity of California – San Francisco. ADNI is the176

result of efforts of many co-investigators from a broad177

range of academic institutions and private corpora-178

tions, and subjects have been recruited from over 50179

sites across the U.S. and Canada. The initial goal of180

ADNI was to recruit 800 subjects, but ADNI has been181

followed by ADNI-GO and ADNI-2. To date these182

three protocols have recruited over 1500 adults, ages 55183

to 90, to participate in the research, consisting of cog-184

nitively normal older individuals, people with early or185

late MCI, and people with early AD. The follow-up186

duration of each group is specified in the protocols for187

ADNI-1, ADNI-2, and ADNI-GO. Subjects originally188

recruited for ADNI-1 and ADNI-GO had the option189

to be followed in ADNI-2. For up-to-date information,190

see www.adni-info.org.191

Demographic and neuropsychological measures192

Between-group differences in gender across all193

groups were evaluated using a chi-square test for194

independent samples. Analyses of variance (p < 0.05)195

and subsequent post-hoc t-tests (p < 0.05 Bonferroni196

corrected for multiple comparisons) were applied to197

evaluate differences in age, education, and neuropsy-198

chological scores. The following 6 neuropsychological199

scores were included into the classification analysis200

based on their availability for most of the subjects: Mini201

Mental State Examination (MMSE [34]), Geriatric202

Depression Scale (GDS [35]), Alzheimer’s Disease203

Assessment Scale (ADAS [36]), Rey Auditory Verbal204

Learning Test – immediate and delayed recall (RAVLT205

immediate and RAVLT [37, 38]) and Functional Activ-206

ities Questionnaire (FAQ [39]) (Table 1).207

Imaging data208

The MRI dataset included standard T1-weighted209

images obtained with different 1.5T and 3T scanner210

types using a three-dimensional magnetization-211

prepared rapid gradient-echo sequence varying in212

repetition time and echo time with in-plane resolu-213

tion of 1.25∗1.25 mm and 1.2 mm slice thickness. If214

both 1.5 and 3T data were available for the same215

time points only the 3T data were used. Overall, there216

was a significantly higher proportion of 3T data in217

the AD group in the training data (p < 0.001). There218

was no significant difference in distribution of scan-219

ner types between cMCI and sMCI (p > 0.1). All220

images were corrected for distortions and B1-field221

non-uniformities as described on the ADNI website 222

(http://adni.loni.usc.edu/). 223

FDG-PET and AV45-PET data were down- 224

loaded at the most advanced pre-processing stage 225

(excluding smoothing) provided by ADNI. In brief, 226

the pre-processing provided by ADNI included a 227

within subject co-registration and averaging of all 228

PET frames from the same time-point, interpo- 229

lation to 1.5 mm cubic voxels and global mean 230

intensity normalization. Detailed description of 231

this pre-processing pipeline can be found on the 232

ADNI website (http://adni.loni.usc.edu/methods/pet- 233

analysis/pre-processing/) listed under point 3. Though 234

other intensity normalization procedures have been 235

shown to be more sensitive for differentiation of AD 236

and HC subjects using FDG-PET [40–42], the choice 237

of an optimum reference region is less clear for AV45- 238

PET. To avoid systematic differences in pre-processing 239

between the two PET modalities, we restricted our 240

analyses to global mean intensity normalization. Simi- 241

larly, correction of PET data for partial volume effects 242

using structural MRIs acquired at the same time points 243

can also improve their sensitivity for AD detection 244

[43–45]. However, appropriate correction for these 245

effects would require structural data acquired at the 246

same time points. Due to a relatively low availabil- 247

ity of AV45 and sMRI data for the same time points, 248

applying this correction would have resulted in exclu- 249

sion of a significant proportion of available PET data. 250

To avoid this data loss, correction for partial volume 251

effects was not applied in this study. 252

Pre-processing of imaging data 253

Pre-processing of all imaging data was performed 254

in SPM8 (Wellcome Trust Centre for Neuroimag- 255

ing, http://www.fil.ion.ucl.ac.uk/spm/) implemented 256

in Matlab 7.12 (MathWorks, Inc, Sherborn, MA, 257

USA). The pre-processing pipeline consisted of co- 258

registration of all imaging modalities for the same 259

visits of each subject, segmentation of sMRI data 260

using NewSegment, spatial normalization using dif- 261

feomorphic image registration (DARTEL) [46] with 262

subsequent affine registration into the Montreal Neu- 263

rological Institute (MNI) space and smoothing with a 264

Gaussian kernel of 8 mm FWHM. To reduce compu- 265

tational time DARTEL template was computed from 266

a random representative subsample of 300 scans. The 267

obtained grey matter images were additionally modu- 268

lated to preserve the total amount of signal from each 269

region. All further analyses were restricted to a mask 270

obtained by applying a probability threshold of 0.2 to 271

www.adni-info.org
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
http://www.fil.ion.ucl.ac.uk/spm/
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the first and the last DARTEL templates co-registered272

