
ORIGINAL ARTICLE

Two-stage deep learning model for Alzheimer’s disease detection
and prediction of the mild cognitive impairment time

Shaker El-Sappagh1,2,6 • Hager Saleh3 • Farman Ali4 • Eslam Amer5 • Tamer Abuhmed6

Received: 30 September 2021 / Accepted: 29 March 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by thinking, behavioral and memory

impairments. Early prediction of conversion from mild cognitive impairment (MCI) to AD is still a challenging task. No

study has been able to predict the exact conversion time of MCI patients. In addition, most studies have achieved poor

performance making this prediction using only a small number of features (e.g., using only MRI images). Therefore,

previous approaches have not gained the trust of medical experts. This study proposes a novel two-stage deep learning AD

progression detection framework based on information fusion of several patient longitudinal multivariate modalities,

including neuroimaging data, cognitive scores, cerebrospinal fluid biomarkers, neuropsychological battery markers, and

demographics. The first stage of the progression detection framework employs a multiclass classification task that predicts

a patient’s diagnosis (i.e., cognitively normal, MCI, or AD). In the second stage, a regression task that predicts the exact

conversion time of MCI patients is used. The study is based on data of 1,371 subjects collected by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). Comprehensive experiments were carried out to evaluate the framework stages and find

the optimal model for each stage. Proposed model was compared with various machine learning models, including decision

tree (DT), random forest (RF), support vector machine (SVM), logistic regression (LR), and K-nearest neighbor (KNN). In

the classification stage, the proposed long-short term memory (LSTM) model achieved an accuracy of 93.87%, precision of

94.070%, recall of 94.07%, and F1-score of 94.07%. The results showed that the LSTM model outperformed other machine

learning models (i.e., decision tree by 2.48%, random forest by 1.27%, support vector machine by 1.86%, logistic

regression by 1.59%, and K-nearest neighbor by 14.77%). In the regression stage, the proposed LSTM model achieved the

best results (i.e., mean absolute error of 0.1375). Compared to other regular regressors, this LSTM model achieved less

errors (i.e., 0.0064, 0.0152, 0.0338, 0.0118, 0.0198, and 0.0066, compared to DT, RF, SVM, LR, and KNN, respectively).

By learning deep representation from patient high-dimensional longitudinal time-series data, the proposed LSTM model

was more stable and medically acceptable. The framework may have a clinical impact as a predictive tool for AD

progression detection due to its accurate results to predict the exact conversion time of MCI cases using patient time-series

multimodalities data.

Keywords Alzheimer’s disease � Alzheimer’s progression detection � Time-series data analysis � Deep learning

1 Introduction

Alzheimer’s disease (AD) is an irreversible and incurable

neurodegenerative disease. It is the most common form of

dementia in the elderly [1]: 60%–80% of dementia patients

have AD [2]. AD has a debilitating effect on patients; it

takes a devastating financial toll on society and causes

immense challenges for the patients’ caregivers. In 2018,

the estimated worldwide cost of dementia was US [3]

trillion; this is expected to double within 12 years. In 2019,

50 million people had dementia; this number is expected to

reach 152 million by 2050 [4]. AD pathology occurs sev-

eral years before the onset of clinical symptoms, making it

difficult to detect the disease in the early stages [5]. MCI is

an intermediate stage between being cognitively normal

(CN) and having AD. The progression from MCI to AD

occurs at an annual rate of 10–25% [6]. MCI has two types:

stable MCI (sMCI) and progressive MCI (pMCI). After

some time, pMCI patients will convert to AD, but sMCI

patients do not convert. Since AD cannot be cured or
Extended author information available on the last page of the article

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-022-07263-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9232-4843
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07263-9&domain=pdf
https://doi.org/10.1007/s00521-022-07263-9

prevented, early prediction of possible pMCI progression

before the occurrence of irreversible brain damage is of

tremendous importance to allow preventive care and per-

sonalized medicine that led to an improved quality of life.

Most existing studies in the AD domain have either

detected AD patients [7] or have predicted their progres-

sion after a fixed period of time [8]. These problems are

formulated as either binary (e.g., CN vs. AD [9], MCI vs.

AD [10] and sMCI vs. pMCI [8, 11]) or multiclass (CN vs.

MCI vs. AD [12] and CN vs. sMCI vs. pMCI vs. AD

[13, 14]) classification tasks. Few studies have formulated

the problem as a regression task [15, 16], and these models

fit logistic or polynomial functions to the longitudinal

dynamics of each biomarker separately. Moreover, these

studies used only magnetic resonance imaging (MRI) data

to predict AD progression or to detect the current patient

class [13, 17–21]. Rallabandi et al. [13] used a support

vector machine (SVM) and MRI measurements of the

regional cortical thickness of both left and right hemi-

spheres to detect sMCI, achieving an overall accuracy of

75%. Their study used baseline MRI data only and pro-

vided physicians with a suggested class only. Jin et al. [14]

collected 16 features from MRI images and used these

together with a mini-mental state examination (MMSE)

score to predict the pMCI class. They achieved a prediction

accuracy of 56.25% using a boosting tree ensemble clas-

sifier. The goal of these models was to predict the specific

class of the patient, such as CN, MCI, or AD. However, the

results obtained in this way are not precise enough. They

are insufficient to support medical decision-making

because they are based on single modalities and non-time

series data and the fact that they predict the patient class

only. Moreover, the patient’s exact conversion time

remains unknown; finding this information deserves more

attention.

AD data are multimodal and time series in nature

[2, 22–25]. Each patient has a collection of supplemental

data of various types, including MRI, positron emission

tomography (PET), neuropsychological battery, and cog-

nitive scores (CSs). These heterogeneous modalities carry

supplementary knowledge that describes the disease status

from different viewpoints [26]. In addition, a patient’s data

at a certain point in time are not independent of the data at

a previous point in time [27]. To predict more precisely,

fusing multimodalities and dealing with time-series data

are critical design tasks because the resulting feature space

is able to provide a holistic picture of a patient’s condition

[4, 28]. The resulting systems are more accurate and

stable and consequently more acceptable from a medical

viewpoint [29–31]. A few studies have implemented tra-

ditional time series algorithms for the AD progression

detection problem [32, 33], but these studies did not

investigate the correlation among the patient’s multimodal

data and how such data evolved [34]. Li et al. [35] asserted

the importance of multimodality and longitudinal analysis

in AD data. Qiu et al. [36] combined a feed-forward neural

network (FFNN) and a VGG-11 NN to study the role of

multimodal decision fusion of MRI, MMSE, and logic

memory tests to enhance MCI diagnosis. They achieved an

accuracy of 90.9%. However, this study was based only on

the data of baseline visits and the prediction task formu-

lated as a binary (CN vs. MCI) classification problem.

Forouzannezhad et al. [37] used a Gaussian-based model to

predict MCI based on demographics, PET, and MRI data

and achieved an accuracy of 78.8%.

Over the last decade, conventional (i.e., not deep

learning) machine learning (ML) algorithms, such as SVM

and random forest (RF), have been applied to MCI con-

version prediction [2, 29, 38–40]. Most studies have used

single-modality models for addressing binary classification

problems such as sMCI vs. pMCI [36, 40]. Zhang et al. [2]

provided a survey of pMCI conversion studies. The exist-

ing ML studies have depended on a limited number of

biomarkers, which may be insufficient to provide a com-

plete interpretation of the disease.

For example, Liu et al. [41] built their model based on

MRI and cerebrospinal fluid (CSF) modalities. Lu et al. [6]

utilized Fluorodeoxyglucose PET (FDG-PET) imaging

data to identify CN subjects who will convert to MCI. They

built a binary classifier using an incomplete RF–robust

SVM approach and achieved an accuracy of 90.53%.

Further, most studies have neglected the temporal depen-

dency within feature series and among different features

and focused on cross-sectional data. Cho et al. [42] used

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

data to predict probable AD conversion using single

baseline MRI scans. All in all, we observe that building

accurate models based on multimodal time series data with

conventional ML classifiers has critical limitations [27].

On the other hand, deep learning (DL) techniques have

shown promising results in terms of prediction in several

medical areas [43, 44]. Recurrent neural networks (RNNs),

extract deep longitudinal features from fused multivariate

time series data [21, 34, 45]. For example, Tabarestani

et al. [46] used two variations of RNNs, namely long short-

term memory (LSTM) networks and gated recurrent units,

to predict a patient’s status at the following three time-

points using the previous three historical time-points. Choi

et al. [47] used a convolutional neural network (CNN) to

detect pMCI cases based on a single source (i.e., PET

images). Spasov et al. [45] proposed a CNN-based multi-

modal model to detect AD progression, where authors used

a late fusion strategy to fuse patients’ MRI data, demo-

graphic, neuropsychological, and ApoE4 genetic data.

Alternatively, Liu et al. [48] proposed a CNN model to

jointly predict a patient’s diagnosis and a few clinical

Neural Computing and Applications

123

scores. The model was based on the fusion of MRI and

three demographic features collected from baseline visits

only.

As far as we know, no research in ML has been dedi-

cated to predicting the specific time of conversion for MCI

patients using regression. In addition, no study has been

dedicated to combining AD prediction as a multiclass

classification problem with MCI conversion time predic-

tion as a regression task. Formulating AD progression

detection as a four-class classification (i.e., CN vs. sMCI

vs. pMCI vs. AD) is a complex task that achieves poor

results [14]. Relaxing this problem into less complex

classification tasks (i.e., a three-class problem) improves

the performance of ML algorithms. Gupta et al. [49] con-

verted the four-class task into a series of binary classifi-

cation tasks comprising AD vs. CN, sMCI vs. pMCI, and

so on. However, these models only predict whether the

MCI patients will or will not convert to AD within a certain

period, such as five years. Unfortunately, these predictions

are not helpful to physicians in medical environments.

Prediction of the exact conversion time would provide

more insightful information about the future status of MCI

patients. To the best of our knowledge, no studies have

solved this problem. Our study makes the following

contributions:

• We propose multistage modeling to integrate the

classification and regression tasks for determining

whether a patient is MCI and then determining the

possible progression time. Namely, we design a two-

stage LSTM-based DL model for AD progression

detection. In the first stage, a three-class classification

model is proposed to detect a patient’s class (CN vs.

MCI vs. AD), and in the second stage, a regression

model is proposed to predict the conversion time for

pMCI patients. LSTM has the ability to learn long-term

dependencies among time series and within single time

series [10], which makes it suitable for learning deep

representative features from multivariate time series

data.

• The model was implemented based on the early fusion

of multimodal time-series data, including neuroimaging

data, CSs, CSF biomarkers, neuropsychological battery

markers, and demographics. These data were collected

from the ADNI dataset, and they are related to four time

steps for each patient: baseline (BL), month 6 (M06),

month 12 (M12), and month 18 (M18).

• Comprehensive optimization pipelines were imple-

mented based on the data collected from 1,371 subjects

in the ADNI. For each pipeline, a set of data prepro-

cessing steps and a separate feature selection and ML

algorithms were selected. We explored a set of

heterogeneous ML techniques, such as RF, SVM,

decision tree (DT), Ridge, Lasso, k-nearest neighbor

(KNN), and logistic regression (LR). Also, two DL

models were investigated: LSTM and FFNN.

• Time-series data were explored in four different ways:

(1) use of the four-time steps data, (2) summarization of

time-series data using the average statistics, (3) usage of

BL visit data only, and (4) usage of M18 visit data only.

• The designed models show the important role of DL

models in extracting deep representative features from

time series data in both classification and regression

tasks.

The rest of this paper is organized as follows. Section 2

presents our methodology, including a description of the

dataset, the ML algorithms used, and the architecture of the

proposed framework. Section 3 discusses the experimental

setup of the study. Section 4 provides readers with the

experimental results. Section 6 concludes the paper.

2 Materials and methods

In this section, we discuss the dataset used, the list of

classification and regression algorithms, and the proposed

AD diagnosis and MCI time of conversion prediction

model.

