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Abstract.14

Background: Amyloid-� positivity (A�+) based on PET imaging is part of the enrollment criteria for many of the clinical
trials of Alzheimer’s disease (AD), particularly in trials for amyloid-targeted therapy. Predicting A� positivity prior to PET
imaging can decrease unnecessary patient burden and costs of running these trials.
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Objective: The aim of this study was to evaluate the performance of a machine learning model in estimating the individual
risk of A�+ based on gold-standard of PET imaging.
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Methods: We used data from an amnestic mild cognitive impairment (aMCI) subset of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort to develop and validate the models. The predictors of A� status included demographic and ApoE4
status in all models plus a combination of neuropsychological tests (NP), MRI volumetrics, and cerebrospinal fluid (CSF)
biomarkers.
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Results: The models that included NP and MRI measures separately showed an area under the receiver operating char-
acteristics (AUC) of 0.74 and 0.72, respectively. However, using NP and MRI measures jointly in the model did not
improve prediction. The models including CSF biomarkers significantly outperformed other models with AUCs between 0.89
to 0.92.
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Conclusions: Predictive models can be effectively used to identify persons with aMCI likely to be amyloid positive on a
subsequent PET scan.
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INTRODUCTION31

Cerebral amyloid-� (A�) deposition is a hallmark32

pathologic change in Alzheimer’s disease (AD) and33

is believed to precede dementia by many years [1]. In34

the last decade, many clinical trials have tried to use35

targeted therapies to lower brain A�, but all these36

trials have failed to achieve significant effects on37

clinical endpoints [2–4]. Major proposed reasons for38

failure include clinical heterogeneity of participants,39

selection of an inappropriate biological target (i.e.,40

merely reducing amyloid production or aggregation41

cannot modify disease progression) [5], enrollment42

of individuals based on unreliable criteria, and inclu-43

sion of individuals who did not have increased44

cerebral A� and were unlikely to have had AD45

pathology [6].46

To address some of these limitations, the new47

NIA-AA Research Framework has proposed to use48

biomarkers of A� deposition, pathologic tau, and49

neurodegeneration [AT(N)] to diagnose AD and50

decrease heterogeneity in research study samples.51

Similarly, more recent clinical trials have used52

biomarkers of amyloid status measured in cere-53

brospinal fluid (CSF) or in the brain using positron54

emission tomography (PET) [7]. While amyloid PET55

is considered non-invasive, and may be more reliable56

than CSF biomarkers [8], its utility in both research57

and clinical practice has been limited. Factors that58

have prevented widespread use of PET imaging in59

research and practice include availability, economic60

factors (high costs, not being covered by insurance),61

and patient or caregiver’s concerns (safety, burden,62

tolerance, and radiation exposure) [9].63

Recruitment of eligible amnestic mild cognitive64

impairment (aMCI) patients is a major bottleneck65

in conducting secondary prevention trials; as few66

as 10–20% of potential MCI patients are actually67

trial-eligible [10]. In addition, only 40–60% of aMCI68

patients are likely to be A� positive based on the69

current gold standard of amyloid PET, which further70

limits the number of trial-eligible individuals [11].71

Without using any predictive models, to establish72

A� positivity, all enrolled participants (based on ini-73

tial clinical diagnostic criteria) require amyloid PET74

imaging at the time of screening. Therefore, predict-75

ing A� positivity prior to PET imaging can decrease76

unnecessary patient burden and costs of running the77

trials.78

In addition, were a treatment to become avail-79

able for the prevention of AD in persons with aMCI,80

implementation in clinical practice might be difficult.81

Amyloid PET would be an expensive option for iden- 82

tifying individuals eligible for treatment. One option 83

might be to develop and use risk prediction models 84

and screening algorithms similar to what has been 85

used in cardiovascular disease [12] or various types 86

of cancer [13, 14]. Using this approach, data gathered 87

at lower cost (e.g., neurocognitive tests and MRIs) 88

could be used to predict A� positivity. Amyloid PET 89

would be performed in a selected subgroup of indi- 90

viduals predicted to have a positive amyloid scan. 91

Machine learning (ML) techniques provide a promis- 92

ing method for predicting amyloid positivity. These 93

approaches are specifically designed to predict out- 94

comes and provide a feasible approach for exploiting 95

and managing complex and high-dimensional data 96

[15, 16]. Developing practical predictive models can 97

drive a major shift in clinical care and for both primary 98

and secondary prevention purposes [17–21]. 99

The primary goal of this study was to compare 100

the relative sensitivity, specificity, positive predictive 101

value (PPV), and negative predictive value (NPV) 102

of different combinations of features (demograph- 103

ics, APOE �4 status, neuropsychological tests, MRI 104

volumetrics, and CSF biomarkers) used in a ML 105

model to predict PET A� positivity. The model was 106

developed in a subsample of the Alzheimer’s Disease 107

Neuroimaging Initiative (ADNI) aMCI population 108

and was subsequently validated using an indepen- 109

dent sample from the same cohort. Considering that 110

availability and associated burden and costs of each 111

of these measures is different (e.g., MRIs require 112

staying still for long periods and lumbar puncture is 113

an invasive procedure), we evaluated the predictive 114

value of each of the multimodal features separately 115

and jointly. 116

METHODS 117

Study design and participants 118

The data used for this analysis were downloaded 119

from the ADNI database (http://www.adni.loni. 120

usc.edu) in March 2019. The ADNI is an ongo- 121

ing cohort, which was launched in 2003 as a 122

public–private partnership. The individuals included 123

in the current study were initially recruited as 124

part of ADNI-GO, and ADNI-2 between 2009 and 125

2013. This study was approved by the Institutional 126

Review Boards (IRB) of all participating institutions. 127

Informed written consent was obtained from all par- 128

ticipants at each site. 129

http://www.adni.loni.usc.edu
http://www.adni.loni.usc.edu
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A total of 369 participants diagnosed with MCI130