to the MNI space [47]. To reduce the dimensionality273

of imaging data for the Bayesian feature selection pro-274

cedure described below all pre-processed images were275

downsampled to an isotropic resolution of 6 mm.276

Feature selection277

To ensure that the features used from the differ-278

ent imaging modalities for subsequent classification279

are not biased by differences in general characteristics280

of the cohorts (e.g., demographic factors or disease281

severity) or image pre-processing (e.g., differential282

smoothing or spatial normalization) used to identify283

these features across different studies we adopted our284

own feature selection approach for the current study.285

All feature selection steps for imaging data were per-286

formed using a subset of AD and HC data. The subset287

was selected from the whole training dataset and288

included only the earliest time points for AD and HC289

for which all three imaging modalities were available290

(AD: n = 38, HC: n = 93). This selection step was per-291

formed to ensure that exactly the same subjects were292

used to identify the most relevant features across the293

three imaging modalities. To avoid a bias towards a294

specific modality (e.g., using only amyloid positive AD295

and negative HC), all AD and HC patients in this subset296

were used for feature selection.297

Feature selection for imaging data was performed298

using a Bayesian Markov Blanket approach integrated299

in the Causal Explorer toolbox implemented in Matlab300

[48, 49]. In brief, the algorithm identifies features that301

are relevant for Bayesian separation between AD and302

HC subjects at a predefined statistical threshold. The303

setting for continuous data with conditioning set size of304

0 was used for feature identification. A full Bonferroni305

corrected threshold of p < 0.05 was applied to identify306

most relevant sMRI and FDG-PET features. For AV45-307

PET this already conservative threshold resulted in a308

very high number of features covering the whole brain.309

To reduce the AV45-PET feature set to a comparable310

size as observed for FDG-PET and sMRI, a Bonferroni311

corrected threshold of p < 0.000001 was applied. The312

feature selection procedure resulted in identification313

of 13 clusters for FDG-PET, 13 clusters for AV45-314

PET, and 29 clusters for sMRI (Fig. 1, cluster images315

are provided in Supplementary Material 2). Mean val-316

ues extracted from each of the identified clusters were317

used for subsequent classification. All cluster images318

will be published on nitrc.org upon acceptance of this319

manuscript.320

Naı̈ve Bayes Classification 321

We used a Naı̈ve Bayes (NB) classification algo- 322

rithm, as implemented in Matlab 7.12 to evaluate the 323

predictive accuracy of different genetic, neuropsycho- 324

logical, and imaging biomarkers for differentiation 325

between cMCI and sMCI. In brief, the NB approach 326

provides a probability for each new case to belong to 327

a particular class based on frequencies for categori- 328

cal and means and standard deviations for continuous 329

features as observed in training data. Similarly to 330

a clinician-based decision, the NB approach is con- 331

sidering all biomarkers as independent evidence for 332

assignment to one of the diagnostic classes. A strong 333

advantage of the NB classifier as compared to most 334

other machine learning algorithms is its capability to 335

deal with sparse, categorical, and continuous data and 336

the posterior probability it provides for each new case 337

to belong to a particular class. As the NB approach 338

does not require any extensive parameter optimization, 339

it also reduces the risk of overfitting the classifier to the 340

training data. 341

NB classifiers were first built using all available 342

AD and HC data separately for each of the modalities 343

(APOE genotype, neuropsychological scores, AV45- 344

PET, FDG-PET, and sMRI). In a further analysis, NB 345

classifiers were then built for all possible combinations 346

of imaging biomarkers with APOE genotype and neu- 347

ropsychological profiles. For all classifiers, equal prior 348

probability was set for AD and HC classes to avoid 349

the risk that the classifier is biased by the differential 350

numbers of training cases per class. 351

The obtained NB classifiers were then applied to 352

MCI data having the same biomarker constellations. 353

APOE genotype was treated as a categorical vari- 354

able, while all other measurements were treated as 355

continuous. Applying the NB classifiers to the MCI 356

data resulted in one set of predicted labels for each 357

biomarker constellation for the MCI subset having the 358

corresponding biomarker measures. An assignment of 359

sMCI as HC and of cMCI as AD was considered as cor- 360

rect. Balanced accuracies ((sensitivity+specificity)/2), 361

sensitivities, specificities, receiver operating charac- 362

teristics (ROC) curves, and the area under the curve 363

(AUC) were computed based on predicted labels by 364

each NB output. To evaluate the prognostic values of 365

each biomarker combination for cMCI and because 366

neuropsychological information is used to establish 367

the AD diagnosis therewith inducing circularity in 368

the classification problem, all metrics for this group 369

were computed separately for biomarker data acquired 370

before and at conversion to AD. Further, to test if 371
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Fig. 1. Feature selection results. Clusters identified in [18F]AV45-PET (florbetapir positron emission tomography), [18F]FDG-PET (fluo-
rodeoxyglucose positron emission tomography) and sMRI (structural magnetic resonance imaging) are displayed in the top, middle and bottom
row, respectively.

