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Abstract: Cognitive impairment in patients with Alzheimer’s disease (AD) is associated with reduction
in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hip-
pocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a
change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to
early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated
using T1-weighted MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
and subsequently applied to score independent data sets from the Australian Imaging, Biomarker &
Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metro-
polit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-AD conversion
in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test,
p 5 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but
not volume, correlated with Addenbrooke’s cognitive examination score (Pearson correlation,
r 5 20.25, p< 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippo-
campal glucose metabolism as indicated by fluorodeoxyglucose-positron emission tomography
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(Pearson correlation, r 5 20.57, p< 0.001). Texture statistics remained significant after adjustment for
volume in all cases, and the combination of texture and volume did not improve diagnostic or prog-
nostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in
MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cog-
nitive impairment. Hum Brain Mapp 37:1148–1161, 2016. VC 2015 Wiley Periodicals, Inc.

Key words: biomarker; classification; early diagnosis; hippocampus; image analysis; machine learning;
magnetic resonance imaging; mild cognitive impairment
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INTRODUCTION

The major hallmarks of Alzheimer’s disease (AD) include
early stage, small-scale alterations in the brain in terms of
neurofibrillary tangles (NFTs), and amyloid-b (Ab) plaque
deposition [Braak and Braak, 1997], as well as later stage,
large-scale alterations of the brain in terms of localized atro-
phies in structures such as the hippocampus [Bobinski
et al., 1995] and eventually whole brain atrophy. NFTs and
Ab plaques are not directly detectable at the current resolu-
tion of clinical magnetic resonance imaging (MRI). How-
ever, localized areas of atrophy are detectable in MRI
images [Bobinski et al., 2000; Tanabe et al., 1997], and con-
siderable effort has been applied to developing and validat-
ing MRI-based AD biomarkers using this information
[Ramani et al., 2006]. The hippocampus is often considered
the primary region of interest (ROI) because it is affected
early in the AD pathological process and is also generally
severely affected [Braak and Braak, 1997; West et al., 1994].
MRI-based biomarkers of AD that target hippocampal atro-
phy include static hippocampal volume, change of hippo-
campal volume over a given time frame (often termed
atrophy rate), and shape of the hippocampus. All these
marker types have demonstrated both diagnostic [Convit
et al., 1997; Fox and Freeborough, 1997; Gerardin et al.,
2009] and prognostic capabilities in AD [Achterberg et al.,
2014; Costafreda et al., 2011; Devanand et al., 2007; Henne-
man et al., 2009; Jack et al., 1999, 2005].

Although individual NFTs and Ab plaques cannot be
detected at the resolution of current clinical MRI, it is our
working hypothesis that the accumulated effect of these
phenomena on the MRI image is detectable prior to atro-
phy as changes in the statistical properties of the image
intensities. These changes may form certain textural pat-
terns in the MRI images [Castellano et al., 2004], and tex-
ture analysis [Tuceryan and Jain, 1998] may therefore be
suitable for capturing this information. Texture analysis
has previously been successfully applied to produce imag-
ing biomarkers of AD [Chincarini et al., 2011; Freeborough
and Fox, 1998; Zhang et al., 2011] as well as other diseases,
including osteoarthritis [Marques et al., 2012] and multiple
sclerosis [Zhang et al., 2008] in MRI, chronic obstructive
pulmonary disease in computed tomography (CT)
[Sørensen et al., 2012], breast cancer in mammography
[Nielsen et al., 2011], and tuberculosis and interstitial dis-

eases in chest radiography [van Ginneken et al., 2002]. The
ability to detect dementia-specific textural patterns in the
brain tissue and to discriminate these from the texture of
normal healthy brain tissue may provide a valuable and
complementary MRI-based biomarker of the disease.
Moreover, it is likely that an MRI marker based on texture
will be able to detect earlier stages of AD than markers
that target larger scale changes in the brain, such as
atrophy.

In this study, we specifically investigated hippocampal
texture as an MRI-based biomarker of AD and focused on
early detection. This is different from previous texture
studies that all focused on diagnosis or used more global,
nonanatomically restricted information. Our goals were to
determine if MRI hippocampal texture predicts conversion
from mild cognitive impairment (MCI) to AD, if texture
can detect early cognitive decline in a clinically healthy
population, and if texture reflects changes in hippocampal
glucose metabolism in fluorodeoxyglucose-positron emis-
sion tomography (FDG-PET). In addition, we wanted to
test if these properties persisted after adjustment for hip-
pocampal volume, i.e., whether texture carried additional
information.

MATERIALS AND METHODS

Data

Data used in the preparation of this article was obtained
from three different cohorts: ADNI, AIBL, and Metropolit.

ADNI data

This dataset was obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies,
and nonprofit organizations, as a $60 million, 5-year, pub-
lic–private partnership. The primary goal of ADNI has
been to test whether serial MRI, positron emission tomog-
raphy (PET), biological markers, and clinical and neuro-
psychological assessments can be combined to measure
the progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD

r Early AD Detection Using Hippocampal Texture r

r 1149 r



progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as
well as to lessen the time and cost of clinical trials. ADNI
is the result of efforts of many coinvestigators from a
broad range of academic institutions and private corpora-
tions, and subjects have been recruited from over 50 sites
across the U.S. and Canada. For up-to-date information,
see http://www.adni-info.org/. Raw unprocessed MRI
images were downloaded from the ADNI website between
February 1 and November 11, 2012.