2.1 ADNI dataset

The dataset contains data from 1,371 subjects (46.5%

female) in the ADNI database. As shown in Fig. 1, patients

were categorized into four groups based on the individual’s

clinical diagnosis at baseline and at future time points: (1)

CN: 419 subjects diagnosed to be CN at baseline and who

remained CN in all future time steps; (2) sMCI: 473 sub-

jects diagnosed to be MCI at all time points; (3) pMCI: 140

subjects evaluated to be MCI at base-

line?M06?M12?M18 visits, and who progressed to AD

within 2.5 years from M18 (i.e., by the M48 visit); (4) AD:

339 subjects diagnosed as AD in all visits. Subjects who

showed improvement in their diagnoses during follow-ups

were excluded from the study. For example, those who

were clinically diagnosed as MCI but reverted to CN and

those who were clinically diagnosed as AD but reverted to

MCI or CN were considered misdiagnosed because AD is

an irreversible form of dementia. Further, cases that con-

verted directly from CN to AD were also discarded. Sev-

eral biomarkers and neuropsychological tests were

collected and individually validated for AD progression.

The following features were considered potential predic-

tors for AD progression, in accordance with results repor-

ted in previous studies [1, 12, 21, 29, 35, 50–52]:

Neural Computing and Applications

123

• The first group of features corresponds to time series

data. These data were collected at baseline and

regularly every six months up to month 18 (i.e., over

1.5 years and 4 readings). These data were split into

three modalities: (1) CSs (9 features), (2) neuropsy-

chological screening battery (NSB) (51 features), and

(3) MRI scans (312 features). CS features including the

Alzheimer’s disease assessment scale (ADAS 11 and

ADAS 13), clinical dementia rating-sum of boxes

(CDRSB), global clinical dementia rating (CDGLO-

BAL), functional assessment questionnaire (FAQ),

geriatric depression scale (GDTOTAL), MMSE, Mon-

treal cognitive assessment (MoCA) and neuropsychi-

atric inventory score (NPISCORE). The NSB features

included the Rey auditory verbal learning test (RAVLT)

features, daily cognition report, and so on. The imaging

data used in our experiments were based on a pre-

processed set of T1-weighted MRI features from the

ADNI database. Data were pre-processed with the

standard ADNI pipeline by a team from the University

of California at San Francisco, who performed cortical

reconstruction and volumetric segmentation with the

FreeSurfer image analysis suite according to the atlas

generated in Desikan et al. [53]. The MRI features were

associated with regional cortical thickness, regional

volume, and surface area measures. Details of the

analysis procedure are available online and upon

request from the authors. Supplementary file 2 includes

the full details about the used features in this study.

• The second group of features corresponds to static

baseline data (BL) collected only at the baseline visit.

These data included 15 features, such as CSF biomark-

ers (3 features from the amyloid-�b peptide of 42

amino acids, Ab1�42 [Abeta], tau and phosphorylated

tau [PTAU]); genetic information (one feature from

ApoE4) family history questionnaire (1 feature from

mother’s dementia history); neuropathology symptoms

(4 features from history of low energy, crying, depres-

sion, and insomnia); sociodemographic information (4

features from age, body mass index, gender, and years

of education); and medical history (1 feature from

psychiatric history) and CSF lab test (1 feature from

white blood cell count).

The ADNI subjects were aged from 55 to 92 years, were

fluent in English or Spanish, and had at least six years of

education. At baseline, subjects met the specific inclusion

criteria described in Table 1. They met the National

Institute of Neurological and Communicative Disorders

and Stroke, and the Alzheimer’s Disease and Related

Disorders Association (NINCDS-ADRDA) diagnostic cri-

teria for probable AD [54]. Supplementary File 1 contains a

complete list of the roster ID (RID) used in our study.

Detailed descriptions of the ADNI subjects, image acqui-

sition protocol procedures, and post-acquisition pre-pro-

cessing procedures can be found at http://www.adni-info.

org, and upon request from the authors. Demographic and

clinical information about the subjects is shown in Table 1.

2.2 Classification models

2.2.1 Decision tree

A DT is a directed acyclic graph where nodes can be

decision points (internal nodes) or output points (leaves),

and edges connect nodes from the root of the tree to the

leaves. This algorithm learns decision rules from training

data by recursive partitioning in the input feature space X.

Each internal node is associated with a set of records T,

which are split based on a specific feature. We imple-

mented the DT classifier and regressor using the classifi-

cation and regression trees (CART) algorithm. CART

creates binary DTs by determining the optimal splitting

feature using an appropriate impurity criterion. The clas-

sification task uses Gini or entropy impurity, and the

regression task uses variance reduction based on the least-

squares or mean squared error (MSE). For a dataset

D ¼ Xi; yið Þf gNi¼1, where instance Xi ¼ xi1; xi2; . . .; xip
� �

has p features, N is the size of the training set and yi 2
C1;C2; . . .;CQ

� �
for the multiclass classification task or

yi 2 R for the regression task. If attribute xij is continuous,

it can be split as xij � , and if xij ¼ b1; b2; . . .; bkf g is cat-

egorical; then a separate branch is created for xij ¼ bn; n 2
1; 2; . . .; k All candidate splits are generated and evaluated

using the splitting criterion. An impurity measure is used to

select the best split, and the parent impurity should be

decreased by splitting. If E1;E2; . . .;Ekð Þ is a split of the E

Fig. 1 Format of the patients

time series data

Neural Computing and Applications

123

http://www.adni-info.org
http://www.adni-info.org

record set, a splitting criterion that makes use of the

impurity measure I can be represented as in Eq. 1.

D ¼ IðEÞ �
Xk

i¼1

Eij j
Ej j I Eið Þ ð1Þ

For the Gini index, let pj ¼
t2E:t½C�¼cjf gj j

Ej j be the probability

that a tuple in D belongs to a class cj, then GiniðEÞ ¼
1 �

PQ
j¼1 p

2
j . Entropy H(S) is the amount of uncertainty in

dataset S. Information gain I xið Þ is a measure of the dif-

ference in entropy before and after the set S is split based

on xi (see Equation 2).

I S; xið Þ ¼ HðSÞ �
X

v2Value xið Þ

Svj j
jSj H Svð Þ ð2Þ

where Value xið Þ set of all possible values for an attribute

xi; Sv ¼ s 2 S j xiðsÞ ¼ vf g, and HðSÞ ¼
�
PQ

i¼1 pi log2 pi where Q is the number of classes and pi is

the proportion of S belonging to a class Ci.

For the regression tree, the variance reduction of a node

N is the total reduction in the variance of the target variable

y because of the node split (see Eq. 3), where S; Sf and St
are the presplit indices, the set of sample indices for which

the split test is false, and the set of sample indices for

which the split test is true [55].

IVðNÞ ¼
1

Sj j2
X

i2S

X

j2S

1

2
xi � xj
� �2

� 1

Sf
�� ��2

X

i2Sf

X

j2Sf

1

2
xi � xj
� �2

0

@

þ 1

Stj j2
X

i2St

X

j2St

1

2
xi � xj
� �2

!

ð3Þ

2.2.2 Random forest

Random forest (RF) [56] is an ensemble classifier formed

by a family of T DTs, h n1 j X1ð Þ; . . .; h nT j XTð Þ, where

Xi ¼ xi1; xi2; . . .; xip
� �

is a list of p features for i’s DT, and

ni represents the training instances. Each tree T leads to a

classifier. Specifically, given data D ¼ Xi; yið Þf gNi¼1, we

train a family of classifiers, hT . The predictions of all Ts are

combined by using the majority-voting mechanism. To

create an uncorrelated collection of trees, RF combines

bagging and random feature selection techniques. Training

set ni of the ith tree is constructed by bootstrapping ni
examples at random from the N available instances in the

whole dataset. RF uses the out-of-bag error estimation to

estimate the generalization error of the final model. The

bootstrap sampling procedure ensures that approximately

one-third of the available N examples are not present in the

training set of each tree. For each constructed DT, this third

of the original dataset, called the out-of-band (OOB) data,

is predicted by the DT, and is consequently used as test

data. The averaged prediction error for each training case,

x, using only the trees that do not include x in their boot-

strap samples, is the OOB error estimate. For each DT,

each time a split is considered, a fresh random sample of m

predictors (e.g., m �
ffiffiffiffi
F

p
) is chosen as split candidates

from the full set of F predictors. The best split is deter-

mined and used. The process is repeated until a stopping

criterion is met. A node is partitioned using the best pos-

sible binary split. Outliers are likely to be ignored by most

trees, which makes RF more stable.

2.2.3 Support vector machine

An SVM is a non-probabilistic classifier. It learns the

training dataset to find the dividing hyperplane that sepa-

rates classes with the maximum margin. The predicted

Table 1 Descriptive statistics about the ADNI dataset at baseline

CN (n = 419) sMCI (n = 473) pMCI (n = 140) AD (n = 339) Combined (n = 1371)

Gender (M/F) 191/228 283/190 86/54 187/152 747/624

Age (years) 73.84 ± 05.78 72.92 ± 07.76 73.89 ± 06.84 75.01 ± 07.81 73.82 ± 07.18

Education (years) 16.43 ± 02.70 15.80 ± 02.97 16.13 ± 02.71 15.13 ± 02.98 15.85 ± 02.90

FAQ 00.19 ± 00.73 02.10 ± 03.13 04.55 ± 04.54 13.32 ± 06.85 04.54 ± 06.65

MMSE 28.98 ± 01.14 27.63 ± 02.13 26.45 ± 02.09 21.94 ± 03.64 26.59 ± 03.63

MoCA 25.68 ± 01.97 23.14 ± 02.70 21.78 ± 01.99 17.48 ± 03.54 22.38 ± 04.08

ApoE4 00.27 ± 00.48 00.51 ± 00.66 00.85 ± 00.71 00.85 ± 00.71 00.56 ± 00.67

ADAS-Cog 13 08.70 ± 04.09 14.80 ± 05.84 19.62 ± 05.05 30.00 ± 07.99 17.19 ± 10.03

RAVLT immediate 45.80 ± 09.72 36.41 ± 10.65 29.69 ± 07.08 22.64 ± 07.47 35.20 ± 12.80

CDR 00.084 ± 0.30 01.37 ± 00.86 02.07 ± 01.00 05.34 ± 02.21 01.96 ± 02.34

*Data are mean ± standard deviation.

Neural Computing and Applications

123

label of a new instance is calculated based on the side of

the hyperplane on which it falls. An SVM can be linear or

non-linear based on the used kernel function. A linear SVM

finds a hyperplane that is a linear function of the input

features, as shown in Eq. 4.

min
w;b;n

f ðw; b; nÞ ¼ 1

2
wTwþ C

Xn

i¼1

ni ð4Þ

subject to yi w
Txi þ bð Þ � 1 þ ni � 0; i ¼ 1; 2; . . .; n; ni � 0

where w denotes the normal vector to the hyperplane, b is

the parameter that controls the offset of the hyperplane

from the origin along its normal vector, ni is a slack vari-

able to ensure that SVMs can deal with outliers in the data.

For each training example xi, ni gives the distance by

which xi violates the margin in units of |w|, and hyperpa-

rameter C[0 determines how heavily a violation is

punished. Note that here an L1 regularization term is used.

The SVM classifier depends only on a few training points

(i.e., support vectors) to classify new instances. The non-

linear SVM classification finds a hyperplane that is a non-

linear function of the input variable by implicitly mapping

an input variable into high-dimensional feature space.

This process is called the kernel trick [57]. SVMs can be

used in multiclass classification tasks using many tech-

niques, including one-versus-all SVMs, all-versus-all

SVMs [58], and so on. SVMs are one of the most popular

algorithms for supervised learning that can effectively deal

with high-dimensional datasets. The most important dis-

advantage of SVMs is that they do not directly provide

probability estimates, and thus their decisions are hardly

interpretable. SVMs were used for both the classification

and the regression tasks. Various implementations are

available for the support vector regressor, such as epsilon-

support vector regression and nu-support vector regression

[59].

2.3 Logistic regression

Logistic regression (LR) [60], also called logit regression,

log-linear classifier, or maximum-entropy classifier, is a

linear classification model. In this algorithm, the possible

outcomes are the probabilities described by the logistic

function j f ðxÞ ¼ 1= 1 þ e�wxð Þ. This algorithm can fit

binary, one-versus-rest, and multiclass classification prob-

lems. For multinomial classification, LR uses the SoftMax

function to compute pðy ¼ c j xÞ ¼ ew
T
c xþbc

PK

i¼1
e
wT
j
xþbj

, for c 2 K

classes. The penalized cost function to be minimized is

formulated in the convex optimization Eq. 5, where the LR

uses the conditional maximum likelihood for the estimation

of parameters w and b.

min
w;c

Xn

i¼1

XK

c¼1

I yi ¼ c½ � log
e wTXiþbð Þ

PK
c¼1 e

wT
c xþbc

 !