the obtained balanced accuracies were significantly372

above chance, we ran permutation statistics (1000 per-373

mutations) for each biomarker constellation randomly374

shuffling the stable and converter MCI labels to the375

biomarker data and then computed balanced accuracy376

for each permutation. We then computed z-scores and377

corresponding p-values for the balanced accuracies378

obtained on real data relative to means and standard379

deviations obtained in randomly permuted data.380

As AV45-PET was only added in ADNI2, the aver-381

age time to conversion for these data was significantly382

lower. To control for this, we recomputed all sensitiv-383

ity metrics for the testing data after matching them384

for TTC. Although the NB classifier is considered385

to be relatively robust regarding the number of train-386

ing data, we aimed to exclude potential biases caused387

by these differences. For this reason, we repeated all388

training and classification procedures with the same,389

randomly drawn number of training cases as available390

for the biomarker constellation with the lowest number391

of cases.392

Histopathological evaluation is still considered the393

gold standard for AD diagnosis. Thus, stratifying394

training data based on an in vivo biomarker of395

histopathology might improve its performance for396

early AD detection. Considering AV45-PET informa-397

tion as its in vivo approximation, we evaluated this 398

possibility of using only data of amyloid positive AD 399

and amyloid negative HC to train the classifiers. For 400

these analyses, a previously reported threshold of 1.1 401

was applied to the mean AV45-PET standard uptake 402

value ratio extracted from the selected clusters in the 403

training dataset including only HC with a mean amy- 404

loid load below and AD patients with a mean above 405

this threshold [50]. Applying this threshold resulted in 406

an average exclusion of about 25% of the training data. 407

Differences in accuracies, sensitivities, and specifici- 408

ties obtained using all versus amyloid thresholded data 409

were evaluated using one-sample t-tests (p < 0.05 Bon- 410

ferroni corrected for multiple comparisons) assuming 411

no differences between the classifiers. As classification 412

based on AV45-PET data might be differentially biased 413

by application of an amyloid threshold for selection of 414

training data, one-sample t-tests were performed sep- 415

arately for classifiers with and without this biomarker. 416

To illustrate the contribution of the APOE genotype, 417

both the training and the testing dataset were stratified 418

by the APOE allele combinations computing the rela- 419

tive proportion of either AD or cMCI in the respective 420

populations. Lastly, we evaluated the possibility to use 421

all biomarker combinations to predict the time to AD 422

diagnosis as an index of future cognitive decline. For 423
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this we computed regression analyses to predict TTC424