We used the “complete annual year 2 visits” 1.5T data-
set from the collection of standardized datasets released
by ADNI [Wyman et al., 2013]. The dataset definition was
downloaded from the ADNI website (http://www.adni.
loni.usc.edu/methods/mri-analysis/adni-standardized-data/)
on September 28, 2012. The dataset comprises 504 subjects
with one associated 1.5T T1-weighted MRI image out of
the two possible from the back-to-back scanning protocol
in ADNI [Jack et al., 2008] at baseline, 12-month follow-
up, and 24-month follow-up. Three datasets were defined
from the standardized ADNI dataset as illustrated in Sup-
porting Information, Figure 1: one for evaluating diagnos-
tic capabilities, and two datasets for evaluating prognostic
capabilities considering a 12-month and a 24-month time
frame, respectively. The diagnosis dataset was defined
based on the clinical baseline diagnosis from ADNI and
comprised 169 normal control (CTRL) subjects, 233 MCI
subjects, and 101 AD patients. Prognosis was defined as
discriminating between subjects that converted from MCI
at baseline to AD within a given time frame versus base-
line MCI subjects that did not convert within the same
time frame. Subjects reverting to CTRL from MCI within
the same time frame were kept in the dataset. Baseline
demographics and clinical parameters for the diagnosis
dataset and the prognosis datasets are shown in Table I.

ADNI CSF subset. An additional cerebrospinal fluid
(CSF) amyloid subset was defined by selecting the 281
subjects in the “complete annual year 2 visits” 1.5T stand-
ardized ADNI dataset that had an associated baseline CSF
measurement of Ab 1–42 peptide (Ab1–42) and of total tau
(t-tau) available from the Center for Neurodegenerative
Disease Research, University of Pennsylvania School of
Medicine, Philadelphia [Shaw et al., 2009] (Table I). We
used log(t-tau/Ab1–42) as a CSF biomarker [Vemuri et al.,
2009] alongside the MRI biomarkers. The CSF measure-
ments were downloaded directly from the ADNI website
on July 18, 2014.

ADNI FDG-PET subset. An additional FDG-PET ADNI
subset was defined by selecting the subjects in the
“complete annual year 2 visits” 1.5T standardized ADNI
dataset that had an associated baseline FDG-PET measure-
ment of hippocampus metabolic rate of glucose available
from the Center for Brain Health, NYU School of Medi-
cine, New York [Li et al., 2008; Mosconi et al., 2005]. We
further required a maximum of 60 days between MRI and

FDG-PET scans, which resulted in a total of 215 subjects
(Table I). The associated left and right pons-normalized
hippocampal metabolic rates of glucose (lmol/100 g/min)
were downloaded directly from the ADNI website on Jan-
uary 27, 2015 and subsequently averaged to obtain a single
hippocampal FDG-PET score.

AIBL data

This dataset was obtained from the AIBL imaging arm
available via the ADNI website. The data was collected by
the AIBL study group. AIBL study methodology has been
reported previously [Ellis et al., 2009]. A total of 141 3T
T1-weighted baseline structural MRI images from 141 dif-
ferent subjects were downloaded between September 27
and September 30, 2013. Version 3.1.3 of the associated
clinical data was used. AIBL adopted the MRI protocol of
ADNI, and neuropsychological tests were designed to per-
mit comparison and pooling with ADNI [Ellis et al., 2010].
A diagnosis dataset and a prognosis dataset were defined
similarly to the way the corresponding ADNI datasets
were defined; however, the prognosis dataset considered
an 18-month time frame because AIBL performed follow-
up every 18 months in contrast to the 12-month intervals
in the standardized ADNI dataset. Baseline demographics
and clinical parameters for the two datasets are shown in
Table I.

Metropolit data

Metropolit [Osler et al., 2006, 2013] includes all boys
born in 1953 in the Copenhagen metropolitan area. The
subjects underwent cognitive assessment at the conscript
board examination at approximately 20 years of age, and
again in 2009–2010 as a part of the Copenhagen Aging
and Midlife Biobank (CAMB) at approximately 56 years
of age. A subset was selected comprising subjects that,
according to a regression analysis, exhibited either an
increased or a decreased cognitive performance from
year 20 to year 56 relative to the entire population of
1985 subjects that participated in both tests. The subjects
with increased cognitive performance acted as the con-
trol group. Detailed selection criteria are described in
Hansen et al. [2014]. The included subjects were neuro-
psychologically tested at approximately 58 years of age
and a 3T T1-weighted structural MRI scan was acquired
(MP-RAGE; TI, 700 ms; TR, 6.9 ms; flip angle, 98; 137 sag-
ittal slices; 1.1 3 1.1 3 1.1 mm3 voxels). The demo-
graphics and clinical parameters for the dataset are
shown in Table I.

MRI Analysis

Preprocessing and hippocampus segmentation

The MRI scans were preprocessed and the hippocampi
segmented with the freely available FreeSurfer software
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package (version 5.1.0) [Fischl et al., 2002] using the cross-
sectional pipeline with default parameters. The original
MRI image resolution of [0.94, 1.35] 3 [0.94, 1.35] 3

1.2 mm3 in ADNI, 1 3 1 3 1.2 mm3 in AIBL, and 1.1 3

1.1 3 1.1 mm3 in Metropolit was conformed to a 1.0 3 1.0
3 1.0 mm3 resolution, and all MRIs were bias field cor-
rected. The bias field correction in FreeSurfer utilizes the

nonparametric nonuniform intensity normalization algo-
rithm [Sled et al., 1998], often referred to as N3.