þ P

" #

ð5Þ

where I½:� is the indicator function: I yi ¼ c½ � ¼ 1 if yi ¼ c is

true and 0 otherwise; P is the regularization term, which

could be k
2
wTw for ‘2 regularization, kkwk1 for ‘1 for ‘1

regularization and 1�q
w ‘2 þ q‘1 for elastic net regulariza-

tion; q controls the strength of ‘1 and ‘2 regularization.

2.3.1 K-nearest neighbour

KNN is a non-parametric technique in which the predicted

class of a new patient uses the ‘feature similarity’ method.

Given a predefined k, a new instance is classified based on

its distance to the k training examples. Here, the distance

between two instances is measured by the mixed normal-

ized Euclidean distance function (see Eq. 6). For numerical

features, the normalized Euclidean distance is calculated,

and for categorical features, the distance is 0 if both values

are the same and 1 otherwise.

distðX; YÞ ¼

ffiPm
i¼1 xi � yið Þ2

m

s

; distðX; YÞ

¼
Xm

i¼1

d xi; yið Þ for d xi; yið Þ

¼
0 xi ¼ yi

1 xi 6¼ yi

(

ð6Þ

where X and Y instances are represented by X ¼
x1; x2; . . .; xmð Þ and Y ¼ y1; y2; . . .; ymð Þ and m is the feature

space dimensionality. The class label of the new instance is

assigned as the majority of the k-nearest examples, and the

predicted value of the regression task is the average value

of the k-nearest examples.

2.3.2 Ridge and Lasso regression

Ridge is a regularized linear regression model. The goal is

to predict a real value y given a vector X. Its conditional

likelihood is formulated as a multivariate normal distri-

bution. The mean parameter is calculated as a linear

combination of X y j X�N WTX; r2Ið Þð . A maximum

posterior estimation convex framework optimizes the

weight parameters W according to Eq. 7. The regularization

term is used to penalize weights that can never be 0.

Neural Computing and Applications

123

Wmin ¼ argmin
w

Xn

i¼1

yi � wTxi
� �2þkkwk2

2 ð7Þ

The Lasso regression model is very similar to the Ridge

regression model. Instead of using the ‘2 norm, it uses the

‘1 norm, as shown in Eq. 8. This model is suitable for

modeling high-dimensional data because the regularization

term penalizes weights up to 0, which causes some features

to disappear and reduces the variance in the model.

Wmin ¼ argmin
w

Xn

i¼1

yi � wTxi
� �2þkkwk1 ð8Þ

2.3.3 Feed-forward neural network

The FFNN, also known as the multilayer perceptron

(MLP), is the most common type of neural network in

scientific literature. It consists of one input, one or more

hidden layers, and one output layer. The input layer

receives the input vector, and each input is represented by a

neuron. Hidden layers perform the non-linear transforma-

tion of the data to extract hidden patterns from input data.

The output layer is used to make classifications based on a

cross-entropy function or perform a regression based on a

linear function. The training process is realized through a

backpropagation algorithm that optimizes the cost function

based on a specific optimizer. These include optimizers

such as Adam, RMSprob, and stochastic gradient descent,

among others. The backprop algorithm uses the gradient

descendant to derive the squared error concerning the

network weight assigned. Let us assume that we have a

two-layer FFNN model. For D transformation functions of

the form f(x, w), where f : £ðxÞ ! y is a combination of a

fixed set of linear or non-linear functions of the input

variable. Our objective is to learn the weights w of these

functions. The classification or regression task is formu-

lated as in Equation 9.

f x;w1;wð2Þ
� 	

¼ ;ð2Þ ;ð1Þ xTwð1Þ þ bð1Þ
� 	T

wð2Þ þ bð2Þ

 �

ð9Þ

where wð1Þ ¼ w
ð1Þ
1 ;w

ð1Þ
2 . . .w

ð1Þ
M

� 	T
, ;ð1Þ ¼

;ð1Þ1 ; ;ð1Þ2 . . .;ð1ÞD

� 	T
, wð2Þ ¼ w

ð2Þ
1 ;w

ð2Þ
2 . . .w

ð2Þ
D

� 	T
, and

;ð2Þ ¼ ;ð2Þ1 ; ;ð2Þ2 . . .;ð2Þp

� 	T
M input variables,bðiÞ are bias

terms, D units in the hidden layer, P units in the output

layer. The elements of the input vector x are the units of the

input layer, ;ð1Þi are the neurons of the hidden layer and ;ð2Þi

are the neurons of the output layer. Each layer has a non-

linearity activation function selected as a hyperparameter

in the training process. The activation function in the

output layer is selected based on the type of task, for

example, SoftMax for classification tasks or a linear

function for regression tasks.

2.3.4 Long short-term memory

An LSTM is a kind of recurrent neural network, a sub-

category of an artificial neural network. As AD data are

time series in nature, RNN models, especially LSTM, are

suitable to capture long-term temporal dependencies by

solving the exploding and vanishing gradient problem

during backpropagation through a time optimization pro-

cess [61]. In our proposed model, we added LSTM layers

to capture temporal patterns from the patient’s longitudinal

data. The patient’s data can be seen as multivariate time

series data over four-time steps that we feed to the LSTM

block for the sake of capturing the temporal features in the

data. As shown in Figure 2, the LSTM cell uses three gates:

the input gate itnð Þ, forget gate ftnð Þ and output gate otnð Þ.
These gates are responsible for updating, maintaining, and

deleting information flow in the cell state. Ctn ;Ctn�1
and

~Ctn) are the cell status at the time tn, cell status at tn�1 , and

the updated cell status at tn, respectively. htn�1
is the output

value from each memory cell in the hidden layer at the

previous time step. htn is the hidden layer’s value at time tn

based on ~Ctn) and Ctn�1
� hs are the set of weight matrices,

and bs are the biases vectors, which are updated using the

backpropagation algorithm. Besides, b represents the

Hadamard product; r is the standard logistic sigmoid

function; 	 is the concatenation operator; and u is the

output activation function, for example, SoftMax or Tanh.

Equations 10, 11, 12, 13,14, 15 and 1616 illustrate the

information flow in the memory cell at a given time step.

ftn ¼ r hf � htn�1
; xtn½ � þ bf

� �
ð10Þ

itn ¼ r hi � htn�1
; xtn½ �ð þ bi ð11Þ

~Ctn ¼ tanh hC � htn�1
; xtn½ �ð þbCÞ ð12Þ

Fig. 2 LSTM cell

Neural Computing and Applications

123

Ctn ¼ ftn
 Ctn�1
	 itn
 ~Ctn

� �
ð13Þ

otn ¼ r ho � htn�1
; xtn½ � þ boð Þ ð14Þ

j htn ¼ otn
 tanh Ctnð Þ ð15Þ

yn ¼ u hyhtn þ by
� �

ð16Þ

2.4 Proposed framework

This study proposes a two-stage framework to detect the

progression of specific patients (a classification task). Once

the patient progression is detected in the future (M48)

using the patient’s time-series multimodal data

(BL?M6?M12?M18), the second stage is designed to

predict the conversion time (a regression task) for the

progressed patients who are classified in the past as MCI

class. As shown in Fig. 1, the pMCI patients were merged

at M48 with the AD patients to build the progression

detection model for the first stage. The second stage is

designed to collect the MCI patients’ (i.e., sMCI and

pMCI) time-series data and build a regression model that

predicts the patient’s exact conversion month. Therefore,

the main goal of the first stage is to use the patient’s time-

series multimodal data to predict the diagnosis after 2.5

years (M48). If a progression is detected, the second stage

determines the exact conversion month the pMCI patient.

The two tasks are trained and tuned independently based on

multimodal time-series data. For the classification task, we

trained various popular ML models, including DT, RF,

SVM, LR, and DL models, including FFNN and the LSTM

architecture. The same process was carried out for the

regression task using ML regressors, including also con-

ventional ML models (DT, RF, SVR, linear ridge, FFNN,

and Lasso) and DL models (LSTM). Consider having M

modalities of data represented as X ¼ Xð1Þ; . . .;XðMÞ� �
.

Each modality Xm is represented as Xm ¼

x
ðmÞ
1 ; . . .x

ðmÞ
i ; . . .; x

ðmÞ
N

n o
for N patients, where each patient

x
ðmÞ
i 2 Rt�f is a multivariate time series ,

xi ¼ x
ð1Þ
i ; . . .x

ðmÞ
i ; . . .; x

ðMÞ
i ; yi

n o
, for t ¼ 1; . . .; s time steps

and the set f of univariate time series. For N patients, each

patient i is represented as xi ¼ x
ð1Þ
i ; . . .x

ðmÞ
i ; . . .; x

ðMÞ
i ; yi

n o
,

i ¼ 1; . . .;N, and yi 2 fCN;MCI;ADg for the multiclass

classification task or yi 2 R for the regression task. The

time-series data were used to train classifiers and regressors

using different formatting methods: (1) The multivariate

time series data were used with the LSTM model directly,

where s ¼ 4 for BL, M06, M12, and M18. (2) We collected

aggregated features of the four patients’ historical visits.

We extracted the statistical measurement that described the

time series characteristics. For patient Pi, the aggregated

feature space was RM�f , where the collected statistic �f for

each time series statistic ft1;t2;...;ts was the mean 1
s

PS
i¼0 fi

� 	

for s time steps, (3) Inspired by the image processing

domain, we flattened the time series data of each patient to

be represented as a single vector. For patient

Pi 2
P

i2M XðiÞ; i ¼ 1; 2; . . .;N, and XðiÞ 2 Rt�f , the new

representation was XðiÞ 2 Rt�f . Figure 3 represents the

flattening of time series data and its usage in an FFNN for

the classification task. We tested all these formulations

with different representation was Pi 2 Rt�f�M . Figure 3

represents the flattening of time series data and its usage in

an FFNN for the classification task. We tested all these

formulations with different ML models in both classifica-

tion and regression tasks. The optimization cost function

depends on the technique used. The regularized cross-en-

tropy loss function based on SoftMax was used for the

multiclass optimization problem (see Eq. 17). The regres-

sion task was tuned using the regularized MSE function as

shown in Eq. 18.

min
h

LðhÞ ¼ � 1

N

XN

i¼1

1

k

XK

k¼1

I yk ¼ kð Þ log
exp hTxi þ b
� �

PK

j¼1

exp hTj xi þ b
� 	

0

BBB@

1

CCCA

2

6664

3

7775

ð17Þ

min
h

LðhÞ ¼ � 1

N

XN

i¼1

yi � ŷið Þ2þ k
N

XN

j¼1

h2
j ð18Þ

where h represents the network weights parameters, the last

term in both equations is the regularization term, yi and ŷi i

are the actual and predicted values, Ið:Þ is an indicator

function, where I(true statement)=1 and 0 otherwise, and

the label y can take on K different values,

yk 2 f1; 2; . . .;Kg, and in our case K ¼ 3. For each input x,

the model calculates the probability that P yk ¼ K j x; hð Þ
for each k 2 f1; . . .;Kg. The output is a K-dimensional

vector of K estimated probabilities, whose sum is 1. Fig-

ure 4 illustrates the development steps to produce our

model. We sequentially applied the following steps:

• First, in accordance with the AD literature, a set of three

of the most popular time series modalities (CSs, MRI,

and NSB) and one combined baseline modality (BL)

were collected. This study is based on the early fusion

of the three modalities. This fusion method has many

advantages over decision and intermediate fusion

strategies [25].