using z-transformed probabilities provided by the NB425

classifiers for cMCI data for each classifier and using426

only biomarker data acquired before conversion to AD.427

To provide a more quantitative metric of the predictive428

power of each classifier for TTC, we reported Pear-429

son’s correlation coefficients between observed TTC430

values and those predicted by the regression analyses.431

A squared Pearson’s correlation coefficient (determi-432

nation coefficient) provides the percentage of variance433

explained in the target variable by the variables used434

as predictors.435

To enable a clearer interpretation of all above men-436

tioned analyses, we have further ranked all biomarker437

constellations by sensitivities matched for TTC, speci-438

ficities and correlations with observed TTC. All439

biomarker combinations were then sorted by the aver-440

age rank of these three metrics.441

RESULTS442

Demographic and neuropsychological results443

The groups did not differ with respect to age and444

gender (Table 1). There was a significant difference445

in education. post-hoc t-tests revealed differences in446

education only between AD and HC (t(254) = 3.5;447

p = 0.001) but not between cMCI and sMCI448

(t(440) = 0.2; p = 0.875). Comparisons of neuropsy-449

chological scores revealed significant between-group450

differences in all six measures (Table 1). Subse-451

quent post-hoc t-tests revealed significant differences452

between AD and HC (all p < 0.001) in all measures.453

When comparing cMCI and sMCI all measures except454

for GDS (p = 1.0) were also significantly different.455

Classification results456

Classification results for all biomarker combinations457

are displayed in Table 2 and Fig. 2. All classifiers458

performed significantly above chance level for differ-459

entiating between sMCI and cMCI (all p < 0.01). For460

single biomarkers, highest balanced accuracy (74.5%),461

specificity (83.9%), and AUC (0.824) were obtained462

using FDG-PET only (Fig. 3a). In contrast, highest sen-463

sitivity of 85.4% but on cost of a very low specificity464

(52.4%) was obtained using a classifier based on neu-465

ropsychological scores. Adjustment for TTC resulted466

in an even higher sensitivity of 92.9% for this clas-467

sifier (Table 2). A strong increase in sensitivity when

adjusting for TTC was also observed for sMRI. Lowest 468

single modality classifier performance with a balanced 469

accuracy of 59.5% was obtained for APOE followed 470

by AV45-PET with 63.5%. At time of conversion, 471

highest sensitivity of 100% for single biomarkers was 472

obtained for neuropsychological scores followed by 473

FDG-PET with 90% being the most sensitive imaging 474

biomarker. 475

When evaluating all possible combinations of 476

imaging biomarkers with APOE and neuropsycho- 477

logical information, highest balanced accuracy of 478

85% and highest sensitivity of 100% were obtained 479

for the combination of AV45-PET and sMRI with 480

neuropsychological scores (Table 2, Fig. 3b). In 481

contrast, when adjusting the testing data for TTC, 482

86.8% was the highest accuracy observed for the 483

combination of APOE, FDG-PET, and sMRI. This 484

combination also showed the highest specificity of 485

86.1% and an AUC of 0.84. The constellation of 486

biomarkers providing the lowest balanced accuracy 487

was with 60.6% the combination of APOE with AV45- 488

and FDG-PET. All classifier results were compara- 489

ble when matching for size of the training cohorts 490

(Table 3). 491

The use of only amyloid negative controls 492

and amyloid positive AD did not significantly 493

change accuracies [t(16) = –2.024; p = 0.36], sen- 494

sitivities [t(16) = –2.083; p = 1.0], and specificities 495

[t(16) = –2.083; p = 0.3240] for classifiers that did not 496

include AV45-PET (Table 4). The only strong change 497

for these classifiers was observed for the combina- 498

tion of neuropsychological profiles with FDG-PET and 499

sMRI information for which the sensitivity increased 500

by 10% whilst the specificity decreased by 14%. 501

In contrast, significant changes with average sen- 502

sitivity increases by 7% [t(17) = –4.244; p = 0.006] 503

and specificity decreases by 12% [t(17) = –7.965; 504

p < 0.001] were observed for biomarker combinations 505

that included AV45-PET. Differences in accuracies, 506

though on average lower for amyloid thresholded data, 507

were not significant [t(17) = –1.940; p = 0.42]. 508

When using z-transformed NB probabilities as 509

predictors for TTC, several biomarker combinations 510

showed a significant association with TTC. The 511

strongest and significant correlations with TTC of 512

r = 0.65 (p < 0.001) were observed when using clas- 513

sifier predictions based on neuropsychological scores 514

and either FDG-PET or sMRI (Table 2, Fig. 4b, c). 515

For output of single modality classifiers, the strongest 516

and only significant correlation with TTC (r = 517

0.41) was observed for neuropsychological profiles 518

(Fig. 4a). 519
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Table 2
Classification results for differentiation between sMCI and cMCI using all training data

BA Sensitivity Sensitivity N cMCI N cMCI
adjusted before adjusted Sensitivity N before at N Correlation

BA for TTC conversion for TTC at conversion Specificity AUC Training conversion conversion sMCI with TTC

APOE 0.597 0.607 0.650 0.670 0.684 0.543 0.606 256 177 76 265 0.103
NP 0.689 0.726 0.854 0.929 1.000 0.524 0.718 750 301 76 657 0.406∗∗

AV45 0.635 0.635 0.667 0.667 0.600 0.604 0.664 148 21 10 164 0.158
FDG 0.745 0.724 0.651 0.609 0.900 0.839 0.824 245 43 10 223 0.164
sMRI 0.648 0.743 0.618 0.808 0.778 0.678 0.625 422 55 18 354 0.263
APOE + NP 0.694 0.726 0.870 0.934 1.000 0.518 0.722 750 301 76 657 0.409∗∗

AV45 + FDG 0.612 0.612 0.571 0.571 0.900 0.652 0.724 143 21 10 164 0.049
AV45 + sMRI 0.736 0.729 0.800 0.786 0.333 0.673 0.748 105 15 9 107 0.057
FDG + sMRI 0.811 0.830 0.774 0.813 0.778 0.848 0.834 177 31 9 151 0.170
AV45 + FDG + sMRI 0.750 0.743 0.800 0.786 1.000 0.701 0.794 102 15 9 107 –0.156
NP+
AV45 0.743 0.743 0.810 0.810 0.900 0.677 0.797 148 21 10 164 0.501∗

FDG 0.740 0.803 0.744 0.870 1.000 0.735 0.771 245 43 10 223 0.652∗∗

sMRI 0.693 0.783 0.782 0.962 1.000 0.605 0.721 422 55 18 354 0.644∗∗

AV45 + FDG 0.732 0.732 0.762 0.762 0.900 0.701 0.811 143 21 10 164 0.322
AV45 + sMRI 0.850 0.850 1.000 1.000 0.889 0.701 0.829 105 15 9 107 0.557∗

FDG + sMRI 0.748 0.784 0.742 0.813 1.000 0.755 0.833 177 31 9 151 0.588∗∗

AV45 + FDG + sMRI 0.807 0.802 0.867 0.857 0.889 0.748 0.830 102 15 9 107 0.252
APOE+
AV45 0.647 0.647 0.714 0.714 0.600 0.579 0.665 148 21 10 164 0.178
FDG 0.759 0.748 0.674 0.652 0.900 0.843 0.824 245 43 10 223 0.223
sMRI 0.652 0.718 0.636 0.769 0.833 0.667 0.638 422 55 18 354 0.284
AV45 + FDG 0.606 0.606 0.571 0.571 0.900 0.640 0.725 143 21 10 164 0.069
AV45 + sMRI 0.736 0.729 0.800 0.786 0.333 0.673 0.753 105 15 9 107 0.083
FDG+sMRI 0.834 0.868 0.806 0.875 0.778 0.861 0.840 177 31 9 151 0.193
AV45 + FDG + sMRI 0.750 0.743 0.800 0.786 0.778 0.701 0.796 102 15 9 107 –0.126
APOE + NP+
AV45 0.740 0.740 0.810 0.810 0.900 0.671 0.794 148 21 10 164 0.506∗