Hippocampal volume

The hippocampal volume was computed from the raw
FreeSurfer hippocampus segmentations as the bilateral

TABLE I. Demographics and clinical parameters for the three cohorts: ADNI, AIBL, and Metropolit

N Age, mean 6 SD Sex, % male MMSE, mean 6 SD ACE, mean 6 SD

ADNI
Diagnosis dataset

CTRL 169 76.0 6 5.1 50.9e 29.2 6 1.0d,e

AD 101 75.3 6 7.4 50.5f 23.2 6 1.9d,f

MCI 233a 74.8 6 7.0 66.5e,f 27.1 6 1.7e,f

Prognosis datasetsa

MCI-NC12 192 74.9 6 7.1 66.7 27.2 6 1.7g

MCI-C12 41 74.3 6 6.8 65.9 26.5 6 1.8g

MCI-NC24 140 74.8 6 6.9 67.1 27.5 6 1.7g

MCI-C24 93 74.9 6 7.3 65.6 26.6 6 1.7g

FDG-PET subset
CTRL 62 75.9 6 5.0 59.7 29.1 6 1.0d,e

AD 52 75.7 6 6.5 53.9 23.3 6 2.1d,f

MCI 101 75.5 6 6.9 69.3 27.1 6 1.6e,f

Diagnosis CSF subset
CTRL 90 75.5 6 5.1 50.0e 29.1 6 1.0d,e

AD 60 74.9 6 7.7 55.0 23.3 6 1.9d,f

MCI 127 74.5 6 7.4 69.3e 26.9 6 1.8e,f

Prognosis CSF subset
MCI-NC12 102 74.8 6 7.4 69.6 27.1 6 1.7
MCI-C12 25 73.4 6 7.2 68.0 26.4 6 2.0
MCI-NC24 78 74.1 6 7.2 67.9 27.2 6 1.7g

MCI-C24 49 75.1 6 7.7 71.4 26.5 6 1.9g

AIBLb

Diagnosis dataset
CTRL 88 75.2 6 7.2 47.7 28.9 6 1.3d,e

AD 28 73.6 6 8.1f 35.7 21.2 6 5.6d,f

MCI 25 78.3 6 7.0f 56.0 27.0 6 2.0e,f

Prognosis datasets
MCI-NC18 17 77.1 6 6.7 52.9 27.6 6 1.6g

MCI-C18 8 80.7 6 7.6 62.5 25.6 6 2.0
Metropolit

CTRL 95 58.4 6 0.6 100.0 29.5 6 0.8h 96.0 6 3.2h

CL 96c 58.6 6 0.7 100.0 29.2 6 1.0h 92.1 6 5.0h

Key: ACE, Addenbrooke’s cognitive examination; AD, Alzheimer’s disease; ADNI, The Alzheimer’s Disease Neuroimaging Initiative;
AIBL, The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; CL; cognitive loss; CSF, cerebrospinal fluid; CTRL, nor-
mal control; MCI, mild cognitive impairment; MCI-Cn, month n MCI-to-AD converter; MCI-NCn, month n MCI nonconverter; MMSE,
mini-mental state examination.
Baseline data is reported for ADNI and AIBL, whereas follow-up data is reported for Metropolit. Differences were tested at a p< 0.05
significance threshold using Student’s t-test except when comparing sex, where a v2 test was used.
aOne MCI excluded; missing month 24 diagnosis.
bFour MCIs excluded; missing month 18 diagnosis.
cOne observation from the CL group excluded; missing ACE measurement.
dCTRL differ from AD patients.
eCTRL differ from subjects with MCI.
fSubjects with MCI differ from AD patients.
gNonconverters differ from converters.
hCTRL differ from subjects with CL.
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hippocampal volume divided by the intracranial volume
(ICV) [Sanfilipo et al., 2004]. The ICV was estimated as a
part of the static FreeSurfer pipeline using a method
described in Buckner et al. [2004].

Hippocampal texture

A bilateral hippocampal texture score was computed by
combining a texture descriptor that has previously been
successfully applied in lung CT [Sørensen et al., 2012] and
a support vector machine (SVM) [Cortes and Vapnik, 1995].

Texture descriptor. The texture within the hippocampi
was represented by a number of filter response histograms
of a three-dimensional, rotation-invariant, multiscale,
Gaussian derivative-based filter bank [Lindeberg, 2009].
The histograms were computed using filter responses from
both hippocampi collectively. These histograms could cap-
ture different microstructural properties within the hippo-
campal tissue, such as the amount of steep intensity
transitions and “blob”-like structures. The descriptor was
adapted to our problem and therefore deviated from
Sørensen et al. [2012] in four ways.

1. The following scales r were used: 0.6, 0.85, 1.2, and
1.7 mm. The upper end of the scale range was deter-
mined by visual inspection of Gaussian smoothed
images. The structures in the hippocampus visually
vanished at scales exceeding 1.7 mm.

2. Derivatives at the different scales were computed by
convolution with the corresponding derivative filter
instead of convolution with a Gaussian followed by
finite differencing for improved numerical accuracy.

3. Based on the size of the smallest morphologically
cleaned bilateral hippocampal segmentation in the
ADNI dataset, we quantized the filter responses into
nine histogram bins.