who were enrolled in ADNI-GO, and ADNI-2 were131

eligible for this study. Eligible individuals com-132

pleted baseline visit and had MRIs and amyloid PET133

imaging in the same wave of study. All ADNI partic-134

ipants with the diagnosis of MCI, were diagnosed as135

having amnestic MCI; this diagnostic classification136

required Mini-Mental State Examination (MMSE)137

scores between 24 and 30 (inclusive), a mem-138

ory complaint, objective memory loss measured by139

education-adjusted scores on the Wechsler Memory140

Scale Logical Memory II, a Clinical Dementia Rat-141

ing (CDR) of 0.5, absence of significant impairment142

in other cognitive domains, essentially preserved143

activities of daily living, and absence of demen-144

tia. Participants whose scans failed to meet quality145

control or had unsuccessful image analysis were146

excluded from this study.147

Study measures148

Neuropsychological data149

Neuropsychological (NP) tests included the150

MMSE, the 11-item Alzheimer’s Disease Assess-151

ment Scale cognitive subscale (ADAS-cog), and152

Logical Memory II [22–24]. These tests were avail-153

able for all participants in ADNI studies from the154

beginning of cohort and therefore, they were not a155

limiting factor for inclusion of participants in this156

study. All NP measures were entered into models as157

continuous variables.158

APOE gene status159

APOE �4 allele (ApoE4) frequency was available160

for all participants included in this study. ApoE4 sta-161

tus was defined as ApoE4-negative (–) if they carried162

no ApoE4 allele or ApoE4-positive (+) if they carried163

at least one ApoE4 allele.164

MRI acquisition and preprocessing165

MRIs were obtained across different sites of the166

ADNI study with a unified protocol (For more167

information, please see http://adni.loni.usc.edu/).168

MRI data were automatically processed using169

the FreeSurfer software package (available at170

http://surfer.nmr.mgh.harvard.edu/) by the Schuff171

and Tosun laboratory at the University of California-172

San Francisco as part of the ADNI shared data-set.173

FreeSurfer methods for identifying and calculation174

of regional brain volume are previously described in175

detail [25]. Volumes of 47 regions of interests (ROIs),176

derived from FreeSurfer software, were used as MRI177

indicators. For the purpose of this study, volume of all 178

regions of interest (ROIs) were normalized for total 179

intracranial volume (TICV) and the ratio of ROIs’ 180

volume (ROIv) to TBV [i.e., (ROIv/TICV) x mean 181

whole population ROIv] was used in the analyses and 182

reported throughout the manuscript unless otherwise 183

specified. 184

PET imaging acquisition and preprocessing 185

Florbetapir PET images were obtained across 186

different sites of ADNI study with a unified pro- 187

tocol (For more information, please see http:// 188

adni.loni.usc.edu/methods/pet-analysis-method/pet- 189

analysis/) Data were processed at the Jagust lab at 190

University of California, Berkeley. Details of the 191

methods used to process PET images have been pre- 192

viously described [26]. In brief, a native-space MRI 193