• Second, these data were randomly, and using stratified

sampling, split into 90% (1233 patients) as model

development sets (MDSs) and 10% (138 cases) as

model test sets (MTSs). This data splitting process was

Neural Computing and Applications

123

repeated 10 times, and the average performance was

recorded. For each train/test split, the MDS was used

with the stratified 10-fold cross-validation (CV)

technique to optimize ML models and measure the

CV performance. This stratified 10-fold CV process is

repeated 10 times for every outer train/test split, and the

Fig. 3 Time series data

flattening process for the FFNN

model

Fig. 4 Proposed two stages deep learning model for hybrid AD diagnosis and conversion prediction

Neural Computing and Applications

123

average performance is then collected. We trained the

tuned model using the whole MDS set, and then we

used the test set only to evaluate the performance of the

final model. This strategy is accurate and not biased

because, from the very beginning, we randomly (and in

a stratified way) isolated a separate test set to be used

for measuring the generalization performance of the

ML models. As such, the test set is not used either in

data normalization or in model optimization.

• Third, only the MDS was pre-processed based on a

pipeline of a set of steps. The pipeline includes handling

missing values, time series feature extraction for

conventional ML models, data balancing using

SMOTE’s oversampling technique [62], data normal-

ization, and MRI feature reduction. Two types of data

resulting from this step: time-series data to be fed to the

LSTM model and aggregated data to be fed to the

conventional ML and FFNN. The aggregation of time

series data was based on the average value for each time

series. Note that, for every patient, his or her BL data

were repeated with every time step to be combined with

the time-series data. As the MRI modality has a very

large set of features, we concentrated our study on the

role of some brain regions of interest. The regions used

were chosen based on the AD progression detection

literature. Recent studies have asserted that AD pro-

gression is tightly correlated with atrophies in the

structures of the medial temporal lobe (MTL) [63–65].

The MTL includes a set of anatomical regions, such as

the hippocampus, amygdala, entorhinal and parahip-

pocampal cortices. Each of these regions has a left and

right part. In addition, cortical thickness has a high

predictive value for AD progression detection [20][65].

We collected the volume, surface area, and cortical

thickness from each of these parts. Of the 312 MRI

features, we selected 58 features for volume and

cortical thickness of the left and right structures,

including HIPPOCAMPUS, AMYGDALA, PARAHIP-

POCAMPAL, ENTORHINAL, VENTRICLES, FUSI-

FORM, INFERIOR/ MIDDLE/ SUPERIOR

TEMPORAL, and INSULA.

• Fourth, the resulting data were used to train ML models

in parallel over two different stages. The first stage was

the patient classification stage, which determined the

patient’s class (e.g., CN, MCI, or AD). This was a

multiclass classification task in which the data from

1,371 patients (1,233 cases for training and 138 cases

for testing) were used to train and test the model. The

model training was based on the stratified 10-fold CV

technique to avoid overfitting. The second stage

predicted the exact conversion time of MCI patients

as a regression task. The data of 613 MCI cases (both

sMCI and pMCI) were used to train and test the models.

We used the 10-fold CV technique to validate the

regression models. Selecting relevant features from the

raw feature space is expected to minimize redundancy,

avoid overfitting, improve model generality, and reduce

the model’s computational cost. There are two main

feature selection techniques: filter and wrapper meth-

ods. The filter method uses a univariate filtering method

such as correlation or information gain to filter out the

least promising features. In contrast, wrapper methods

are used to measure the importance of specific feature

sets. This is based on training and testing a specific

classifier using different subsets of features in the space

of feature subsets. Each method has its own advantages

and disadvantages. In our study, the MRI modality has

been used by both the filter and wrapper methods. The

same process was followed for the NSB modality. The

resulting feature set from both the MRI and the NSB

were fused with the list of CS and BL data. The

resulting feature vector was used to train different ML

and DL models. The same process was followed in both

the classification and the regression tasks. For the filter

method, we used the information gain technique to

assess the dependency of the independent variable in

predicting the target variable. For the wrapper method,

we used recursive feature elimination with the cross-

validation method (RFECV) coupled with RF (either

classifier or regressor) for measuring feature

importance.

• Fifth, the prepared datasets were used to train and

optimize different ML and DL models. In the first stage,

we tuned a set of different popular ML classifiers,

including RF, SVM, DT, LR, and KNN. For better

handling of time series data, we tuned an LSTM-based

DL model. The conventional ML models were tuned

using a grid search, and the LSTM model architecture

and hyperparameters were tuned using the Keras Tuner

. In the second stage, we tuned five popular ML

regressors: DT, linear ridge, Lasso, RF, and SVM. In

addition, we built and tuned FFNN and LSTM models

using Keras Tuner. The trained models at both stages

were tested using unseen test data to measure the

generalization performance of each model. The first

stage predicted the patient class as either CN, MCI, or

AD. If the patient was CN or AD, the process was

finished. If the patient was MCI, then the second stage

was called on to predict the exact time when the patient

would convert to AD. The output of the second stage

was a number n. If n=0 then the patient was sMCI. If

n[0, then the patient was pMCI and would convert after

n months from the diagnosis time.

Neural Computing and Applications

123

2.5 Data pre-processing step

In this section, we improve the quality of our dataset by

using three preprocessing steps. These steps are discussed

in details in the following subsections.

2.5.1 Handling missing data and data balancing

We first excluded features from the baseline static data if

these features have more than 30% of their data points

missing. Following that, a KNN-based imputation was

applied for the missing real values, where all missing

values were filled by average values of clusters formed by

subjects with the same diagnosis. In our study, k was set to

10 empirically. Unlike real value imputation, the Euclidean

distance was used for numerical value imputation. For

categorical values, a distance of 0 was set if both values

were the same; otherwise, a distance of 1 was set. The same

procedure was applied for time-series data, where we also

removed all features with more than 30% missing data and

removed all patients with missing baseline readings. For

processing the non-existing time series data due to the

ADNI procedure, we followed two strategies based on an

intuition of the ADNI. First, we filled non-applicable val-

ues for every category of data, according to ADNI proce-

dures. For example, if an ADNI patient who was CN has no

MRI scan at visit M18, we considered these types of values

to be missing, i.e., missing not at random. Also, several lab

tests, cognitive tests, and neuroimaging scans were not

applicable for specific diagnoses at specific visits. There-

fore, we applied an accurate filling procedure, where a

forward filling is used when the patient’s diagnosis persists.

Otherwise, we considered the value missing. This forward

filling technique is common in Alzheimer’s studies [48].

The second step was to determine missing values from

existing data using statistical or ML techniques. We opted

to apply a medically intuitive and well-known method.

Thus, in the case of numerical data, we used the mean

value according to the different classes: CN, sMCI, pMCI,

and AD. For categorical features, we used the mode value

according to the patient class. We used SMOTE over-

sampling technique to balance the dataset are remove the

possibility for biased predictions.

2.5.2 Data standardization

To guarantee fast convergence of our model as well as

ensure that all used features have the same level of

importance, all features were standardized using the z-

score method, that is, zj ¼ xj � lj
� �

=rj where xj is the

original value for feature j; Zj is the normalized value, lj is

the feature’s mean and rj is the feature’s standard

deviation. As a result, the z-score method produces a new

dataset where all features have a zero mean and unit

standard deviation. The values of categorical features were

also encoded.

3 Experiments setup

To evaluate the performance and effectiveness of our

proposed method, we tuned, tested, and compared many

machine learning models with different pipeline settings,

including the usage of different feature selection tech-

niques, conventional ML algorithms, neural network

architectures, and types of data (i.e., time series and non-

time series). Inspired by [66], for time series data, a total of

four time steps–baseline data (BL), M06, M12, and M18-

were used to predict AD at M48. Time series data were

used to train an LSTM-based DL model to check the role of

these data in increasing the confidence and accuracy of the

model. We implemented and tested a set of conventional

ML models using both aggregated and flattened time series

data. In addition, an FFNN neural network model was

tuned using both aggregated and flattened time series data.

In addition, we built an FFNN architecture based on the BL

and M18 data to check the effect of the time gaps between

the observed data and the monthly prediction.

3.1 Performance evaluation

The first stage was a classification task. Four standard

metrics were used to evaluate the classification models, i.e.,

accuracy, precision, recall, and F1-score, where TP is the

number of true positives, TN is the number of true nega-

tives, FP is the number of false positives, and FN is the

number of false negatives (see Eqs. 19, 20, 21 and 22):

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
: ð19Þ

Precision ¼ TP

TP + FP
ð20Þ

Recall ¼ TP

TPþ FN
ð21Þ

F1 ¼ 2 � precision � recall
precisionþ recall

ð22Þ

The second stage was a regression task. Three metrics were

used to evaluate the regressor models: the mean absolute

error (MAE), mean squared error (MSE), and root mean

squared error (RMSE) (see Eqs. 23, 24 and 25), where

N; yi; ŷi denote the total number of observations, actual

value, and predicted value, respectively:

Neural Computing and Applications

123

MAE ¼ 1

N

XN

1

yi � ŷij j ð23Þ

MSE ¼ 1

N

XN

n¼1

yi � ŷið Þ2 ð24Þ

RMSE ¼

ffi
1

N

XN

n¼1

yi � ŷið Þ2

vuut ð25Þ

3.2 ML models training

For all the experiments in this paper, we employed the

Python 3.7.3 distributed in Anaconda 4.7.7 (64-bit). The

1371 case dataset was divided in a stratified way into a

training set (90%) and testing set (10%), keeping the same

percentage of each class in both sets. After a set of pre-

processing steps, we tuned a set of different pipelines to

explore the role of time series and aggregated data, the

LSTM model, the FFNN model, conventional ML algo-

rithms, feature selection paradigms, and hyperparameter

tuning. The same pipeline designs were tested over the two

stages regarding first classification and then regression

tasks. The training data were used for feature selection and

hyperparameter optimization based on the stratified 10-fold

CV. The selected features were masked on the testing

datasets, and the resulting sets were normalized and used to

measure the generalization performance of different mod-

els. We used a set of standard and popular evaluation

metrics to measure the classification and regression mod-

els, as discussed in the previous section. To prevent bias,

the procedure was repeated 10 times in our experiments.

We compared the four-class (CN, sMCI, pMCI, and AD)

and three-class (CN, MCI, and AD) classification problems

in the first stage. As it has been well established in the

literature [14], the four-class task is very challenging. This

fact is reinforced in the results section. Given our two-stage

design, we depended on the initial three-class classification

task because in the second separate stage, not only was the

MCI class separated into sMCI and pMCI, but the exact

conversion time was also precisely predicted. In both

stages, two different groups of data were used. First, the

three time-series modalities and BL modality were com-

bined. In this case, each patient will have four time steps,

and the BL data are repeated four times for every patient.

Second, an aggregated version of the three time-series

modalities and BL modality were combined. In this case,

the time series data are aggregated, and a single row is used

for every patient.

In both stages, the MRI (58 features) and NSB (51

features) modalities were separately fed into the informa-

tion gain-based feature selection technique, which ranked

the features according to their importance levels. We

selected the top 29 features from the MRI features and the

top 26 features from the NSB features because they

achieved the best results. The same modalities were sepa-

rately fed into the RFECV, and we again selected the top

half of features (29 features) from the MRI features and the

top half of features (26 features) from the NSB features.

Note that these processes were carried out for both the

four-class and the three-class problems separately. Selected

features from both the MRI and NSB data were fused with

the BL and CSs feature sets. The resulting different feature

spaces from the filter and wrapper methods had 78 features.

These data were used to train the selected ML algorithms in

both stages. Each ML model was tuned and tested using the

full feature set, the selected features from the filter method,

and the selected features from the wrapper method.

In the first stage, grid search was used to optimize the

hyperparameters of all the conventional ML models, while

Keras Tuner was used to select the best architectures for

both the FFNN and LSTM models. These models were

tuned for the four-class and three-class classification

problems. The same procedure was followed for the second

stage, but the models were tuned for regression tasks.

Finally, both stages were combined to make the final

progression detection prediction. Regarding the LSTM

classification models, using Keras Tuner, we tuned three

models to learn the complete feature set. In all models, the

learning rate was fixed at 0.0001, and the Adam optimizer

was used. All hidden layers used the rectified linear unit

(ReLU) activation function, and the output layer used the

SoftMax activation function. A dropout layer was used

after each hidden layer, and L2 regularization was added to

prevent overfitting. The training data were shuffled for each

training epoch to ensure the optimization was stochastic

and to avoid convergence to a local minimum. The batch

size was 50, and the number of epochs was 70.