FDG 0.738 0.800 0.744 0.870 1.000 0.731 0.770 245 43 10 223 0.653∗∗

sMRI 0.684 0.783 0.764 0.962 1.000 0.605 0.724 422 55 18 354 0.646∗∗

AV45 + FDG 0.755 0.755 0.810 0.810 1.000 0.701 0.810 143 21 10 164 0.340
AV45 + sMRI 0.850 0.850 1.000 1.000 0.889 0.701 0.830 105 15 9 107 0.553∗

FDG + sMRI 0.768 0.818 0.774 0.875 1.000 0.762 0.833 177 31 9 151 0.591∗∗

AV45 + FDG + sMRI 0.807 0.802 0.867 0.857 0.889 0.748 0.833 102 15 9 107 0.256

APOE, apolipoprotein E; AUC, area under the curve; AV45, florbetapir positron emission tomography; BA, balanced accuracy; cMCI, mild
cognitive impairment patients converting to Alzheimer’s disease; FDG, fluorodeoxyglucose positron emission tomography; N, number of
observations; NP, neuropsychological profiles; sMCI, stable mild cognitive impairment; sMRI, structural magnetic resonance imaging; TTC,
time to conversion to Alzheimer’s disease. ∗p < 0.05, ∗∗p < 0.001.

DISCUSSION520

In this study we demonstrated that a fully inde-521

pendent classifier built only on AD and HC data,522

which includes imaging, genetic and neuropsycho-523

logical biomarkers, can reliably discriminate between524

sMCI and cMCI outperforming previously reported525

accuracies. We show that combinations of biomark-526

ers reflecting several pathophysiological mechanisms,527

genetics and cognition provide greatest sensitivities in528

the MCI population. Further, we identify biomarker529

combinations providing very accurate estimations of530

TTC as an indicator of future disease progression. By531

controlling all of the evaluated combinations for poten-532

tial differences in TTC and size of the training data we533

additionally account for some known aspects which 534

might have biased the observed accuracies. In the sin- 535

gle biomarker setting, highest sensitivity and strongest 536

association with disease staging is found for neuropsy- 537

chological information. In contrast, highest specificity 538

and the overall accuracy are achieved by FDG-PET. 539

By controlling for TTC and combining APOE with 540

structural and glucose imaging, we obtain an accuracy 541

of about 87% for differentiation between cMCI and 542

sMCI, outperforming all other combinations evaluated 543

in our study. The observed accuracy also substantially 544

outperforms most previously reported accuracies for 545

this discrimination problem [10, 19, 20, 27, 51–57]. 546

The improved discrimination when adding APOE to 547

both imaging modalities can be explained by its known 548
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Fig. 2. Classification results for differentiation between stable mild cognitive impairment patients and those converting to Alzheimer’s disease
during the follow-up. Correlations with time to conversion (TTC), sensitivities matched for TTC, and specificities are displayed for all biomarker
constellations sorted by the average rank across these three metrics.

Fig. 3. Classification results for differentiation between stable mild cognitive impairment patients and those converting to Alzheimer’s disease
during the follow-up. Receiver operating characteristics (ROC) curves are displayed for differentiation based on single biomarkers (a) and for
three classifier combinations showing the highest balanced accuracy rates (b).

strong positive and negative predictive value for par-549

ticular allele combinations as illustrated in Fig. 5 [2,550

58–60]. Furthermore, these results demonstrate that a551

known genetic risk factor combined with neuropsy-552

chological information and two in vivo measures of553

neuropathological mechanisms like brain atrophy and554

neurodegeneration better predict the final phenotype 555

of conversion. Importantly, as compared to most pre- 556

vious studies the high accuracy was achieved using 557

fully independent training and testing data therewith 558

reducing the risk of overfitting. Though differential 559

sensitivities of different combinations of imaging, 560
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Table 3
Classification results for differentiation between sMCI and cMCI using equally sized training data

BA Sensitivity Specificity AUC

APOE 0.597 0.650 0.543 0.615
NP 0.685 0.857 0.513 0.716
AV 0.629 0.667 0.591 0.667
FDG 0.727 0.628 0.825 0.818
MRI 0.629 0.509 0.749 0.623
APOE + NP 0.679 0.850 0.508 0.710
AV45 + FDG 0.686 0.714 0.659 0.726
AV45 + sMRI 0.732 0.800 0.664 0.746
FDG + sMRI 0.756 0.677 0.834 0.803
AV45 + FDG + sMRI 0.750 0.800 0.701 0.794
NP+
AV45 0.749 0.810 0.689 0.778
FDG 0.727 0.674 0.780 0.748
sMRI 0.692 0.782 0.602 0.728
AV45 + FDG 0.735 0.762 0.707 0.795
AV45 + sMRI 0.850 1.000 0.701 0.825
FDG + sMRI 0.768 0.742 0.795 0.818
AV45 + FDG + sMRI 0.807 0.867 0.748 0.830
APOE+
AV45 0.647 0.714 0.579 0.665
FDG 0.761 0.651 0.870 0.831
sMRI 0.652 0.618 0.686 0.634
AV45 + FDG 0.665 0.714 0.616 0.715
AV45 + sMRI 0.736 0.800 0.673 0.759
FDG + sMRI 0.779 0.710 0.848 0.820
AV45 + FDG + sMRI 0.750 0.800 0.701 0.796
APOE + NP+
AV45 0.720 0.714 0.726 0.797
FDG 0.752 0.698 0.807 0.787
sMRI 0.638 0.727 0.548 0.690
PPL 0.615 0.929 0.300 0.640
AV45 + FDG 0.735 0.762 0.707 0.800
AV45 + sMRI 0.817 0.933 0.701 0.827
FDG + sMRI 0.744 0.806 0.682 0.814
AV45 + FDG + sMRI 0.807 0.867 0.748 0.833