4. The Gaussian filter was excluded in order to be invari-
ant to the lack of a standard image intensity scale in
MRI [Ny�ul and Udupa, 1999]. This exclusion left the
following seven base filters measuring different
aspects of the local image structure: the absolute larg-
est eigenvalue of the Hessian matrix k1(x;r), where
x5[x,y,z]T is a voxel (i.e., a position within the MRI
image) and r is the scale; the absolute second largest
eigenvalue of the Hessian matrix k2(x;r); the absolute
smallest eigenvalue of the Hessian matrix k3(x;r); gra-

dient magnitude krGðx; rÞk25
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
x;r1I2

y;r1I2
z;r

q
; where

Ix,r denotes the partial first-order derivative of
MRI image I w.r.t. x at scale r; the Laplacian of the

Gaussian r2G x; rð Þ5k1 x; rð Þ1k2 x; rð Þ1k3 x; rð Þ; Gaus-
sian curvature K x; rð Þ5k1 x; rð Þ k2 x; rð Þk3 x; rð Þ; and
the Frobenius norm of the Hessian kHðx; rÞkF5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1ðx; rÞ21k2ðx; rÞ21k3ðx; rÞ2
q

.

All these filters are based on intensity derivatives, and
the method is therefore invariant to locally constant inten-
sity offsets (e.g., caused by smooth intensity bias fields or
imperfections in bias field correction). For each filter at
each scale (e.g., k1 x; 0:6ð Þ), a filter response histogram was
computed (e.g., hk1 x;0:6ð Þ). The final hippocampal texture
descriptor was obtained by normalizing each filter
response histogram to sum to one and concatenating the
normalized filter response histograms ( hk1ðx;0:6Þ; . . .;

�
hkHðx;0:6ÞkF

; . . .;hkHðx;1:7ÞkF
�). The descriptor was applied to

the conformed MRI scans, and since the FreeSurfer confor-
mation and the filtering are both linear processes, their
combination is mathematically equivalent to one linear
process. The reader is referred to the Supporting Informa-
tion text for additional details about the descriptor.

A segmentation of the hippocampi was needed to define
the ROI in which texture was characterized. In principle,
any proper segmentation algorithm or manual delineation
could be used for this purpose. In this study, the hippo-
campi were automatically segmented using FreeSurfer as
described previously. The FreeSurfer segmentation was
postprocessed by removing the surface using morphological
erosion with a spherical structuring element of radius 1 mm
(corresponding to 1 voxel because of the isotropic 1 mm3

representation of the data). This was done to remove noise
from the segmentation boundary and to ensure that texture
was measured in the interior of the hippocampus only. The
average uncleaned bilateral hippocampal volume in the
ADNI diagnosis dataset was 6464.8 mm3, and the average
morphologically peeled counterpart was 3118.6 mm3.

Texture classifier. The bilateral hippocampi were classified
based on their textural representation (i.e., the concatenated
filter response histograms) using a soft-margin SVM with a
radial Gaussian kernel. The real-valued SVM decision func-
tion was interpreted as a single texture score. Its sign indi-
cates whether the SVM classifies an input as patient (1) or
control (2), and its amount is proportional to the distance
from the decision boundary that separates the two classes (in
the kernel-induced feature space). The hyperparameters of
the SVM were determined using grid search considering the
area under the receiver operating characteristic curve (AUC)
for separating CTRL and AD as performance criterion, where
the AUC was estimated by 20-fold cross-validation on the
current training data. The reader is referred to the Support-
ing Information text for additional details about the classifier.
We employed the open-source C11 machine learning
library Shark [Igel et al., 2008] for learning and classification.

Texture scoring of the data. In the diagnostic ADNI
experiment, the CTRL and AD subjects in the ADNI diagno-
sis dataset were texture scored using an outer 10-fold cross-
validation. The ADNI diagnosis dataset was split into 10
disjoint subsets stratified by groups (CTRL and AD). In each
fold, an SVM was built to separate between CTRL and AD
in the training set using the procedure described above (i.e.,
we repeated the 20-fold cross-validation for model selection
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ten times), and it was subsequently applied to score all cases
in the held out test set. This provided a texture score for
each subject in the diagnosis dataset (the folds and scores
are available as Supporting Information Dataset 1).

In the prognostic ADNI experiment, the MCI texture
scores (available as Supporting Information Dataset 2)
were obtained using a single SVM built to separate all
CTRL and AD subjects in the ADNI diagnosis dataset. The
hyperparameters of the SVM were determined using 20-
fold cross-validation on the training data as described pre-
viously. The same SVM was also used to score the com-
plete AIBL dataset (available as Supporting Information
Dataset 3) and the complete Metropolit dataset.

Statistical Analysis

Texture and volume were inspected for Gaussianity, and a
log transformation was considered but refused. Log volume
had a linear relationship with texture (Supporting Informa-
tion, Fig. 2) and was used when texture was adjusted for
volume and in the combination of texture and volume.

The MRI biomarkers (texture and volume) were adjusted
simultaneously for age and sex in all reported results unless
otherwise stated, and the adjustment was performed using
decorrelation as described in the Supporting Information
text. When texture was adjusted for log volume or MMSE,
we adjusted for age and sex in addition.

Because texture is computed within an ROI, the ROI vol-
ume is automatically available as well. We therefore also
combined texture and log volume using logistic regression
in order to inspect the potential combined value of the two
MRI biomarkers. The combination model included raw
MRI biomarker scores as well as age and gender as covari-
ates, and the model parameters were estimated using the
ADNI diagnosis dataset. The reader is referred to the Sup-
porting Information text for further details.

The diagnostic and prognostic capabilities of hippocam-
pal texture were evaluated using receiver operating char-
acteristic (ROC) curves with the corresponding area under
the ROC curve (AUC) as performance measure. Signifi-
cance of an AUC was determined using a DeLong,
DeLong, and Clarke–Pearson’s test [DeLong et al., 1988],
comparing the ROC curve to the curve obtained using ran-
dom guessing (a straight line). Texture and volume ROC
curves were also compared using the same test.