• For the three-class models, we tuned three LSTM

architectures. First, the full feature set-based LSTM

model had three LSTM layers with 330, 450, and 430

units. The output layer has 3 units (one per class).

Except for the output layer, each layer underwent L2

regularization with parameters 0.2, 0.3, and 0.01,

respectively, and each layer was followed by a dropout

layer with probabilities of 0.3, 0.4, and 0.4, respec-

tively. Second, the wrapper feature set-based LSTM

had four LSTM layers with 470, 310, 170, and 3 units.

Except for the output layer, each layer underwent L2

regularization with parameters 0.3, 0.4, and 0.1,

respectively, and each layer was followed by a dropout

layer with probabilities of 0.3, 0.2, and 0.3, respec-

tively. Third, the filter feature set-based LSTM had four

LSTM layers with 70, 270, 70, and 3 units. Each layer

Neural Computing and Applications

123

underwent L2 regularization with parameters 0.01, 0.5,

and 0.01, respectively. Each layer was followed by a

dropout layer with probabilities of 0.4, 0.3, and 0.3,

respectively.

• For the four-class models, we tuned three LSTM

architectures. First, the full feature set-based LSTM

had four LSTM layers with 210, 470, 70, and 4 units.

Except for the output layer, each layer underwent L2

regularization with parameters 0.05, 0.3, and 0.1,

respectively, and each layer was followed by a dropout

layer with probabilities of 0.5, 0.3, and 0.1, respec-

tively. Second, the wrapper feature set-based LSTM

had four LSTM layers with 470, 310, 370, and 4 units.

Except for the output layer, each layer underwent L2

regularization with parameters 0.3, 0.4, and 0.1,

respectively, and each layer was followed by a dropout

layer with probabilities of 0.05, 0.3, and 0.4, respec-

tively. Third, the filter feature set-based LSTM had four

LSTM layers with 490, 350, 410, and 4 units. Each

layer underwent L2 regularization with parameters

0.02, 0.01, and 0.1, respectively. Each layer was

followed by a dropout layer with probabilities of 0.4,

0.2, and 0.4, respectively.

In the second stage, three LSTM models were trained

based on the three feature sets. All hidden layers used the

ReLU activation function, and the output layer used the

linear activation function. The number of epochs and batch

size were the same as in the first stage. First, the full feature

set-based LSTM had one LSTM layer with 440 units fol-

lowed by three dense layers: 60, 80, and 70 units. Except

for the output layer (1 unit), each layer underwent L2

regularization with parameters 0.1, 0.01, 0.01, and 0.1,

respectively, and each layer was followed by a dropout

layer with probabilities of 0.2, 0.3, 0.3, and 0.3, respec-

tively. Second, the filter feature set-based LSTM had one

LSTM layer with 440 units followed by four dense layers:

90, 60, 70, and 1 units. Except for the output layer, each

layer underwent L2 regularization with parameters 0.1,

0.01, 0.01, and 0.01, respectively, and each layer was fol-

lowed by a dropout layer with probabilities of 0.4, 0.3, 0.5,

and 0.4, respectively. Third, the wrapper feature set-based

LSTM had one LSTM layer with 680 units followed by

three dense layers: 70, 70, and 1 units. Except for the

output layer, each layer underwent L2 regularization with

parameters 0.01, 0.05, and 0.01, respectively, and each

layer was followed by a dropout layer with probabilities of

0.4, 0.5, and 0.3, respectively.

4 Results and discussion

This section has two subsections. In Sect. 4.1, we discuss

the results of the first stage. We compare the ML models in

the four-class task and in the three-class task. Then, we

compare the two problems. In Sect. 4.2, we discuss the

results of the second stage. We compare the performance

using default parameters, tuned models, and different

architectures for the FFNN design.

4.1 Results of the Patient Classification stage

Each conventional ML model (DT, RF, SVM, LR, and

KNN) and LSTM model were tuned based on the full

feature set and on the sets selected by the wrapper and filter

methods. Tables 2 and 3 show the performance of 18 ML

models using four-class classification task. In case of

testing, the measured accuracy and F1- score of DT model

was 82.82% and 78.80%, respectively, which is surprising

higher than other models. In case of CV, the LSTM model

registered higher accuracy (84.44%) and F1- score

(84.16%) compared to other models. For four-class clas-

sification task, the achieved results indicate that the per-

formance of DT and LSTM model in testing approach is

higher than SVM, LR, and KNN models. However, the

performance of LSTM model in CV method is highest

among trained classifiers. Most models achieved their best

results based on the filter-based feature set. No model

achieved its best performance using the full feature set

except for the KNN model. One possible reason for this is

that KNN is a lazy learner that memorizes the training set.

The KNN model has no learning process. Therefore, KNN

achieved the lowest results overall.

Tabels 4 and 5 present the obtained results of all ML

models for the three-class classification task using testing

and CV methods. The evaluation matrics of ML models

were individually identified using both testing and CV

methods. In case of testing method, we can see in Table 5

that the obtained accuracy and F1-score of RF were 92.01

and 92.07%, respectively, which is higher than the accu-

racy (91.22%) and F1- score (91.28%) of LSTM model.

However, in case of CV, the performance of all ML models

were lower than LSTM model.

The best test performance for all models was achieved

by means of the filter feature set except for RF, where

wrapper features achieved the best test performance. No

model achieved its best performance using the full feature

set. These results highlight the role of the feature selection

step in optimizing the performance of ML models. Figure 5

illustrates a comparison between the LSTM-based CV and

test performance for both four-class and three-class prob-

lems. As can be seen, the three-class models achieved more

Neural Computing and Applications

123

accurate results with every feature set. As a result, the first

stage was based on the three-class LSTM classification

model. This model determines whether a patient is CN,

MCI, or AD. For MCI patients, the second stage’s

regression model is applied to determine whether the

patient is sMCI or pMCI. In the case of pMCI patients, our

model determines their exact conversion time.

Table 2 The cross-validation

performance of ML models for

the four-class task

Models Dataset Cross-validation performance

Accuracy Precision Recall F1-score

DT Full feature set 82.89 ± 2.80 78.79 ± 2.00 75.94 ± 2.20 82.89 ± 2.80

Wrapper method 82.95 ± 2.10 78.86 ± 2.00 76.02 ± 1.90 82.95 ± 2.10

Filter method 82.95 ± 2.19 78.86 ± 2.04 76.02 ± 1.90 82.95 ± 2.19

RF Full feature set 83.79 ± 2.30 81.80 ± 2.70 81.27 ± 3.90 83.47 ± 2.50

Wrapper method 84.16 ± 2.34 81.93 ± 2.46 82.09 ± 3.75 83.74 ± 2.72

Filter method 84.27 ± 2.60 82.49 ± 2.60 82.65 ± 3.30 84.12 ± 2.50

SVM Full feature set 81.96 ± 2.80 81.24 ± 2.80 81.13 ± 2.80 81.96 ± 2.80

Wrapper method 81.95 ± 2.70 81.09 ± 2.60 81.07 ± 2.80 81.95 ± 2.79

Filter method 81.34 ± 3.03 80.61 ± 2.90 80.46 ± 3.10 81.34 ± 3.00

LR Full feature set 82.32 ± 3.02 81.24 ± 3.04 81.24 ± 3.48 82.32 ± 3.02

Wrapper method 82.52 ± 2.84 81.01 ± 2.80 80.99 ± 3.42 82.52 ± 2.80

Filter method 82.06 ± 2.94 80.99± 2.72 80.83 ± 2.93 82.06 ± 2.94

KNN Full feature set 70.15 ± 2.97 67.10 ± 3.02 66.74 ± 4.28 70.15 ± 2.97

Wrapper method 70.88 ± 2.71 67.15 ± 2.70 65.55 ± 4.32 70.88 ± 2.71

Filter method 70.60 ± 2.60 67.41 ± 2.63 66.95 ± 4.34 70.60 ± 2.60

LSTM Full feature set 83.43 ± 1.92 83.41 ± 1.68 87.80 ± 2.16 79.55 ± 2.00

Wrapper method 84.44 ± 2.20 84.16 ± 1.83 87.79 ± 1.99 80.90 ± 2.26

Filter method 83.49 ± 2.55 83.48 ± 2.35 87.43 ± 2.50 79.96 ± 2.68

Table 3 The testing

performance of ML models for

the four-class task

Models Dataset Testing performance

Accuracy Precision Recall F1-score

DT Full feature set 82.17 78.24 76.06 82.17

Wrapper method 82.75 78.74 76.39 82.75

Filter method 82.82 78.80 76.42 82.82

RF Full feature set 80.80 77.08 74.13 80.80

Wrapper method 80.94 77.42 74.90 80.94

Filter method 81.23 77.70 75.23 81.23

SVM Full feature set 71.09 69.52 68.54 71.09

Wrapper method 71.38 70.40 69.80 71.38

Filter method 71.45 70.99 70.87 71.45

LR Full feature set 68.19 66.70 65.96 68.19

Wrapper method 70.07 68.45 67.59 70.07

Filter method 72.54 71.63 71.01 72.54

Full feature set 59.64 55.44 53.35 59.64

Wrapper method 64.20 59.52 56.90 64.20

Filter method 59.35 54.75 51.94 59.35

LSTM Full feature set 77.75 76.82 76.80 77.75

Wrapper method 82.80 78.74 76.39 82.80

Filter method 79.56 79.32 79.92 79.56

Neural Computing and Applications

123

4.2 Results of conversion time detection stage

In this stage, we tuned regression models to predict the

conversion time of MCI patients. We tuned five popular

ML regressors: DT, Ridge, Lasso, RF, and SVM. In

addition, we tuned two neural network architectures, FFNN

and LSTM models, using the Keras Tuner package. Results

are discussed in the text in terms of MAE because the other

metrics of MSE and RMSE are consistent with MAE. Note

that the results of all three metrics were reported in the

tables. The three metrics are reported in the tables.