scan for each subject was segmented and parcellated 194

with FreeSurfer to define cortical grey matter regions 195

of interest (frontal, anterior/posterior cingulate, 196

lateral parietal, lateral temporal) that make up a 197

summary cortical ROI. In addition, five reference 198

regions were created (cerebellar grey matter, whole 199

cerebellum, brainstem/pons, eroded subcortical 200

white matter, and a composite reference region). 201

Subsequently each PET scan was coregistered to 202

the corresponding MRI and the mean Florbetapir 203

uptake within the cortical and reference regions 204

were computed. A Florbetapir SUVR was calculated 205

by averaging across the four cortical regions and 206

dividing this summary ROI by the uptake in the 207

whole cerebellum. To establish Amyloid positivity 208

or negativity, a Florbetapir SUVR cutoff of 1.11 209

was used as recommended by previous studies 210

[27]. For the purpose of this study, we only used 211

the first Florbetapir PET scan obtained from each 212

participant. 213

CSF biomarkers 214

CSF samples were batch processed by the ADNI 215

Biomarker Core at the University of Pennsylvania 216

School of Medicine and CSF tau, p-tau181p, and 217

A�1-42 were measured for all participants with CSF 218

sample [28]. These data were available for 335 par- 219

ticipants (90.5% of the whole sample) and sections 220

of data analysis that required CSF measures were 221

limited to these participants. CSF measures were 222

included as continuous variables in ML models. 223

However, for the purpose of simplicity, in Table 1 224

individuals were classified according to CSF con- 225

centration thresholds (tau: >93 pg/mL; p-tau181p: 226

>23 pg/mL; A�1-42<192 pg/mL) previously estab- 227

http://adni.loni.usc.edu/
http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
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Table 1
Demographics and clinical characteristics of study participants according to group

Variables Participants Group/Subgroup
Training set (N = 185) Validation (test) set (N = 184)

A�- A�+ p A�- A�+ p

N, % 72 (38.9) 113 (61.1) – 72 (39.2) 112 (60.8) –
Agea 69.5 (7.0) 72.2 (7.2) 0.014 69.4 (7.7) 72.4 (6.5) 0.006
Men, N (%) 39 (54.2) 55 (48.7) 0.469 39 (54.2) 68 (60.7) 0.385
Education, y 16.1 (2.7) 16.3 (2.9) 0.677 16.4 (2.3) 16.2 (2.6) 0.490
ApoE4 carrierb, N (%) 16 (22.2) 74 (65.5) <0.001 15 (20.8) 70 (62.5) <0.001
CDR-SB 1.3 (0.9) 1.5 (0.9) 0.110 1.3 (0.8) 1.7 (0.9) 0.006
MMSE 28.4 (1.5) 27.9 (1.8) 0.041 28.5 (1.5) 27.8 (1.6) 0.006
ADAS-cog 7.9 (3.6) 9.3 (4.0) 0.019 7.5 (3.3) 10.3 (4.7) <0.001
LM 8.0 (2.2) 6.7 (3.3) 0.002 8.7 (2.0) 6.6 (3.4) <0.001
Hippocampal volume 3.8 (0.6) 3.5 (0.6) 0.003 3.8 (0.6) 3.4 (0.5) <0.001
Low CSF A�1-42 (%) 7 84 <0.001 18 88 <0.001
High CSF Tau (%) 4 46 <0.001 03 42 <0.001
High CSF p-tau181p (%) 38 87 <0.001 47 85 <0.001

aValues are means ± SD unless otherwise stated. bPercentage of individuals carrying at least one E4 allele. CDR-SB, Clinical Dementia
Rating scale Sum of Boxes; MMSE, Mini-Mental State Exam; ADAS, Alzheimer’s Disease Assessment Scale; LM, logical memory-delayed
recall. Hippocampal volume is reported in cubic centimeter.