RESULTS

Combination of Texture and Volume

As can be seen in Supporting Information, Table I, tex-
ture, volume, and age all contributed in the logistic regres-
sion model fitted using the ADNI diagnosis dataset,
whereas sex was insignificant. The negative coefficient for
age may be attributed to the relative older CTRL group
compared to the AD group in the ADNI diagnosis dataset.

Diagnosis of AD

We first inspected the diagnostic capabilities of hippocam-
pal texture on ADNI data. The obtained texture scores are
summarized in Figure 1A, and examples of hippocampi of
varying sizes with a negative texture score (indicating CTRL)
and a positive texture score (indicating AD) are illustrated in
Figure 2. Texture achieved an AUC of 0.912 (p< 0.001) in dis-
criminating CTRL from AD and an AUC of 0.764 (p< 0.001)
in discriminating CTRL from MCI. The corresponding ROC
curves are shown in Figure 1C. In comparison, volume
achieved AUCs of 0.909 (p< 0.001) and 0.784 (p< 0.001),
respectively, which did not differ significantly from the tex-
ture AUCs according to a DeLong, DeLong, and Clarke–Pear-
son’s test comparing the two ROC curves. Texture maintained
significant CTRL vs AD and CTRL vs MCI discriminations
(p< 0.001 and p 5 0.010) after volume was removed from the
texture signal using decorrelation. Finally, combining texture
and volume using logistic regression produced AUCs of 0.915
(p< 0.001) and 0.806 (p< 0.001). The combined texture and
volume AUC for CTRL vs MCI was significantly different
from the texture AUC according to a DeLong, DeLong, and
Clarke–Pearson’s test (p< 0.001). We also inspected the com-
bined diagnostic performance of MRI (texture and volume)
and CSF (log(t-tau/Ab1–42)) using the ADNI CSF subset. The
combination of texture and volume using logistic regression
resulted in slightly larger AUCs compared to the ones previ-
ously estimated using the full standardized ADNI dataset,
0.919 (p< 0.001) for CTRL vs AD and 0.827 (p< 0.001) for
CTRL vs MCI. Adding CSF to the logistic regression model
resulted in an insignificant increase of both AUCs to 0.932
(p< 0.001) and 0.841 (p< 0.001), respectively.

Prognosis of AD

A central part of our study was to test whether hippo-
campal texture could predict conversion from MCI to AD
and whether it was capable of this independent of volume.
The obtained texture scores for the ADNI MCI subjects are
summarized in Figure 1B; subjects were grouped accord-
ing to AD conversion within 12 and 24 months, respec-
tively. The prognostic capabilities (discrimination between
nonconverters and converters) of the texture-based marker
were evaluated using ROC curves (Fig. 1C), and the corre-
sponding AUCs are shown in Table II. Both the texture
and the combination AUC differed significantly from the
volume AUC for conversion within 24 months (p 5 0.005
and p 5 0.002), but not for conversion within 12 months.
Texture maintained significant prognostic performance
after adjustment for volume using decorrelation (p 5 0.003
and p< 0.001). In addition, texture was adjusted for base-
line mini-mental state examination (MMSE) score because
this quantity differed significantly among the prognostic
groups (Table I), and we found that the prognostic AUCs
remained significant (p< 0.001). Note that in the prognosis
experiment, conversion to AD was defined based on
follow-up clinical diagnosis, which is partly based on
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follow-up MMSE score, for which we did not adjust. Com-
bining CSF and MRI biomarkers using logistic regression
resulted in an insignificant decrease of month 12 conver-
sion AUC and an insignificant increase of month 24 con-
version AUC (Table II).

Correlation with General Cognition

The age- and sex-adjusted texture and volume were
plotted against MMSE in the ADNI cohort (Fig. 3), and the
corresponding Pearson correlation coefficients are shown
in Table III. Texture maintained significant correlation

Figure 2.

Illustration of hippocampi with a negative texture score (indicating CTRL) versus hippocampi

with a positive texture score (indicating AD) for different absolute hippocampus volumes. (A)

AD with small volume and positive texture score. (B) AD with medium volume and positive tex-

ture score. (C) AD with large volume and positive texture score. (D) CTRL with small volume

and negative texture score. (E) CTRL with medium volume and negative texture score. (F)

CTRL with large volume and negative texture score.

Figure 1.

Diagnostic and prognostic ADNI results. (A) Box plots of the

hippocampal texture scores for the diagnostic groups. The cen-

tral line marks the median; the lower and upper edges of the

box mark the 25th percentile (q1) and the 75th percentile (q3),

respectively; the notch marks the 95% confidence interval of the

median as 61.57 (q3 2 q1)/n
1=2, where n is the number of

observations; the whiskers mark the most extreme inlier data

points; and the circles mark outliers defined as >q3 1 1.5

(q3 2 q1) or <q1 2 1.5 (q3 2 q1). (B) Box plots of the hippo-

campal texture scores for the prognostic groups. The upper and

lower dashed horizontal lines mark the median hippocampal tex-

ture score of the AD and CTRL group, respectively. (C) ROC

curves for AD diagnosis and AD prognosis. The AUCs are (p-

values according to a DeLong, DeLong, and Clarke–Pearson’s

test in parentheses): CTRL vs AD 0.912 (p< 0.001), CTRL vs

MCI 0.764 (p< 0.001), MCI-NC12 vs MCI-C12 0.740

(p< 0.001), MCI-NC24 vs MCI-C24 0.742 (p< 0.001).
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with MMSE when adjusted for volume using decorrelation
(p< 0.001).