Table 4 The cross-validation

performance of ML models for

the three-class task

Models Dataset Cross-validation performance

Accuracy Precision Recall F1-score

DT Full feature set 91.39 ± 2.17 91.37 ± 2.20 91.63 ± 2.11 91.40 ± 2.17

Wrapper method 91.39 ± 2.18 91.36 ± 2.20 91.63 ± 2.11 91.40 ± 2.17

Filter method 91.40 ± 2.17 91.37 ± 2.20 91.63 ± 2.12 91.40 ± 2.17

RF Full feature set 92.52 ± 1.89 92.53 ± 2.08 92.50 ± 1.78 92.51 ± 2.09

Wrapper method 92.52 ± 2.12 92.52 ± 1.99 92.78 ± 2.12 92.52 ± 1.96

Filter method 92.60 ± 1.96 92.66 ± 2.09 92.70 ± 1.94 92.62 ± 2.04

SVM Full feature set 91.58 ± 2.40 91.57 ± 2.41 91.75 ± 2.39 91.58 ± 2.40

Wrapper method 92.01 ± 1.97 92.00 ± 1.97 92.16 ± 1.96 92.01 ± 1.97

Filter method 91.92 ± 2.09 91.91 ± 2.09 92.08 ± 2.08 91.92 ± 2.09

LR Full feature set 91.71 ± 2.16 91.71 ± 2.16 91.90 ± 2.14 91.71 ± 2.16

Wrapper method 92.28 ± 2.12 92.28 ± 2.12 92.46 ± 2.10 92.28 ± 2.12

Filter method 91.89 ± 2.29 91.89 ± 2.29 92.06 ± 2.26 91.89 ± 2.29

KNN Full feature set 78.95 ± 3.28 78.96 ± 3.28 79.76 ± 3.14 78.95 ± 3.28

Wrapper method 79.10 ± 3.43 79.14 ± 3.41 80.17 ± 3.20 79.10 ± 3.43

Filter method 78.95 ± 3.28 78.96 ± 3.28 79.76 ± 3.14 78.95 ± 3.28

LSTM Full feature set 91.69 ± 3.17 91.92 ± 3.19 91.92 ± 3.19 91.91 ± 3.19

Wrapper method 93.87 ± 1.48 94.07 ± 1.58 94.07 – 1.58 94.07 ± 1.58

Filter method 92.73 ± 1.15 93.05 ± 1.24 93.05 ± 1.24 93.04 ± 1.24

Table 5 The testing

performance of ML models for

the three-class task

Models Dataset Testing performance

Accuracy Precision Recall F1-score

DT Full feature set 91.02 90.96 91.57 91.02

Wrapper method 91.96 91.89 92.54 91.96

Filter method 91.52 91.46 92.06 91.52

RF Full feature set 90.29 90.25 90.42 90.29

Wrapper method 92.01 92.07 92.02 92.01

Filter method 91.67 91.63 91.74 91.67

SVM Full feature set 76.38 76.37 76.48 76.38

Wrapper method 79.49 79.50 79.58 79.49

Filter method 82.82 82.87 83.01 82.82

LR Full feature set 76.38 76.33 76.35 76.38

Wrapper method 81.09 81.06 81.10 81.09

Filter method 81.88 81.82 81.90 81.88

KNN Full feature set 68.91 68.11 70.29 68.91

Wrapper method 72.54 71.96 75.35 72.54

Filter method 68.91 68.11 70.29 68.91

LSTM Full feature set 88.33 88.45 89.38 88.33

Wrapper method 91.22 91.28 91.84 91.22

Filter method 89.56 89.71 90.71 89.56

Neural Computing and Applications

123

• In the first experiment, we trained 15 conventional ML

models utilizing the default Scikit-learn hyperparameter

settings and averaged time-series data fused with BL

modality (see Table 6). A separate model was tuned for

each algorithm for the complete feature set, wrapper-

based feature set, and filter-based feature set. For the

DT model, the best MAE was 0.1774 based on wrapper

features. Compared with the DT model, the Ridge

model achieved better performance of 0.1609 for MAE

based on wrapper features, respectively. The Lasso

model achieved equal performance using the complete

and wrapper feature sets (i.e., MAE = 0.1713). Based

on the wrapper feature set, RF achieved better

performance than the previous models: MAE =

0.1555. Finally, the best performance was achieved by

the SVM model using the wrapper feature set (i.e.,

MAE = 0.1492). It can be seen that all algorithms

achieved better results using the feature selection

methods. Most algorithms achieved the best perfor-

mance based on the wrapper feature sets.

• In the second experiment, we tuned the five conven-

tional ML models-DT, Ridge, Lasso, RF, and SVM–by

means of a grid search technique, see Table 7. These

models were tuned based on the averaged time series

modalities combined with the BL modality. Further, we

tuned the LSTM model architecture using the Keras

Tuner package. The LSTM model was tuned using the

time series modalities combined with the repeated BL

modality. Finally, we built an tuned FFNN architecture

based on the Keras Tuner. The model was trained using

the averaged time series data fused with the BL

modality. As can be clearly seen, the LSTM model

achieved the optimum MAE of 0.1375. The tuned DT

model achieved the second-best results of MAE =

0.1439 based on the filter feature set. The FFNN model

achieved the third-best results of MAE = 0.1441 based

on the filter feature set. The best results reported by the

Ridge method were achieved using the filter feature set

(i.e., MAE = 0.1527). The Lasso model attained the

worst results. The model achieved the same results

using the full and filter feature sets (i.e., MAE =

0.1713). tuned RF achieved performance comparable to

the FFNN based on the filter features with MAE =

0.1493 based on the complete feature set. tuned SVM

utilized the filter feature set to achieve a performance of

MAE = 0.1573. Figure 6 shows a comparison between

the tuned and not tuned ML models in terms of MAE,

MSE, and RMSE. As can be seen, the LSTM model

achieved the best results in all metrics.

Fig. 5 Comparison of performance LSTM models for three-class and four-class problems, (a) CV and (b) testing

Table 6 Results of conventional ML with default hyperparameters

and averaged time-series data

Models Features Evaluation metrics

MAE MSE RMSE

DT Full feature set 0.1803 0.0800 0.2556

Wrapper method 0.1774 0.1220 0.3466

Filter method 0.1864 0.1256 0.3526

Ridge Full feature set 0.1717 0.0681 0.2605

Wrapper method 0.1609 0.0615 0.2477

Filter method 0.1636 0.0629 0.2481

Lasso Full feature set 0.1713 0.0641 0.2531

Wrapper method 0.1713 0.0641 0.2531

Filter method 0.1734 0.0651 0.2514

RF Full feature set 0.1580 0.0637 0.2524

Wrapper method 0.1555 0.0631 0.2510

Filter method 0.1574 0.0619 0.2469

SVM Full feature set 0.1553 0.0601 0.2450

Wrapper method 0.1492 0.0591 0.2432

Filter method 0.1587 0.0619 0.2433

Neural Computing and Applications

123

• In the third experiment, we studied the role of time

series data on the performance of ML models. As

discussed, the LSTM model was based on time series

data from four time steps: BL, M06, M12, and M18. In

this experiment, we flattened the four-time steps, as

shown in Fig. 3. The conventional ML models were

tuned using grid search techniques and fusion of the

flattened time series and BL modality. Table 8 shows

the results of the conventional ML models. Note that

FFNN was excluded from this experiment because we

concentrated on this model in the following experiment.

RF achieved the best results based on the filter feature

set (i.e., MAE = 0.1476). The best MAE for the DT

model was 0.1509 based on the wrapper feature set. The

Ridge model achieved the best MAE of 0.1590 based

on the filter feature set. The Lasso regressor achieved

the same performance using the full and wrapper

feature sets (i.e., MAE = 0.1713). Finally, SVM

depended on the full feature set to achieve the

performance of MAE = 0.1525. By comparing the

performance of tuned conventional ML models based

on averaged time series with flattened time series, we

found that flattening the data decreased the performance

of all models. This is because the flattened datasets had

a huge number of features compared with the averaged

datasets (see Fig. 3). In numbers, assume that we have n

features in every time step, and we have t time steps,

then after flattening the number of features becomes

n� t.

This large number of features is too noisy to be trained

properly by conventional ML models. From the previous

experiment, we discovered that the flattening of time series

data did not help to improve the performance of the tuned

conventional ML models. In the fourth experiment, we

explored the role of flattened time-series data to enhance

the deep FFNN model, see Table 8. In addition, we

investigated the performance of deep FFNN based on the

baseline visit data only and based on the M18 visit only.

Note that the baseline visit had a more significant time gap

to the M48 visit compared with the M18 visit. As a result, it

was expected that the performance of M18 data would be

higher than that of baseline data because as the gap

shortens, the model becomes more confident. FFNN

achieved the best results based on the flattened time series

data and wrapper feature set (i.e., MAE = 0.1452). In

contrast to the conventional ML models, the performance

of the FFNN model improved based on the flattened time

series compared with the averaged time-series experiment.

This finding indicates that the deep neural network can

learn more complex patterns and deep feature representa-

tions from high-dimensional data. Using the baseline time

Table 7 Results of tuned LSTM, conventional ML, and FFNN using

averaged time-series

Models Features Evaluation metrics

MAE MSE RMSE

LSTM Full feature set 0.1531 0.0585 0.2419

Wrapper method 0.1440 0.0570 0.2387

Filter method 0.1375 0.0538 0.2318

DT Full feature set 0.1484 0.0597 0.2443

Wrapper method 0.1453 0.0624 0.2493

Filter method 0.1439 0.0557 0.2359

Ridge Full feature set 0.1576 0.0625 0.2496

Wrapper method 0.1555 0.0598 0.2444

Filter method 0.1527 0.0595 0.2439

Lasso Full feature set 0.1713 0.0641 0.2531

Wrapper method 0.1733 0.0650 0.2535

Filter method 0.1713 0.0641 0.2531

RF Full feature set 0.1538 0.0617 0.2459

Wrapper method 0.1539 0.0623 0.2494

Filter method 0.1493 0.0613 0.2475

SVM Full feature set 0.1573 0.0616 0.2479

Wrapper method 0.1609 0.0616 0.2420

Filter method 0.1573 0.0590 0.2429

FFNN Full feature set 0.1547 0.0586 0.2421

Wrapper method 0.1492 0.0579 0.2406

Filter method 0.1441 0.0585 0.2420

Fig. 6 Comparison of default and tuned hyperparameter settings, (a) MAE, (b) MSE, and (c) RMSE

Neural Computing and Applications

123

step to optimize and train the deep FFNN, the model

achieved its lowest MAE of 0.1689 based on the wrapper

feature set and the lowest MAE 0.0638 based on the

complete feature set. Using the data from the M18 visit, we

noticed that the performance was improved compared with

the baseline visit performance, as expected. The FFNN

achieved the best MAE of 0.1563 based on the complete

feature set.

Figure 7 provides a summary of all the studied regres-

sion models. It compares the best models from all regres-

sion experiments, including SVM based on the wrapper

feature set and default hyperparameters, RF-based on the

filter feature set and tuned feature set, FFNN based on the

wrapper feature set and flattened time series, and LSTM

based on the filter feature set and tuned architecture. We

compared the MAE, MSE, and RMSE of the different

models. As it is clearly shown, the deep LSTM model

achieved the best scores for all metrics. We can conclude

from these results that the LSTM model is able to learn the

temporal dependency between time series features and

between different features. It is worth noting that these

features are lost using the flattened time series with the

deep FFNN.

As far as we know, no study in the literature on AD has

predicted the exact conversion time of MCI patients. Most

studies either model AD progression detection as a binary

classification problem [1, 26, 45] (e.g., CN vs. AD [9],

MCI vs. AD [10], sMCI vs. pMCI [8, 11]). For example,

Westman et al. [68] achieved an accuracy of 91.8% for

classifying AD vs. CN based on combined MRI and CSF

Table 8 Results of conventional

ML and FFNN with grid search

and flattened time-series

Models Features Evaluation metrics

MAE MSE RMSE

DT Full feature set 0.1547 0.0630 0.2500

Wrapper method 0.1509 0.0610 0.2469

Filter method 0.1524 0.0608 0.2466

Ridge Full feature set 0.1709 0.0655 0.2554

Wrapper method 0.1658 0.0683 0.2608

Filter method 0.1590 0.0624 0.2498

Lasso Full feature set 0.1713 0.0641 0.2531

Wrapper method 0.1713 0.0641 0.2531

Filter method 0.1714 0.0641 0.2532

RF Full feature set 0.1550 0.0608 0.2445

Wrapper method 0.1506 0.0601 0.2450

Filter method 0.1476 0.0608 0.2463

SVM Full feature set 0.1525 0.0586 0.2418

Wrapper method 0.1571 0.0628 0.2502

Filter method 0.1622 0.0624 0.2495

FFNN ? baseline time step Full feature set 0.1691 0.0638 0.2527

Wrapper method 0.1689 0.0641 0.2532

Filter method 0.1710 0.0640 0.2530

FFNN ? M18 time step Full feature set 0.1563 0.0597 0.2443

Wrapper method 0.1567 0.0580 0.2408

Filter method 0.1620 0.0621 0.2491

FFNN ? flattened time series Full feature set 0.1547 0.0586 0.2422

Wrapper method 0.1452 0.0568 0.2382

Filter method 0.1670 0.0628 0.2506

Fig. 7 Proposed two stages framework for hybrid AD diagnosis and

conversion prediction

Neural Computing and Applications

123

data. Their performance dropped to 71.8% for MCI vs. CN.

Although these studies were able to achieve outstanding

results, their outcomes are not valuable to medical experts

because AD is a complex chronic disease whose conver-

sion takes a long time and whose detection is based on

multimodal time series data analysis [14, 24, 67]. However,

some studies have modelled AD progression as a four-class

classification task (CN vs. sMCI vs. pMCI vs. AD)

[12, 14, 36, 50, 52, 68–71]. For example, Yao et al. [50]

achieved 54.38% accuracy using a hierarchical ensemble

and based on baseline data of MRI, age, gender, and

MMSE. Nanni et al. [52] achieved 52.92% accuracy using

a voting classifier and baseline MRI, age, and MMSE data.