lished to maximize sensitivity and specificity of228

autopsy confirmed AD [29].229

Data analysis230

Training and validation samples231

The training and validation of the ML model was232

performed by using the split half method. For this233

purpose, participants were randomly split into two234

independent samples with approximately equal num-235

ber of A�- and A�+ based on PET imaging. One236

sample was used as training data-set and the other237

sample was used for validation of models. This val-238

idation method enables the generalization of the239

trained ML model to data that have never been pre-240

sented to the ML algorithms previously.241

Selection of feature-sets (indicators)242

Demographics (age, sex, and education), ApoE4243

status, NP tests, all available volumetric MRI mea-244

sures (FreeSurfer outputs), and all CSF biomarkers245

mentioned above were used as features in the pre-246

dictive models. We chose 7 different feature-sets and247

compared the performance of ML models which used248

these feature-sets for classification. In addition to249

demographics and ApoE4, models include the fol-250

lowing features: Model 1) NP tests; Model 2) MRI251

volumetrics; Model 3) CSF biomarkers; Model 4) NP252

tests plus MRI volumetric; Model 5) NP tests plus253

CSF biomarkers; Model 6) MRI volumetric plus CSF254

biomarkers; Model 7) NP tests, MRI volumetric plus255

CSF biomarkers.256

Machine learning model 257

Analysis and computation of ML methods were 258

conducted using MATLAB ©(version 2018b). We 259

used Ensemble Linear Discriminant (ELD) ML mod- 260

els for the purpose of classification and pattern 261

recognition. EDL is among the family of classifica- 262

tion methods known as ensemble learning, in which 263

the output of an ensemble of simple and low-accuracy 264

classifiers trained on subsets of features are combined 265

(e.g., by weighted average of the individual deci- 266

sions), so that the resulting ensemble decision rule 267

has a higher accuracy than that obtained by each of 268

the individual classifiers [30, 31]. In this work, we 269

combined linear discriminant functions (i.e., hyper- 270

planes that dichotomize the samples based on subsets 271

of features) in order to construct the ensemble clas- 272

sifier. To avoid overfitting, we trained the models 273

for a maximum of 100 cycles. We monitored the 274

learning curve and picked the cycle with the lowest 275

misclassification rate for termination of the training. 276

The parameters for the models were optimized auto- 277

matically through the hyperparameter optimization 278

process in MATLAB. 279

Training the classification model 280

Data from the training sample (N = 185) were used 281

for training of the classifier (Fig. 1). Models were 282

trained to recognize A�- versus A�+ individuals 283

using all sets of the features as described above. A 284

10-fold cross-validation procedure was used in all 285

models for testing validity of the models. Cross- 286

validation is an established statistical method for 287
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Fig. 1. Study design diagram. aMCI, amnestic mild cognitive
impairment; ML, machine learning.