Generalization to an Independent Cohort

The texture marker trained on all CTRL and AD subjects
in the ADNI dataset (i.e., the same marker as was used to
score the MCI subjects in the prognostic ADNI experi-
ment) was applied to score the imaging arm of AIBL in
order to inspect generalizability to an independent cohort.
The ADNI diagnostic results were reproduced with AUCs
of 0.951 and 0.742 for CTRL vs AD and CTRL vs MCI,
respectively. The diagnostic results were also reproduced
with an increased AUC compared with the ones obtained
using ADNI data (Table II). Diagnostic and prognostic tex-
ture results remained significant after decorrelating vol-
ume (p< 0.001 for CTRL vs AD, p 5 0.016 for CTRL vs
MCI, p 5 0.004 for conversion within 18 months), and the
combination of texture and volume resulted in AUCs that

were not significantly different from the texture AUCs.
The prognostic texture AUC was significant after adjust-
ment for baseline MMSE score (p 5 0.018). Pearson correla-
tions with baseline MMSE score were also reproduced
(Table III), and they increased compared with the ones
obtained using ADNI data. The texture vs MMSE correla-
tion remained significant when adjusted for volume
(p 5 0.028).

Relation to Subclinical Cognitive Decline

A central part of our study was to determine if MRI hip-
pocampal texture was able to detect early cognitive decline
in a clinically healthy population. The texture marker
trained on ADNI and confirmed on AIBL was applied to
score the Metropolit dataset, and the texture scores were
Pearson correlated to two measures of global cognitive
function, MMSE and Addenbrooke’s cognitive examina-
tion (ACE). Note that the MRI biomarkers were not

TABLE II. Prognostic (MCI-to-AD conversion) AUCs in the ADNI and AIBL cohort

MRI biomarker

ADNI ADNI CSF amyloid subset AIBL

12 months 24 months 12 months 24 months 18 months

Texture 0.740*** 0.742*** 0.735*** 0.730*** 0.831**
Volume 0.705*** 0.672*** 0.667* 0.645** 0.662NS

Texture 1 volume 0.739*** 0.720*** 0.731*** 0.719*** 0.809*
Texture 1 volume 1 CSFa 0.717*** 0.752***

Key: AD, Alzheimer’s disease; ADNI, The Alzheimer’s Disease Neuroimaging Initiative; AIBL, The Australian Imaging, Biomarker &
Lifestyle Flagship Study of Ageing; AUC, area under the receiver operating characteristic curve; CSF, cerebrospinal fluid; MCI, mild
cognitive impairment; MRI, magnetic resonance imaging.
NS, not significant; *p< 0.05; **p< 0.01; ***p< 0.001.
aCSF is log(total tau/Ab 1–42 peptide).

Figure 3.

Scatter plots of MRI biomarkers vs MMSE score in the ADNI cohort. Crosses correspond to

CTRL, dots correspond to MCI, and asterisks correspond to AD. (A) Hippocampal texture. (B)

Hippocampal volume. Note that uniform random noise in the range of 20.5 to 0.5 was added

to each MMSE score for better visualization.

r Early AD Detection Using Hippocampal Texture r

r 1155 r



adjusted for age and sex because the Metropolit popula-
tion contains only middle-aged males. The correlation
coefficients and p-values are shown in Table III, and the
scatter plots for texture and volume vs ACE are shown in
Figure 4. Texture maintained significant correlations when
adjusted for volume (p 5 0.017 and p< 0.001 for MMSE
and ACE, respectively). The correlations with ACE per-
sisted after removing the three potential outliers visible in
Figure 4.

Relation to Hippocampal Metabolic Rate

of Glucose

The final goal of this study was to investigate potential
relation to the metabolic rate of glucose in the hippocam-
pus using the ADNI FDG-PET subset. The relation was
visualized using scatter plots (Fig. 5), and the Pearson’s
correlation coefficients between age- and gender-

decorrelated MRI biomarkers and FDG-PET uptake in the
hippocampus were 20.57 (p< 0.001) and 0.54 (p< 0.001)
for texture and volume, respectively. The combination of
texture and volume achieved a correlation coefficient of
20.56 (p< 0.001). Texture maintained significant correla-
tions when decorrelated with volume (p 5 0.003).

DISCUSSION

In this study, we have proposed and extensively eval-
uated hippocampal texture as a new biomarker of AD
with the goal of achieving early structural MRI-based
detection. The texture marker was evaluated using data
from three different cohorts: ADNI, AIBL, and Metropolit.