Liu et al. [48] achieved an accuracy of 51.8% based on

CNN and baseline MRI data. Sorensen et al. [68] achieved

59.10% accuracy using bagging and baseline MRI data,

age, gender, and MMSE. Other studies achieved similar

accuracies, such as Dimitriadis and Liparas [69] (61.90%),

and Jin and Deng [14] (56.25%). This kind of multiclass

classification problem is more challenging, and all studies

achieved low performance. For example, Jin and Deng [14]

achieved an sMCI vs. pMCI accuracy of 60%, but the four-

class prediction accuracy was only 30%. Relaxing the four-

class problem to a three-class one enhances the perfor-

mance. For example, Moore et al. [12] achieved 73%

accuracy based on an RF classifier and baseline data of

MRI and CSs. However, previous studies have ignored the

prediction of the exact conversion time of MCI cases. As a

result, there are two major challenges in this field of study:

(1) to accurately predict the patient’s class (CN, MCI, or

AD), and (2) to concentrate on the MCI category and

predict the exact conversion time of pMCI patients.

5 Limitations and future directions

In this study, we propose a novel framework to predict the

patient’s AD progression and the exact conversion time for

pMCI patients. The study achieved superior results. Based

on these results, the proposed framework could be inte-

grated in a real electronic health record (EHR) environ-

ment. Figure 8 illustrates the high-level sequence of steps

for system development and usage. The figure shows how

the deployed system from the proposed model could be

integrated in the EHR system in hospitals. The current

study has three major limitations that will be handled in our

future studies. First, medical experts do not trust machine

learning decisions without an accurate and robust expla-

nation [45]. There are many techniques to provide

explainability features to a ML model [72] We will extend

the current study to provide physicians with explanations in

different formats, including feature importance [23], fuzzy

rules [73], natural language text [74], and similar cases

[75].

Second, we will integrate deep learning and machine

learning capabilities to implement hybrid models [67]. This

hybridization is expected to improve the diagnosis accu-

racy of the resulting models. Third, because many AD

patients might live in developing countries, where

advanced technologies like MRI and PET are not available

[25, 76]. Building a decision support system based on cost-

effective (bio) markers and lab tests could help detect MCI

and AD patients in these poor regions of the world.

6 Conclusion

In this paper, we proposed an DL model for AD detection

and pMCI conversion time prediction based on the early

fusion of multimodal time-series data. Specifically, the

framework was implemented based on an LSTM classifi-

cation model as a first stage, and then an LSTM regression

model as a second stage. The proposed model was able to

predict the exact time of AD conversion for MCI patients.

To select the best model, we implemented and tuned a

collection of ML and DL classifiers and regressors based

on a large collection of real prepared cases from the ADNI

dataset. Further, we explored different feature selection

techniques and different forms of using the time series

data. Extensive experiments showed that the LSTM-based

classifier achieved the highest CV results using the wrap-

per-based feature set. In contrast, the LSTM-based

regressor achieved the highest results using the filter-based

feature set.

It is worth noting that we used a novel method based on

the ‘divide and conquer’ concept. Our two-stage frame-

work was based on a three-class classification task to

determine a patient class in the first stage. In the second

stage, the model concentrated on MCI patients to decide on

their exact progression time. This is the first study to deal

with this issue in the AD domain. However, our study still

has some limitations. The first limitation is that the model’s

decisions are not interpretable. A domain expert would not

be able to understand why the model took specific deci-

sions. This problem is related to explainability, fairness,

and accountability which are at the core of explainable

artificial intelligence. In the future, we will extend this

work to convert this black-box model into a glass-box one.

The second limitation is related to the fusion of other

critical modalities, such as PET, symptoms, lab tests, and

genetic data. Furthermore, medication modality is cost-

effective and could have an important role in AD pro-

gression detection. We will explore the role of this

modality in the future studies. The fusion of multimodali-

ties will improve the stability of and confidence in the

Neural Computing and Applications

123

model. In addition, this will increase medical experts’ trust

in it. These issues will be handled in our future work. The

proposed model can be used to solve other medical and

non-medical problems that that are based on time series

data and could be formulated as two-stage task. Scientists

in other domains can consider the proposed model for their

problem solving as a way for applying deep learning

algorithms in time series data analysis. The used LSTM

model is considered as the best technique for learning deep

representations from time series data. In the same time,

formulating the problem in two stages relaxes the com-

plexity of a problem and could improves the performance

of the model.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

022-07263-9.

Author Contributions All authors contributed to the study conception

and design. Data collection, preparation, and analysis were performed

by Shaker El-Sappagh, Hager Saleh, and Farman Ali. The first draft of

the manuscript was written by Shaker El-Sappagh and Hager Saleh.

Eslam Amer, Farman Ali, and Tamer ABUHMED contributed to

methodology, and writing–review and editing. Tamer ABUHMED

contributed to resources, supervision, funding acquisition and project

administration. All authors read and approved the manuscript.

Funding This research was supported by the MSIT (Ministry of

Science and ICT), Korea, under the ICT Creative Consilience Pro-

gram (IITP-2021-2020-0-01821) supervised by the IITP (Institute for

Information \& communications Technology Planning \& Evalua-

tion), and the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MSIT) (No. 2021R1A2C1011198).

Declarations

Conflicts of interest All authors declare that they have no conflicts of

interest.

Human and animal rights This research study was conducted retro-

spectively using human subject data made available by Alzheimer’s

disease Neuroimaging Initiative (ADNI).

Reproducibility For reproducibility purposes, readers can find the

project code at this link: https://github.com/hagersalehahmed/Alzhei

mer. Because of data privacy, we cannot share the dataset, but a

complete description of the used feature set and patient roster IDs are

available on Github.

References

1. Ritter K, Schumacher J, Weygandt M, Buchert R, Allefeld C,

Haynes J-D (2015) Multimodal prediction of conversion to Alz-

heimer’s disease based on incomplete biomarkers. Alzheimers

Dement (Amst) 1(2):206–215

2. Zhang R, Simon G, Yu F (2017) Advancing Alzheimer’s

research: a review of big data promises. Int J med inform

106:48–56

3. Alzheimer Disease International: World Alzheimer Report 2018

(2018). https://www.alz.co.uk/research/world-report-2018

Accessed 2021

4. Hong X, Lin R, Yang C, Cai C, Clawson K (2020) ADPM: an

Alzheimer’s disease prediction model for time series neuroimage

analysis. IEEE Access 8:62601–62609

5. Iddi S, Li D, Aisen PS, Rafii MS, Thompson WK, Donohue MC

(2019) Predicting the course of Alzheimer’s progression. Brain

Inform 6(1):1–18

6. Lu S, Xia Y, Cai W, Fulham M, Feng DD (2017) Alzheimer’s

sisease neuroimaging initiative: early identification of mild cog-

nitive impairment using incomplete random forest-robust support

vector machine and FDG-PET imaging. Comput Med Imaging

Graph 60:35–41

7. Zhou T, Thung K-H, Liu M, Shi F, Zhang C, Shen D (2020)

Multi-modal latent space inducing ensemble SVM classifier for

early dementia diagnosis with neuroimaging data. Med image

anal 60:101630

8. Moscoso A, Silva-Rodrı́guez J, Aldrey JM, Cortés J, Fernández-

Ferreiro A, Gómez-Lado N, Ruibal Á, Aguiar P (2019) Alzhei-

mer’s disease neuroimaging initiative: prediction of Alzheimer’s

disease dementia with MRI beyond the short-term: implications

for the design of predictive models. Neuroimage Clin 23:101837

Fig. 8 System development and

integration in EHR systems

Neural Computing and Applications

123

https://doi.org/10.1007/s00521-022-07263-9
https://doi.org/10.1007/s00521-022-07263-9
https://github.com/hagersalehahmed/Alzheimer
https://github.com/hagersalehahmed/Alzheimer
https://www.alz.co.uk/research/world-report-2018

9. Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) Alzheimer’s

disease neuroimaging initiative: multimodal classification of

Alzheimer’s disease and mild cognitive impairment. Neuroimage

55(3):856–867

10. Hong X, Lin R, Yang C, Zeng N, Cai C, Gou J, Yang J (2019)

Predicting Alzheimer’s disease using LSTM. IEEE Access

7:80893–80901

11. Filipovych R, Davatzikos C (2010) Alzheimer’s disease neu-

roimaging initiative: semi-supervised pattern classification of

medical images: application to mild cognitive impairment (MCI).

Neuroimage 55(3):1109–1119

12. Moore PJ, Lyons TJ, Gallacher J (2019) Alzheimer’s disease

neuroimaging initiative: random forest prediction of Alzheimer’s

disease using pairwise selection from time series data. PLoS One

14(2):0211558

13. Rallabandi VPS, Tulpule K, Gattu M (2020) Automatic classifi-

cation of cognitively normal, mild cognitive impairment and

Alzheimer’s disease using structural MRI analysis. Inform Med

Unlocked 18:100305

14. Jin M, Deng W (2018) Predication of different stages of Alz-

heimer’s disease using neighborhood component analysis and

ensemble decision tree. J Neurosci Meth 302:35–41

15. Klomp A, Caan MW, Denys D, Nederveen AJ, Reneman L

(2012) Feasibility of ASL-based phMRI with a single dose of oral

citalopram for repeated assessment of serotonin function. Neu-

roimage 63(3):1695–1700

16. Yau W-YW, Tudorascu DL, McDade EM, Ikonomovic S, James

JA, Minhas D, Mowrey W, Sheu LK, Snitz BE, Weissfeld L et al

(2015) Longitudinal assessment of neuroimaging and clinical

markers in autosomal dominant Alzheimer’s disease: a prospec-

tive cohort study. The Lancet Neurol. 14(8):804–813

17. Martı́-Juan G, Sanroma-Guell G, Piella G (2020) A survey on

machine and statistical learning for longitudinal analysis of

neuroimaging data in Alzheimer’s disease. Comp Meth Programs

in Biomed 189:105348

18. Forouzannezhad P, Abbaspour A, Fang C, Cabrerizo M,

Loewenstein D, Duara R, Adjouadi M (2019) A survey on

applications and analysis methods of functional magnetic reso-

nance imaging for Alzheimer’s disease. J Neurosci Meth

317:121–140

19. Liu L, Zhao S, Chen H, Wang A (2020) A new machine learning

method for identifying Alzheimer’s disease. Simul Modell Pract

Theory 99:102023

20. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S,

Habert M-O, Chupin M, Benali H, Colliot O (2010) Alzheimer’s

disease neuroimaging initiative: automatic classification of

patients with Alzheimer’s disease from structural MRI: a com-

parison of ten methods using the ADNI database. Neuroimage

56(2):766–781

21. Wang T, Qiu RG, Yu M (2018) Predictive modeling of the

progression of Alzheimer’s disease with recurrent neural net-

works. Scientific Rep 8(1):1–12

22. Wang X, Qi J, Yang Y, Yang P (2019) A survey of disease

progression modeling techniques for alzheimer’s diseases. In:

2019 IEEE 17th International Conference on Industrial Infor-

matics (INDIN), vol. 1, pp. 1237–1242. IEEE

23. El-Sappagh S, Alonso JM, Islam SR, Sultan AM, Kwak KS

(2021) A multilayer multimodal detection and prediction model

based on explainable artificial intelligence for Alzheimer’s dis-

ease. Scientific Rep 11(1):1–26

24. El-Sappagh S, Abuhmed T, Islam SR, Kwak KS (2020) Multi-

modal multitask deep learning model for Alzheimer’s disease

progression detection based on time series data. Neurocomputing

412:197–215

25. El-Sappagh S, Saleh H, Sahal R, Abuhmed T, Islam SR, Ali F,

Amer E (2021) Alzheimer’s disease progression detection model

based on an early fusion of cost-effective multimodal data. Fut

Gener Comp Syst 115:680–699

26. Zhang D, Shen D (2011) Alzheimer’s disease neuroimaging

initiative: multi-modal multi-task learning for joint prediction of

multiple regression and classification variables in Alzheimer’s

disease. Neuroimage 59(2):895–907

27. Tabarestani S, Aghili M, Eslami M, Cabrerizo M, Barreto A,

Rishe N, Curiel RE, Loewenstein D, Duara R, Adjouadi M (2020)