validating a predictive model, which involves train-288

ing several parallel models, each based on a subset289

of the training data. Subsequently, the model perfor-290

mance is evaluated based on the average accuracy291

in predicting the labels of the omitted portion of the292

training data [32]. The performance of each model293

was calculated based on the total percentage of cor-294

rect classification (accuracy), sensitivity, specificity,295

PPV, NPV, and area under the curve (AUC).296

Prediction of amyloid status in the validation297

sample298

Following training of the models, they were299

applied to the validation sample to predict amyloid300

positivity of each person (Fig. 1). Using the same301

feature-sets used for training of models, each indi-302

vidual was assigned to “predicted A�-” or “predicted303

A�+” groups. The performance of the predicted out-304

come was evaluated using the results obtained from305

PET imaging. Accuracy, sensitivity, specificity, PPV,306

and NPV for each model were estimated.307

Inverse cross-validation308

To further validate the models, we performed an309

inverse cross-validation by training the ML model310

using the half-sample that was used for prediction311

previously and using the half-sample that was used312

for training as the prediction subset. Considering that313

results for this analysis was very similar to the initial314

model (see Supplementary Tables 1 and 2) and to315

avoid confusion, we primarily focus on the results of316

the first model for the rest of this article.317

Data availability 318

Data from ADNI cohort is publicly available. Pro- 319

gramming codes used for this paper are available 320

upon request. 321

RESULTS 322

Sample characteristics 323

Participants with aMCI had an average age of 71.2 324

years (SD = 7.2) and 54.5% were men. In both sub- 325

samples (training and validation), in comparison with 326

A�- subgroup, the A�+ subgroup was older and had 327

less favorable performance on NP tests, had smaller 328

hippocampal volumes and had a CSF profile that was 329

more similar to AD. Table 1 summarizes participants’ 330

demographics and clinical characteristics. 331

Developing the amyloid prediction models in the 332

training subsample 333

Performance of ELD models using 7 different 334

feature-sets for classification of training sample to 335

A�- or A�+ on PET is summarized in Table 2. In the 336

training set, the area under the curve (AUC) of mod- 337

els including demographics, ApoE4, and NP tests or 338

MRI volumetrics (models 1 and 2) were 0.74 and 339

0.72, respectively. The combination of NP with MRI 340

(model 4, AUC = 0.70) did not improve the predic- 341

tion. AUC of the models including demographics, 342

ApoE4, and CSF markers alone was substantially 343

higher (model 3, AUC = 0.86), however neither addi- 344

tion of NP (model 5, AUC = 0.89) or MRI (model 345

6, AUC = 0.90) improve the models. The combi- 346

nation of all measures yielded an AUC of 0.90 347

(model 7). 348

Performance of the amyloid prediction models in 349

the validation subsample 350

After development of ELD models, they were 351

applied to the data from validation sample to assign 352

participants to A�- or A�+ (Table 3). The AUC 353

of models including demographics, ApoE4, and NP 354

tests or MRI volumetrics (models 1 and 2) were 0.72 355

and 0.71, respectively. AUC of the model including 356

demographics, ApoE4, and CSF markers as features 357

was higher (model 3, AUC = 0.86). Inclusion of both 358

MRI volumetric and NP tests as features in the same 359

model did not make a substantial change in the perfor- 360

mance of model in comparison with models including 361

them separately (model 4, AUC = 0.73). Models that 362

included CSF measures (models 3, 5, 6, 7) had 363

substantially better performance in comparison with 364
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Table 2
Performance of Ensemble Linear Discriminant (ELD) classifiers in differentiating A�- versus A�+ in training set (subsample 1)

Feature-set Accuracy, % Sensitivity, % Specificity, % PPV, % NPV, % AUC

1) Dem/ApoE4 + NP 67.50 78.6 53.7 68.1 66.6 0.74
(60.3–74.2) (69.5–86.1) (42.3–64.7) (62.3–73.3) (56.7–75.3)

2) Dem/ApoE4 + MRI-v 68.1 73.8 61.0 70.4 64.9 0.72
(60.9–74.7) (64.2–82.0) (49.6–71.6) (63.9–76.1) (56.1–72.7)

3) Dem/ApoE4 + CSF-b 86.0 87.4 84.1 87.4 84.1 0.92
(80.1–90.6) (79.4–93.1) (74.4–91.2) (50.7–92.0) (76.0–89.9)

4) Dem/ApoE4 + NP + MRI-v 67.0 72.8 59.7 69.4 63.6 0.70
(60.0–73.7) (63.2–81.1) (48.3–70.4) (63.0–75.2) (54.9–71.5)

5) Dem/ApoE4 + NP + CSF-b 83.8 83.5 84.1 86.9 80.2 0.90
(77.6–88.8) (74.9–90.1) (74.4–91.3) (80.0–91.7) (72.2–86.4)

6) Dem/ApoE4 + MRI-v + CSF-b 85.4 87.4 82.9 86.5 84.0 0.89
(79.5–90.2) (79.4–93.1) (73.0–90.3) (79.9–91.2) (75.7–89.7)

7) Dem/ApoE4 + NP + MRI-v + CSF-b 85.4 88.0 82.3 85.4 85.4 0.90
(79.5–90.2) (80.0–93) (72.6–89.7) (78.6–90.9) (79.5–90.2)

Dem, demographics; NP, neuropsychological tests; MRI-v, all MRI volumetrics; CSF-b, all CSF biomarkers.

Table 3
Performance of Ensemble Linear Discriminant (ELD) classifiers in predicting A�- versus A�+ in validation (test) set (subsample 2)

Indicators Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC

1) Dem/ApoE4 + NP 72.8 75.0 69.4 79.2 64.1 0.72
(65.8–79.1) (65.9–82.7) (57.5–79.7) (72.6–84.6) (55.6–71.8)

2) Dem/ApoE4 + MRI-v 71.2 70.5 72.2 79.8 61.2 0.71
(64.1–77.6) (61.1–78.7) (60.4–82.1) (72.7–85.4) (53.3–68.4)

3) Dem/ApoE4 + CSF-b 86.4 86.1 86.4 90.7 80.5 0.86
(80.6–91.0) (84.4–94.5) (75.9–93.1) (84.4–94.5) (71.8–86.9)