The ADNI results demonstrated that hippocampal tex-
ture predicts MCI-to-AD conversion. We also saw that hip-
pocampal texture achieved a higher but not significantly
different AUC compared to hippocampal volume for prog-
nosis of conversion from MCI to AD within 12 months.
However, when extending the conversion time span to 24
months, the texture AUC was significantly higher. This is
an interesting finding that supports our working hypothe-
sis that texture may be sensitive to earlier stages of the dis-
ease process as illustrated in Figure 6 and in Supporting
Information, Figure 3. When adjusting texture for volume
using decorrelation, the AUC remained significant for the
diagnostic and the prognostic tasks. These results support
that texture to some degree captures different information
than volume, and, thus, that texture- and atrophy-based
markers may complement each other. The complementar-
ity was confirmed by the logistic regression model fitted
to CTRL and AD in the ADNI cohort; both volume and
texture contributed significantly in the model (Supporting
Information, Table I). Although the combination of volume
and texture using this model had a tendency of increasing

TABLE III. Pearson correlation with general cognition in

the ADNI, AIBL, and Metropolit cohort

MRI biomarker

ADNI AIBL Metropolit

MMSE MMSE MMSE ACE

Texture 20.54*** 20.56*** 20.21** 20.25***
Volume 0.51*** 0.56*** 0.17* 0.02NS

Texture 1 volume 20.56*** 20.62*** 20.26*** 20.14NS

Key: ACE, Addenbrooke’s cognitive examination; AD, Alzhei-
mer’s disease; ADNI, The Alzheimer’s Disease Neuroimaging Ini-
tiative; AIBL, The Australian Imaging Biomarkers and Lifestyle
flagship study of ageing; CTRL, normal control; MCI, mild cogni-
tive impairment; MMSE, mini-mental state examination; MRI,
magnetic resonance imaging.
NS, not significant; *p< 0.05; **p< 0.01; ***p< 0.001.

Figure 4.

Scatter plots of MRI biomarkers vs ACE score in the Metropolit cohort. Crosses correspond to

CTRL and asterisks correspond to CL. (A) Hippocampal texture. (B) Hippocampal volume. Note

that uniform random noise in the range 20.5 to 0.5 was added to each ACE score for better

visualization.
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the correlation with MMSE (Table III), it did not in general
result in improved diagnostic or prognostic AUCs. If this
complementarity in information has its origin in our work-
ing hypothesis, as sketched in Supporting Information,
Figure 3, needs further investigations to be established.

The clinical utility of biomarkers relate to their capabil-
ity of also differentiating hitherto unseen data. We investi-
gated generalizability by scoring the AIBL dataset using
the proposed texture-based biomarker trained solely on
ADNI data and found that both the diagnostic and the
prognostic capabilities were preserved. The increased
AUCs for AIBL data compared with ADNI data might be
explained by more homogeneous data in the AIBL imag-
ing arm, which is effectively single site (all except one
baseline MRI scan are from the same site), or by demo-
graphic differences. The ADNI-trained marker was also
applied to score the Metropolit dataset, a homogeneous
population of healthy 58-year-old males, one-half of which
had established loss of cognitive performance. The marker
correlated significantly with both MMSE and ACE in the
cohort. In contrast, volume correlated with MMSE only,
and the combination of volume and texture using the
diagnostic logistic regression model resulted in loss of cor-
relation with ACE. Because ACE is an extension of MMSE
developed to be more sensitive to early stages of dementia,
including AD [Mathuranath et al., 2000], these results
emphasize texture’s potential in early AD detection. We
do not expect field strength differences among the cohorts
to have affected these results. In a separate dataset that
consisted of 61 pairs of 1.5T/3T ADNI MRI scans from 61
different subjects with each scan in a pair acquired at the
same visit, we found a high association between texture
computed in 1.5T and texture computed in 3T (Pearson
correlation, r 5 0.86, p< 0.001).

We found a significant negative correlation between hip-
pocampal texture and FDG-PET uptake in the hippocam-

pus indicating that the structural changes measured as
texture relate to a reduction of glucose metabolism and
the function of the hippocampus. The correlation remained
significant when decorrelating texture for volume. This
confirms that some of the volume-independent informa-
tion texture captures in MRI is related to the underlying
disease process. To gain further insight into the pathology
underlying texture, the relation between hippocampal tex-
ture and other AD biomarkers remains to be investigated.
For example, the relation with the following that together

Figure 5.

Scatter plots of MRI biomarkers vs metabolic rate of glucose in the hippocampus in FDG-PET.

Crosses correspond to CTRL, dots correspond to MCI, and asterisks correspond to AD. (A)

Hippocampal texture. (B) Hippocampal volume.

Figure 6.

Schematic view of the proposed texture working hypothesis in

AD. Top row: NFTs inside the neurons and Ab plaques between

neurons spread throughout the brain, causing neuronal death.

Middle row: changes in the statistical properties of the image

intensities due to the accumulated effect of NFTs and/or Ab

plaques may be reflected as certain textural patterns prior to

atrophy. Bottom row: atrophy manifests as the shrinkage and

possible morphological change of brain structures.
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with FDG-PET are the most widely studied non-MRI bio-
markers of AD pathology [Jack et al., 2010]: CSF Ab1-42

and PET Ab imaging, which are biomarkers of Ab plaque
load; and CSF tau, which is an indicator of neurodegenera-
tion. In addition, the analysis should be extended beyond
the hippocampus since the AD disease process affects
other parts of the brain as well, some of which are known
to be affected earlier than the hippocampus.

Previous MRI texture studies in AD reported diagnostic
(CTRL vs AD) classification accuracies (CAs) in the range
91.0–96.4% using relatively small, single-site, single-scanner
datasets (14–40 subjects) [Freeborough and Fox, 1998; Liu
et al., 2004; Zhang et al., 2011]. On the standardized ADNI
dataset, which is much larger and from multiple sites, our
method achieved a CTRL vs AD CA of 85.6% when using
the operating point on the ROC curve closest to the ideal
classifier. The highest previously reported CA of 96.4%
[Zhang et al., 2011] was on a dataset with severely affected
AD patients (MMSE 5.53 6 4.47 compared to 23.2 6 1.9 for
the ADNI data we used). It should further be noted that
our marker was optimized for AUC (i.e., the objective
function in the SVM hyperparameter grid search was the
CTRL vs AD AUC), not CA, which is the case for most
methods. Results from machine learning have shown that
optimizing for CA does not necessarily lead to a good
AUC [Cortes and Mohri, 2004], and we expect the oppo-
site to be the case as well.