A distributed multitask multimodal approach for the prediction of

Alzheimer’s disease in a longitudinal study. NeuroImage

206:116317

28. Alberdi A, Aztiria A, Basarab A (2016) On the early diagnosis of

Alzheimer’s Disease from multimodal signals: a survey. Artificial

intelligence in medicine 71:1–29

29. Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J (2014) Alz-

heimer’s disease neuroimaging initiative: machine learning

framework for early MRI-based Alzheimer’s conversion predic-

tion in MCI subjects. Neuroimage 104:398–412

30. Pillai PS, Leong T-Y (2015) Alzheimer’s disease neuroimaging

initiative: fusing heterogeneous data for Alzheimer’s disease

classification. Stud Health Technol Inform 216:731–735

31. Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC,

Jack CR Jr, Feldman HH, Bokde AL, Alexander GE, Scheltens P

et al (2012) Prediction of conversion from mild cognitive

impairment to Alzheimer’s disease dementia based upon

biomarkers and neuropsychological test performance. Neurobiol

Aging 33(7):1203–1214

32. Liu W, Zhang B, Zhang Z, Zhou X-H (2013) Joint modeling of

transitional patterns of Alzheimer’s disease. PloS One 8(9):75487

33. Huang L, Gao Y, Jin Y, Thung K-H, Shen D (2015) Soft-split

sparse regression based random forest for predicting future clin-

ical scores of Alzheimer’s disease. In: International Workshop on

Machine Learning in Medical Imaging, pp. 246–254. Springer

34. Lee G, Nho K, Kang B, Sohn K-A, Kim D (2019) Predicting

Alzheimer’s disease progression using multi-modal deep learning

approach. Scientific Rep 9(1):1–12

35. Li H, Habes M, Wolk D, Fan Y (2019) A deep learning model for

early prediction of Alzheimer’s disease dementia based on hip-

pocampal magnetic resonance imaging data. Alzheimer’s &

Dementia Alzheimer’s dise neuroimag Init 15:1059–1070

36. Qiu S, Chang GH, Panagia M, Gopal DM, Au R, Kolachalama

VB (2018) Fusion of deep learning models of MRI scans, Mini-

Mental State Examination, and logical memory test enhances

diagnosis of mild cognitive impairment. Alzheimer’s & Demen-

tia: Diagn, Assessment & Dis Monit 10:737–749

37. Forouzannezhad P, Abbaspour A, Li C, Fang C, Williams U,

Cabrerizo M, Barreto A, Andrian J, Rishe N, Curiel RE et al

(2020) A Gaussian-based model for early detection of mild

cognitive impairment using multimodal neuroimaging. J Neu-

rosci Meth 333:108544

38. Cheng B, Liu M, Zhang D, Munsell BC, Shen D (2015) Domain

transfer learning for MCI conversion prediction. IEEE Trans

Biomed Eng 62(7):1805–1817

39. Wee C-Y, Yap P-T, Shen D (2012) Alzheimer’s disease neu-

roimaging initiative: prediction of Alzheimer’s disease and mild

cognitive impairment using cortical morphological patterns. Hum

Brain Mapp 34(12):3411–3425

40. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ,

Cedarbaum J, Donohue MC, Green RC, Harvey D, Jack CR Jr

et al (2015) Impact of the Alzheimer’s disease neuroimaging

initiative, 2004 to 2014. Alzheimer’s & Dementia 11(7):865–884

41. Liu F, Zhou L, Shen C, Yin J (2013) Multiple kernel learning in

the primal for multimodal Alzheimer’s disease classification.

IEEE J Biomed Health Inform 18(3):984–990

42. Cho Y, Seong J-K, Jeong Y, Shin SY (2011) Alzheimer’s disease

neuroimaging initiative: individual subject classification for

Neural Computing and Applications

123

Alzheimer’s disease based on incremental learning using a spatial

frequency representation of cortical thickness data. Neuroimage

59(3):2217–2230

43. Suresh H, Hunt N, Johnson A, Celi LA, Szolovits P, Ghassemi M

(2017) Clinical intervention prediction and understanding using

deep networks. arXiv preprint arXiv:1705.08498

44. Tian C, Ma J, Zhang C, Zhan P (2018) A deep neural network

model for short-term load forecast based on long short-term

memory network and convolutional neural network. Energies

11(12):3493

45. Spasov S, Passamonti L, Duggento A, Liò P, Toschi N (2019)

Alzheimer’s disease neuroimaging initiative: a parameter-effi-

cient deep learning approach to predict conversion from mild

cognitive impairment to Alzheimer’s disease. Neuroimage

189:276–287

46. Tabarestani S, Aghili M, Shojaie M, Freytes C, Cabrerizo M,

Barreto A, Rishe N, Curiel RE, Loewenstein D, Duara R et al.

(2019) Longitudinal prediction modeling of alzheimer disease

using recurrent neural networks. In: 2019 IEEE EMBS Interna-

tional Conference on Biomedical & Health Informatics (BHI),

pp. 1–4. IEEE

47. Choi H, Jin KH (2018) Alzheimer’s disease neuroimaging ini-

tiative: predicting cognitive decline with deep learning of brain

metabolism and amyloid imaging. Behav Brain Res 344:103–109

48. Liu M, Zhang J, Adeli E, Shen D (2018) Joint classification and

regression via deep multi-task multi-channel learning for Alz-

heimer’s disease diagnosis. IEEE Trans Biomed Eng

66(5):1195–1206

49. Gupta Y, Lama RK, Kwon G-R, Weiner MW, Aisen P, Weiner

M, Petersen R, Jack CR Jr, Jagust W, Trojanowki JQ et al (2019)

Prediction and classification of Alzheimer’s disease based on

combined features from apolipoprotein-E genotype, cerebrospinal

fluid, MR, and FDG-PET imaging biomarkers. Front Comp

Neurosci 13:72

50. Yao D, Calhoun VD, Fu Z, Du Y, Sui J (2018) An ensemble

learning system for a 4-way classification of Alzheimer’s disease

and mild cognitive impairment. J Neurosci Meth 302:75–81

51. Bucholc M, Ding X, Wang H, Glass DH, Wang H, Prasad G,

Maguire LP, Bjourson AJ, McClean PL, Todd S et al (2019) A

practical computerized decision support system for predicting the

severity of Alzheimer’s disease of an individual. Expert Syst

Appl 130:157–171

52. Nanni L, Lumini A, Zaffonato N (2018) Ensemble based on static

classifier selection for automated diagnosis of mild cognitive

impairment. J Neurosci Meth 302:42–46

53. Desikan, R.: S egonne F, Fischl B, Quinn BT, Dickerson BC,

Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT,

Albert MS, Killiany RJ, (2006) An automated labeling system for

subdividing the human cerebral cortex on MRI scans into gyral

based regions of interest. Neuroimage 31:968–980

54. MCKHANN G (1984) Report of the NINCDS-ADRDA work

group under the auspices of department of health and human

service task force on Alzheimer’s disease. Neurology 34,

939–944

55. Quinlan J (1993) C4. 5: Programs for Machine Learning. Morgan

Kaufmann Publishers, San Mateo, CA

56. Cutler A, Cutler DR, Stevens JR (2012) Random forests. In:

Ensemble Machine Learning, pp. 157–175

57. Andrew AM (2001) An introduction to support vector machines

and other kernel-based learning methods. Kybernetes

58. Barber D (2012) Bayesian reasoning and machine learning

59. Smola A, Scholkopf B (2004) A tutorial on support vector

regression. Stat Comp 14:199–222

60. Wright RE (1995) Logistic regression

61. Hochreiter S (1997) JA1 4 rgen Schmidhuber.‘‘Long Short-Term

Memory’’. Neural Computation 9(8)

62. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)

SMOTE: synthetic minority over-sampling technique. J Artificial

Intell Res 16:321–357

63. Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D

(2018) Structural brain imaging in Alzheimer’s disease and mild

cognitive impairment: biomarker analysis and shared morphom-

etry database. Scientific Rep 8(1):1–16

64. Klöppel S, Abdulkadir A, Jack CR Jr, Koutsouleris N, Mourão-

Miranda J, Vemuri P (2012) Diagnostic neuroimaging across

diseases. Neuroimage 61(2):457–463

65. Klein-Koerkamp Y, Heckemann RA, Ramdeen KT, Moreaud O,

Keignart S, Krainik A, Hammers A, Baciu M, Hot P (2014)

Alzheimer’sdisease neuroimaging initiative: amygdalar atrophy

in early Alzheimer’s disease. Curr Alzheimer Res 11(3):239–252

66. Cui R, Liu M (2019) Alzheimer’s disease neuroimaging initia-

tive: RNN-based longitudinal analysis for diagnosis of Alzhei-

mer’s disease. Comput Med Imag Graphics 73:1–10

67. Abuhmed T, El-Sappagh S, Alonso JM (2021) Robust hybrid

deep learning models for Alzheimer’s progression detection.

Knowl-Based Syst 213:106688

68. Sorensen L, Nielsen M (2018) Alzheimer’s Disease Neu-

roimaging I. Ensemble support vector machine classification of

dementia using structural MRI and mini-mental state examina-

tion. J Neurosci Methods 302, 66–74

69. Dimitriadis SI, Liparas D, Tsolaki MN (2017) Alzheimer’s disease

neuroimaging initiative: random forest feature selection, fusion and

ensemble strategy: combining multiple morphological MRI measures

to discriminate among healhy elderly, MCI, cMCI and alzheimer’s

disease patients: from the alzheimer’s disease neuroimaging initiative

(ADNI) database. J Neurosci Meth 302:14–23

70. Maris E, Oostenveld R (2007) Nonparametric statistical testing of

EEG-and MEG-data. J Neurosci Meth 164(1):177–190

71. Ebadi A (2017) Dalboni da Rocha JL, Nagaraju DB, Tovar-Moll

F., Bramati I., Coutinho G., et al. Ensemble classification of

Alzheimer’s disease and mild cognitive impairment based on

complex graph measures from diffusion tensor images. Front.

Neurosci 11(56), 10–3389

72. xplainable Artificial Intelligence (XAI): Concepts, taxonomies,

opportunities and challenges toward responsible AI. Inform Fus

58, 82–115 (2020)

73. Mencar C, Alonso JM (2019) Paving the Way to Explainable

Artificial Intelligence with Fuzzy Modeling. In: Fuller R, Giove

S, Masulli F (eds) Fuzzy Logic and Applications. Springer,

Cham, pp 215–227

74. Alonso JM, Bugarin A (2019) ExpliClas: Automatic Generation

of Explanations in Natural Language for Weka Classifiers. In:

2019 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), pp. 1–6

75. Keane MT, Kenny EM (2019) How case-based reasoning

explains neural networks: A theoretical analysis of XAI using

post-hoc explanation-by-example from a survey of ANN-CBR

twin-systems. In: International Conference on Case-Based Rea-

soning, pp. 155–171. Springer

76. Shoaip N, Rezk A, EL-Sappagh S, Abuhmed T, Barakat S,

Elmogy M (2021) Alzheimer’s disease diagnosis based on a

semantic rule-based modeling and reasoning approach. CMC-

Computers Material & Continua 69(3), 3531–3548

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://arxiv.org/abs/1705.08498

Authors and Affiliations

Shaker El-Sappagh1,2,6 • Hager Saleh3 • Farman Ali4 • Eslam Amer5 • Tamer Abuhmed6

& Tamer Abuhmed

tamer@skku.edu

1 Faculty of Computer Science and Engineering, Galala

University, Suez 435611, Egypt

2 Information Systems Department, Faculty of Computers and

Artificial Intelligence, Benha University, Banha 13518,

Egypt

3 Faculty of Computers and Artificial Intelligence, South

Valley University, Hurghada, Egypt

4 Department of Software, Sejong University, Seoul, South

Korea

5 Faculty of Computer Science, Misr International University,

Cairo, Egypt

6 College of Computing and Informatics, Sungkyunkwan

University, Suwon, South Korea

Neural Computing and Applications

123

http://orcid.org/0000-0001-9232-4843

	Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time
	Abstract
	Introduction
	Materials and methods
	ADNI dataset
	Classification models
	Decision tree
	Random forest
	Support vector machine

	Logistic regression
	K-nearest neighbour
	Ridge and Lasso regression
	Feed-forward neural network
	Long short-term memory

	Proposed framework
	Data pre-processing step
	Handling missing data and data balancing
	Data standardization

	Experiments setup
	Performance evaluation
	ML models training

	Results and discussion
	Results of the Patient Classification stage
	Results of conversion time detection stage

	Limitations and future directions
	Conclusion
	Author Contributions
	Funding
	References