4) Dem/ApoE4 + NP + MRI-v 71.7 68.7 76.4 81.9 61.1 0.73
(64.6–78.1) (59.3–77.1) (64.9–85.6) (74.6–87.5) (53.7–68.0)

5) Dem/ApoE4 + NP + CSF-b 85.7 85.7 86.1 90.5 79.5 0.86
(80.0–90.5) (77.8–91.6) (75.9–93.1) (84.3–94.5) (70.9–86.0)

6) Dem/ApoE4 + MRI-v + CSF-b 84.8 83.9 86.1 90.3 77.5 0.85
(78.7–89.6) (75.8–90.1) (75.9–93.1) (84.0–94.3) (69.0–84.1)

7) Dem/ApoE4 + NP + MRI-v + CSF-b 85.9 83.0 90.3 93.0 77.4 0.87
(80.0–90.6) (74.8–89.5) (81.0–96.0) (86.7–96.4) (69.3–83.8)

Dem, demographics; NP, neuropsychological tests; MRI-v, all MRI volumetrics; CSF-b, all CSF biomarkers.

models that did not include them (see Table 3 for365

details).366

DISCUSSION367

In this study, we evaluated the value of machine368

learning models in predicting amyloid positivity369

based on florbetapir PET scans. We showed that370

the positive predictive values of models, which371

used NP tests, MRI volumetrics, or CSF biomark-372

ers were 0.72, 0.71, and 0.86, respectively. Addition373

of MRI measures to NP tests in the models did not374

lead to improvement in the prediction performance.375

As expected, addition of CSF measures noticeably376

improved performance of models.377

A few studies have previously proposed differ-378

ent types predictive models for detecting cerebral379

amyloid positivity based on demographics, NP tests,380

MRI measures, and blood or CSF-based biomarkers381

[33–38]. For example, Kander et al. [34] reported 382

AUCs of 0.59–0.67 for individual NP tests, AUC 383

of 0.64 using all NP tests, and AUC of 0.64 for 384

hippocampal volume. Similar to our findings, they 385

showed that adding imaging biomarkers to NP tests in 386

the multivariate analysis does not improve the AUC. 387

Palmqvist et al. [36] applied a forward selection logis- 388

tic regression model to demographics, ApoE4, NP 389

tests, and white matter lesions for prediction of amy- 390

loid positivity and achieved AUCs of 0.80–0.82 in 391

ADNI. Kim et al. [35] used similar variables and 392

using logistic regressions, developed a nomogram 393

that achieved predictive AUCs of 0.74–0.77. 394

A common limitation in the previous studies is that 395

in many cases they have used scores of individual tests 396

or they have relied on data from one or two modal- 397

ities, which limited investigating the incremental 398

value of combining various modalities. Understand- 399

ing the joint and separate value of different feature 400
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sets are of interest to new clinical trials as it could401