APOE, apolipoprotein E; AUC, area under the curve; AV45, florbetapir positron emission tomography; BA,
balanced accuracy; cMCI, mild cognitive impairment patients converting to Alzheimer’s disease; FDG, fluo-
rodeoxyglucose positron emission tomography; NP, neuropsychological profiles; sMCI, stable mild cognitive
impairment; sMRI, structural magnetic resonance imaging.

genetic, and neuropsychological biomarkers for dis-561

crimination between cMCI and sMCI were repeatedly562

reported in previous studies, these estimates were563

mostly computed in different MCI subpopulations,564

e.g., not each patient had each imaging biomarker.565

This aspect limits the comparability of accuracies566

of different imaging biomarker combinations due to567

potential differences in diagnostics, training sets, or568

other between-group differences in clinical or demo-569

graphic characteristics across the MCI populations570

included for different modalities. By evaluating all571

imaging biomarkers in the same MCI subjects we572

account for these potential biases. We identify FDG-573

PET as the most accurate single modality biomarker574

differentiating between cMCI and sMCI. This finding575

is consistent with conclusions of a recent compre-576

hensive meta-analysis reporting higher accuracies for 577

FDG-PET as compared to other imaging and clinical 578

biomarkers to detect AD related pathology [61]. 579

Also consistently with previous studies, we find 580

that a combination of FDG-PET and sMRI results 581

in a substantially improved accuracy for early AD 582

detection [47, 62–64]. Adding APOE genotype to this 583

combination further increases the observed accuracy. 584

This combination also results in the highest speci- 585

ficity of 86%. We observed a similarly high accuracy 586

for the combination of neuropsychological profiles 587

with AV45-PET and sMRI. However, this good per- 588

formance is mostly driven by a very high sensitivity 589

whilst the specificity is comparably low. Correspond- 590

ingly, these two combinations of biomarkers might 591

provide alternative enrichment strategies for clinical 592
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Table 4
Classification results for differentiation between sMCI and cMCI using amyloid positive AD and amyloid negative controls

No AV45 classifiers BA Sensitivity Specificity � BA � sensitivity � specificity

APOE 0.597 0.650 0.543 0.000 0.000 0.000
NP 0.698 0.834 0.562 0.009 –0.020 0.038
FDG 0.738 0.651 0.825 –0.007 0.000 –0.013
sMRI 0.650 0.600 0.701 0.002 –0.018 0.023
APOE + NP 0.705 0.841 0.569 0.011 –0.030 0.052
FDG + sMRI 0.791 0.742 0.841 –0.019 –0.032 –0.007
NP + FDG 0.720 0.767 0.673 –0.020 0.023 –0.063
NP + sMRI 0.693 0.782 0.605 0.000 0.000 0.000
NP + FDG + sMRI 0.727 0.839 0.616 –0.021 0.097 –0.139
APOE + FDG 0.754 0.674 0.834 –0.004 0.000 –0.009
APOE + sMRI 0.659 0.636 0.681 0.007 0.000 0.014
APOE + FDG + sMRI 0.818 0.774 0.861 –0.016 –0.032 0.000
APOE + FDG + NP 0.716 0.767 0.664 –0.022 0.023 –0.067
APOE + sMRI + NP 0.700 0.782 0.619 0.016 0.018 0.014
APOE + FDG + sMRI + NP 0.731 0.839 0.623 –0.037 0.065 –0.139

Average change – – – –0.007 0.006 –0.020

AV45 classifiers BA Sensitivity Specificity � BA � sensitivity � specificity

AV45 0.652 0.762 0.543 0.017 0.095 –0.061
AV45 + FDG 0.655 0.762 0.549 0.043 0.190 –0.104
AV45 + sMRI 0.732 0.867 0.598 –0.004 0.067 –0.075
AV45 + FDG + sMRI 0.737 0.867 0.607 –0.013 0.067 –0.093
NP + AV45 0.724 0.905 0.543 –0.019 0.095 –0.134
NP + AV45 + FDG 0.706 0.857 0.555 –0.026 0.095 –0.146
NP + AV45 + sMRI 0.714 0.933 0.495 –0.136 –0.067 –0.206
NP + AV45 + FDG+sMRI 0.766 1.000 0.533 –0.041 0.133 –0.215
APOE + AV45 0.652 0.762 0.543 0.006 0.048 –0.037
APOE + FDG 0.754 0.674 0.834 –0.004 0.000 –0.009
APOE + AV45 + FDG 0.655 0.762 0.549 0.050 0.190 –0.091
APOE + AV45 + sMRI 0.732 0.867 0.598 –0.004 0.067 –0.075
APOE + AV45 + FDG + sMRI 0.732 0.867 0.598 –0.018 0.067 –0.103
APOE + AV45 + NP 0.721 0.905 0.537 –0.019 0.095 –0.134
APOE + AV45 + FDG + NP 0.706 0.857 0.555 –0.049 0.048 –0.146
APOE + AV45 + sMRI + NP 0.728 0.933 0.523 –0.122 –0.067 –0.178
APOE + AV45 + FDG + sMRI + NP 0.762 1.000 0.523 –0.045 0.133 –0.224
Average change – – – –0.023 0.074∗ –0.119∗