The study most comparable to ours in terms of the data
used (larger ADNI subset), the evaluation criterion (AUC),
and the considered clinical problem (prognosis) is the one
by Chincarini et al. [2011]. A CTRL vs AD diagnostic AUC
performance of 0.93 and 0.92 were reported using age-
and sex-matched subjects from the ADNI database for
ROIs covering the right and left hippocampus and sur-
roundings, respectively. In comparison, our method
achieved an age- and sex-adjusted diagnostic AUC of 0.91.
For the same two ROIs, Chincarini et al. [2011] reported
MCI-to-AD conversion AUC performances after 24 months
of 0.68 and 0.67. In comparison, our method achieved an
age- and sex-adjusted prognostic AUC of 0.74 (0.72 when
using unadjusted texture) within the same time span. We
also observe that Chincarini et al. [2011] report a Pearson
correlation of 0.31 between their texture marker (when
computed based on several ROIs covering several brain
areas) and MMSE in the MCI subjects. In comparison, our
age- and sex-adjusted texture scores had a correlation of
20.30 (20.32 when using unadjusted texture). Note that
the sign difference is due to how labels are encoded in the
respective classifiers. There are, however, still several
important differences between our study and the work by
Chincarini et al. The considered datasets are different sub-
sets of the ADNI database, the methodology is different,
and the considered ROI is different. Chincarini et al.
[2011] use a data-driven voxel subset from a box covering
the hippocampus as well as part of the surrounding brain
structures and ventricles as ROI, whereas we restricted the
analysis to a segmentation of the hippocampus.

In our study, potential confounding factors were
handled by subsequent statistical adjustment instead of,
for example, conducting a matched design. It was
observed that adjusting for age and sex using decorrela-
tion did not deteriorate the texture-based marker results.
On the contrary, results improved in most cases.

This study is limited by the use of FreeSurfer hippocam-
pus segmentations. To reduce this effect, we morphologi-
cally eroded the segmentations to obtain statistics only
from the interior of the hippocampus and reduce effects
from voxels close to a noisy segmentation boundary. How-
ever, the effect of using different segmentations, both from
other automated methods and manual segmentations,
should be investigated in future work.

In the FDG-PET experiment, we used FDG-PET scores
from the Center for Brain Health, NYU School of Medi-
cine, New York [Li et al., 2008; Mosconi et al., 2005] down-
loaded directly from the ADNI website. Consequently, the
hippocampal segmentations we used to compute MRI tex-
ture did not correspond to the segmentations used in
FDG-PET. This could influence the obtained correlations.
However, we do not expect a one-to-one correspondence
in segmentations to change correlations dramatically from
what we found because of the low resolution of the FDG-
PET scans relative to the resolution of the MRI scans in
ADNI.

Imaging biomarkers have potential for use in clinical
diagnosis and in clinical trials. Efforts are already in place
to standardize MRI hippocampal volumetry [Frisoni and
Jack, 2011; Jack et al., 2011a]. Despite the encouraging
results presented here, the use of texture is much less
widespread, and standardization lies far ahead. The most
immediate potential application for texture is in clinical
trials (e.g., for subject selection). Combining hippocampal
volume with other biomarkers, such as CSF-derived meas-
urements, has shown increased diagnostic performance
[Walhovd et al., 2010], and a conjunction of texture and
other biomarkers is probably needed to achieve a combi-
nation marker that is sufficiently good to be considered for
clinical use. In our experiments, we only observed insignif-
icant AUC increases when MRI (texture and volume) and
solely CSF were combined.

CONCLUSION

In conclusion, we found that hippocampal texture had a
significantly higher differentiation between stable MCIs and
MCI-to-AD converters within 24 months than hippocampal
volumetry (AUC 0.74 vs 0.67; p 5 0.005), the most widely
studied structural MRI biomarker of AD [Jack et al., 2011a].
The prognostic texture results were confirmed by applying
the biomarker to data from a different cohort, which
revealed excellent generalization performance. Both texture
and volume correlated with MMSE in a cohort of clinically
healthy, middle-aged males, one-half of which had estab-
lished loss of cognitive performance. In contrast, only
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texture correlated with ACE, a cognitive test designed to be
sensitive to early stages of AD compared to MMSE. In
addition, we found a significant correlation between texture
and hippocampal FDG-PET uptake. The texture statistics
remained significant after decorrelating volume in all
experiments, and the combination of texture and volume
did not significantly improve diagnostic or prognostic
AUCs compared to texture alone. These findings support
the hypothesis that texture extracts different information
than volume, and that it is more sensitive to early cognitive
decline. Atrophy rate as measured by structural MRI is
already accepted and used in AD clinical trials [Cummings
and Zhong, 2014; Frisoni et al., 2010], and the role of MRI
biomarkers in AD has become increasingly important with
atrophy from structural MRI entering criteria for AD diag-
nosis [Dubois et al., 2010; Jack et al., 2011b]. It is evident
that there are other sources of information to extract from
structural MRI in addition to volume or atrophy, such as
the hippocampal texture studied in this work, which may
produce complementary imaging biomarkers of AD. This
was exemplified by the variety of markers applied in a
recent grand challenge in medical image analysis on differ-
ential diagnosis of CTRL, MCI, and AD using structural
MRI [Bron et al., 2015].
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