affect recruitment strategies due to associated cost402

and burden of each modality. Obtaining demographic403

info, NP tests and ApoE4 status is relatively easy404

and inexpensive; however, obtaining and processing405

MRIs are more burdensome (to both the patient and406

researcher/clinician) and obtaining CSF biomarkers407

is difficult considering the invasive nature of lum-408

bar punctures. On the other hand, MRI is routinely409

obtained both in trials and in practice to identify410

or exclude structural factors that could contribute to411

MCI, such as mass lesions or vascular disease. Given412

that the MRI is part of the evaluation, the incremen-413

tal cost usually arises from image processing and not414

image acquisition.415

It is important to note that interpretation of the416

performance of the prediction models (and there-417

fore their effectiveness) should be evaluated based418

on the clinical or research question and the clinical419

setting. One setting in which such models could be420

of use is in a primary care setting for screening, espe-421

cially when an effective treatment for A�+ patients422

becomes available. In such settings, using models423

with the highest sensitivity are more suitable. Another424

setting that these models could be used is for enrich-425

ment of AD clinical trials in which A� positivity on426

PET scan is an enrollment criterion. In such cases,427

amyloid risk models with high PPV are the most428

desirable models for reducing the number of unnec-429

essary PET scans and decreasing costs and burden430

of trial. For example, let’s assume a trial design that431

requires 1000 A�+ aMCI participants to be enrolled432

and A� status verified using amyloid PET. Assum-433

ing that the aMCI population that participants are434

selected from are similar to the ADNI cohort, preva-435

lence of A�+ individuals with aMCI would be 61.0%.436

Therefore, without use of any predictive models,437

1639 individuals who have passed the initial clinical438

prescreening should undergo amyloid PET screening439

to identify 1000 A�+ individuals. Using a predictive440

model incorporating demographics, ApoE4 status,441

and NP (model 1 in Table 3), can decrease the number442

of participants to undergo PET scan to 1263 indi-443

viduals (approximately 23% decrease in number of444

screening PET scans), and reduce the costs by >2.5445

million USD (with an approximate cost of 5000 USD446

for acquisition and analysis of each PET scan), while447

concurrently decreasing the number of people under-448

going this invasive and time-consuming procedure.449

This cost-saving calculation is in line with reports of450

previous studies that have suggested using predictive451

models to enrich clinical trials [36, 38]. It should be452

noted that in these studies and in our example above, 453

the costs associated with clinical prescreening and 454

NP testing is either ignored or it is assumed that they 455

are obtained through an online platform at no cost. 456

However, in practice, most clinical trials still require 457

a clinic visit for clinical prescreening and NP test- 458

ing, which costs approximately $1000 per person in 459

USA (considerably less in Europe [39]). The number 460

needed to screen in a design using amyloid PET pre- 461

dictive models is substantially higher: in the example 462

above, clinical data and NP tests should be obtained 463

from a total of 2193 participants to identify 1263 464

individuals who are predicted to be amyloid positive 465

based on Model 1. Therefore, the costs of in-person 466

clinical visit can potentially offset the costs of obtain- 467

ing fewer PET scans. Considering that AD therapy is 468

moving toward using drugs targeting tau or combina- 469

tion therapies (e.g., tau and amyloid), in the long run, 470

such predictive models along with online prescreen- 471

ing tools can substantially decrease the costs of trial 472

while decreasing the number of people undergoing 473

invasive and time-consuming procedures. Addition- 474

ally, considering the high PPV of models that include 475

CSF biomarkers (>90%), and lower costs of obtaining 476

and analyzing CSF (approximately $1000 in 2019), 477

it might be a reasonable choice to replace amyloid 478

PET data with CSF data when obtaining PET scans 479

is not an option. 480

A few limitations for this study should be men- 481

tioned. First, ADNI is not a population-based study 482

and there are strict inclusion and exclusion criteria 483

for selection of participants, which can affect gener- 484

alizability of our findings. Therefore, validating these 485

models in other population-based studies and clini- 486

cal trials’ data is an essential next step. Moreover, the 487

inclusion criteria in ADNI study may further limit 488

the applicability of the findings presented here to 489

a broader range of patients. This study focused on 490

aMCI subjects and it is possible that in a broader 491

selection of MCI population or in individuals with 492

subjective cognitive complaints who do not meet MCI 493

criteria, the models might show different capabili- 494

ties in prediction of amyloid status. Although we 495

showed that using our models can reduce costs of 496

conducting research trials or clinical practice, it is 497

difficult to estimate the imposed burden of obtain- 498

ing additional tests (e.g., MRIs, lumbar punctures, 499

etc.) on patients, caregivers, or researchers and clini- 500

cians. Ultimately, efficiency of clinical trials depends 501

not just on reducing the cost of amyloid PET scan- 502

ning but on the identification of persons who will 503

progress in the absence of treatment and who are more 504
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likely to respond to treatment. Similar approaches505

have been used extensively for conducting research506

in other neurodegenerative disease such as Parkin-507

son’s disease and have shown substantial potential508

for use. In a subsequent study, we plan to investigate509

the rate of progression in various groups as identified510

by predictive models.511

To conclude, our results indicate that predictive512

models can be effectively used to decrease the num-513

ber of participants who need to undergo amyloid514

PET scans. This approach can potentially decrease515

the costs of the trial and also decrease the burden516

on patients and caregivers who are participating in517

the trial. By implementing a step-by-step screening518

(adaptable design) procedure to enroll participants519

in trials and using validated predictive models, we520

can reduce the number of screen failures due to521

biomarker inclusion criteria and associated costs. A522

similar approach can be used to improve clinical523

decision-making with the least associated cost and524

burden for treatment of patients in AD continuum525

when effective treatments targeted at AD pathology526

becomes available.527
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