APOE, apolipoprotein E; AUC, area under the curve; AV45, florbetapir positron emission tomography; BA, balanced accuracy; cMCI, mild
cognitive impairment patients converting to Alzheimer’s disease; FDG, fluorodeoxyglucose positron emission tomography; NP, neuropsycho-
logical profiles; sMCI, stable mild cognitive impairment; sMRI, structural magnetic resonance imaging. � BA, � sensitivity, and � specificity
refer to differences from results obtained using all training data (as displayed in Table 2). ∗p < 0.05.

Fig. 4. Results of regression analyses between Naı̈ve Bayes z-transformed probabilities and time to conversion (TTC). Results for classifiers
showing the strongest correlation with TTC in a single biomarker setting (a) and when combining different modalities (b and c) are displayed.
Predicted time to conversion values are displayed on the y axis. The lines indicate the regression slopes. FDG, fluorodeoxyglucose positron
emission tomography; NP, neuropsychological scores; sMRI, structural magnetic resonance imaging.
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Fig. 5. Visualization of apolipoprotein E (APOE) genotype profiles
observed in the training and testing dataset. Blue solid line indicates
the relative frequency of Alzheimer’s disease (AD) patients out of
all subjects having the particular APOE allele combination in the
training cohort. Red solid line indicates the relative frequency of
mild cognitive impairment patients converting to AD (cMCI) out
to all MCI having the particular APOE allele combination in the
testing cohort. Green dotted line indicates the relative frequency of
the particular APOE allele combination in healthy controls in the
training dataset. Orange dotted line indicates the relative frequency
of the particular APOE allele combination in AD in the training
dataset.

trials where high sensitivity or specificity might be593

prioritized.594

Most importantly, for the first time we identified595

biomarker combinations which not only allow a very596

accurate discrimination of cMCI and sMCI but are597

also strongly predictive at an individual subject’s level598

to the future cognitive decline as indicated by TTC.599

In a single biomarker setting only neuropsychologi-600

cal scores are a significant predictor of future disease601

as indicated by a 0.4 correlation with TTC. How-602

ever, combining these with either FDG-PET or sMRI603

increases the explained variance in TTC to above 40%604

(squared Pearson correlation coefficients). These find-605

ings suggest that both biomarker combinations are606

highly sensitive to future disease progression. This607

aspect might be particularly important in clinical trials608

aiming to identify MCI patients and earlier and/or more609

homogeneous disease stages. Though many previous610

studies focused on identification of biomarker com-611

binations that increase the risk of conversion to AD,612

only few of the studies so far also evaluated the link613

between identified biomarkers and TTC [22, 25, 28,614

53]. By focusing on hazard ratios these studies iden-615

tified risk factors associated with TTC at group level.616

These factors do not yet necessarily allow an accu- 617

rate prediction of progression for individual patients. 618

Furthermore, none of the above mentioned studies per- 619

formed an exhaustive comparison of different imaging, 620

genetic and neuropsychological biomarker to iden- 621

tify constellations that are most sensitive to TTC. The 622

strongly significant association identified in our study 623

for the combinations of neuropsychological scores 624

with either FDG-PET or sMRI information indicates 625

a high potential of these modality combinations to 626

provide prognostic information for individual MCI 627

patients. Beside this already highly important infor- 628

mation for the patients, the established relationships 629

can be also applied in clinical trials to identify MCI 630

patients at particular disease stages. Considering that 631

several promising phase III studies targeting mecha- 632

nisms in AD have recently failed [65–67] with post-hoc 633

analyses of these failures suggesting that the inclu- 634

sion of AD patients at quite advanced disease stages 635

might partially explain the lack of observed treatment 636

effects [68]. The identified biomarker combinations 637

might provide a sensitive stratification mechanism to 638

identify patients at earlier disease stages in future clin- 639

ical studies. More recent AD trials therefore aim to 640

focus on more prodromal AD stages as the primary 641

intervention window [69]. Crucial for their success 642

might be therefore the capability to accurately diag- 643

nose AD at its early disease stages. Contrary to our 644

prior expectations of getting more accurate classifiers 645

when using only amyloid positive AD and amyloid 646

negative HC to train the classifiers, no benefit in terms 647

of accuracies is observed for discrimination of cMCI 648

and sMCI. Interestingly, we see a strong dissocia- 649

tion between classifiers with and without AV45-PET 650

in terms of obtained sensitivities and specificities. 651

Whilst no major changes are observed for classifiers 652

not including AV45-PET, we see a strong shift towards 653

an increased sensitivity and decreased specificity in 654

classifier combinations including this biomarker. Con- 655

sidering that previous epidemiological studies have 656

shown that amnestic sMCI as included in the ADNI 657

are at high risk of conversion to AD when followed 658

for a period of up to 10 years [9, 70], the assign- 659

ment of a higher percentage of sMCI patients as AD 660

might in fact more closely reflect the true differenti- 661

ation between AD and non-AD MCI than the criteria 662

of a stable follow-up of two years we apply for sMCI. 663

However, these considerations remain speculative until 664

sMCI populations with longer follow-up than the one 665

included in our study become available. 666

Lastly, we observed even reduced accuracy as com- 667

pared to single biomarkers when AV45- and FDG-PET 668
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information is combined. This finding suggests a low669

consistency between these two imaging modalities670

in the evaluated MCI population. A potential rea-671

son for this might be that amyloid depositions are672

rather dissociated from disease progression as reflected673

by functional imaging markers. The lack of clinical674

benefits in pharmacological trials aiming at amyloid675

clearance despite successful reductions of those depo-676

sitions supports this assumption [71–73].677

Even though in the present study we aimed to678

account for most potential limitations and biases com-679

mon to these types of studies, several limitations still680

need to be considered prior to interpretation of the681

reported findings. First of all, in our effort to iden-682

tify a homogeneous subpopulation of the ADNI cohort683

having the constellation of all biomarkers included in684

our study, we had to discard a large amount of data685

available in the ADNI dataset. In particular for the con-686

stellations of biomarkers including AV45-PET and at687

the time point of conversion applying these filtering688

criteria resulted in a very low and varying number of689

MCI testing cases depending on the biomarker con-690

stellation. The data loss is mostly due to the fact that691

AV45-PET was only included in the ADNI-GO and 2692

and to sparse acquisition of some of the imaging mea-693

sures. For this reason, we limited our discussion of694

accuracies obtained for data at the time point of con-695

version as they need to be validated in samples that696

are significantly larger than evaluated in the current697

study. Correspondingly, the low numbers of testing698

data need to be considered when interpreting sensi-699

tivities obtained using the affected combinations. For700

the reason of varying and small numbers of testing701

cases for each biomarker constellation we also did not702

directly compare the classifier performances to each703

other but only to chance level performance. This for-704

mal testing needs to be performed when a sufficiently705

large amount of data becomes available, covering all706

of the studied modalities in exactly the same MCI pop-707

ulation. A second limitation of our study is related to708

the pre-processing pipelines applied for imaging data.709

Numerous studies including our own previous work710

have provided evidence that particular pre-processing711

steps omitted in our study, e.g., partial volume effect712

correction or adjustment for age-related effects, can713

further improve the sensitivity of the single imag-714

ing modalities for discrimination between AD and715

HC or cMCI and sMCI [40, 42, 43, 74]. Due to the716

high sparsity of the available imaging data, apply-717

ing these pre-processing steps would have resulted in718

further exclusion of a substantial amount of imaging719

data eventually leading to a very limited sample size720

of the training and testing datasets. As demonstrated 721

by earlier studies cited above, having more optimal 722

pre-processing pipelines should further increase the 723

accuracies observed here for the single biomarker clas- 724

sifiers. Therefore, if anything, our results are likely to 725

underestimate the achievable accuracies. 726

A further limitation of our study is the pre-selection 727

of neuropsychological and clinical tests used in our 728

study to differentiate between stable and converter 729

MCI. Our major motivation to do a pre-selection of 730

tests from the extensive test battery included in the 731

ADNI was to cover major domains affected in AD 732

with a reasonable number of tests that could be inte- 733

grated in a standard clinical setting. However, inclusion 734

of other neuropsychological and functional measures 735

might further increase accuracies achievable with these 736

types of biomarkers. 737

Lastly, though we validated the obtained classifier 738

using fully independent testing data, the reported clas- 739

sifier performances remain limited to the ADNI dataset 740

with its restrictive inclusion and exclusion criteria. 741

They are therefore likely to overestimate accuracies 742

achievable in a standard clinical setting in the presence 743

of other possible dementia syndromes [75]. 744

To summarize, in our study we provide strong 745

evidence that fully automated classifiers based on 746

combination of imaging, genetic, and/or neuropsycho- 747

logical biomarkers can reliably and very accurately 748

discriminate between stable and converter MCI. Fur- 749

ther, we demonstrate the high sensitivity of the some 750

of the identified biomarker combinations to future dis- 751

ease progression as indicating by the time to conversion 752

to AD. The result of our study further confirms the 753

high degree of pathological and clinical heterogene- 754

ity of AD [76], thus suggesting that the combined 755

use of genetic and imaging and neuropsychological 756

biomarkers in the framework of endophenotypes for 757

this disorder could increase the power of identify- 758

ing individuals at risk for conversion. Notably, these 759

biomarker combinations could be used for enrichment 760

of clinical trials to identify MCI patients at earlier AD 761

stages. 762
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