
www.elsevier.com/locate/ynimg

NeuroImage 39 (2008) 1731–1743
Spatial patterns of brain atrophy in MCI patients, identified via
high-dimensional pattern classification, predict subsequent
cognitive decline
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Spatial patterns of brain atrophy in mild cognitive impairment (MCI)
and Alzheimer’s disease (AD) were measured via methods of
computational neuroanatomy. These patterns were spatially complex
and involved many brain regions. In addition to the hippocampus and
the medial temporal lobe gray matter, a number of other regions
displayed significant atrophy, including orbitofrontal and medial-
prefrontal grey matter, cingulate (mainly posterior), insula, uncus,
and temporal lobe white matter. Approximately 2/3 of the MCI group
presented patterns of atrophy that overlapped with AD, whereas the
remaining 1/3 overlapped with cognitively normal individuals, thereby
indicating that some, but not all, MCI patients have significant and
extensive brain atrophy in this cohort of MCI patients. Importantly, the
group with AD-like patterns presented much higher rate of MMSE
decline in follow-up visits; conversely, pattern classification provided
relatively high classification accuracy (87%) of the individuals that
presented relatively higher MMSE decline within a year from baseline.
High-dimensional pattern classification, a nonlinear multivariate
analysis, provided measures of structural abnormality that can
potentially be useful for individual patient classification, as well as for
predicting progression and examining multivariate relationships in
group analyses.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Alzheimer’s disease (AD) is the most common dementia, with
incidence rates doubling every 5 years after the age of 65. It is
estimated that half of the population above 80 years may have
symptomatic AD, and that this number will grow rapidly as life
expectancy increases, and as the baby boomers’ generation moves
into the high risk age group. The psychological and financial cost
of AD is tremendous and rapidly rising. Although there is currently
no disease-modifying treatment, many potential treatments are
being tested, some of which may have significant side-effects. It is
therefore becoming clear that effective and well-targeted treatment
necessitates early diagnosis of the disease.

Currently, definitive diagnosis of AD can be made if an autopsy
documents the presence of the characteristic neuritic β-amyloid
plaques and neurofibrilatory tangles in the appropriate brain
regions in an individual with a history of progressive dementia.
Therefore, there has been a keen interest in the neuroimaging
community to develop imaging-based biomarkers, especially of
early AD stages (Braak et al., 1998), as well as for predicting
individuals that are likely to progress to AD and are therefore good
candidates for therapy. Magnetic resonance imaging (MRI) can
potentially play an important role as diagnostic tool, mainly
because it is widely available and part of the American Academy
of Neurology standard clinical evaluation for individuals with
symptoms of dementia. MRI helps measure spatial patterns of
atrophy, and their evolution with disease progressions, which
are surrogate markers of the underlying neurodegenerative AD
pathology.

The neuroimaging literature is rich in studies measuring
volumes of regions of interest (ROIs) known to be affected by
AD, especially of the hippocampus and the entorhinal cortex (Kaye
et al., 1997; Jack et al., 1999; Convit et al., 2000; Killiany et al.,
2000; Dickerson et al., 2001; Chetelat et al., 2002; Visser et al.,
2002; Stoub et al., 2005; De Leon et al., 2006); more complex
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shape properties of hippocampal ROIs have also been investi-
gated (Csernansky et al., 2005). However, the pattern of AD
pathology is complex and evolves as the disease progresses,
starting mainly in the hippocampus and entorhinal cortex, and
subsequently spreading throughout most of the temporal lobe
and the posterior cingulate, finally involving extensive cortical
regions, especially parietal, prefrontal, and orbitofrontal. There-
fore, measuring volumes of a few structures cannot capture the
spatio-temporal pattern of brain atrophy in its entirety. Moreover,
measurements of hand-drawn ROIs are not easily reproducible
within and across different raters. Finally, the pattern of atrophy
associated with AD does not necessarily follow pre-determined
anatomical boundaries.

During the past decade, methods of computational neuroanat-
omy, such as voxel-based and deformation-based analysis, have
gained attention in the neuroimaging community (Davatzikos
et al., 2001; Thompson et al., 2001; Chetelat et al., 2002;
Ashburner et al., 2003; Karas et al., 2004; Pennanen et al., 2005;
Bozzali et al., 2006; Saykin et al., 2006; Xie et al., 2006; Whitwell
et al., 2007), because they allow for the complete evaluation of
structural and functional brain images, without the need to make a
priori assumptions about the size, extent, and number of regions to
be measured. Instead, these methods apply voxel-by-voxel
evaluation of the images, and identify potentially complex spatial
patterns of brain atrophy.

In addition to voxel-based analysis methods, techniques for
high-dimensional pattern classification have begun to find their
way to the literature of neuroimaging of AD (Lao et al., 2003; Lao
et al., 2004; Liu et al., 2004; Adeli et al., 2005; Tandon et al., 2006;
Li et al., 2007), aiming to provide computational tools that classify
individuals, based on their MRI or PET scans, rather than
determining statistical group differences. The current study builds
upon previous work in Davatzikos et al. (in press), which used a
limited sample of patients with MCI and cognitively healthy
individuals to construct classifiers that separate the two groups.
The current study, however, emphasizes (1) application to a larger
sample from the ADNI study; (2) inclusion of AD patients, in
addition to healthy and MCI individuals; (3) a different
methodological design, in which structural differences between
healthy individuals and AD patients are used to construct a high-
dimensional classifier, which is subsequently applied to MCI
patients, rather than emphasizing differences between MCI and
controls. This approach allows us to determine MCI subgroups that
have structural profiles similar to AD or to healthy individuals.
Most importantly, it allowed us to further associate these structural
profiles with Mini Mental State Examination (MMSE) scores and
their 1-year change in follow-up examinations, and demonstrate
their prognostic value, an issue of very high importance currently
in the AD literature.

In particular, the current study pursues a voxel-based morpho-
metric analysis of cognitively normal individuals, individuals with
MCI, and AD patients, using an atlas warping approach used to
generate regional tissue density maps that reflect the regional
distribution of brain tissue. The hypothesis was that this approach
would allow us to quantitatively capture complex spatial pattern of
brain atrophy that can potentially serve as sensitive and specific
imaging signatures of MCI and AD. The classification analysis
also offers one possible way to classify an entire pattern of atrophy
to AD or cognitively normal individuals (CN), and potentially to
predict whether an MCI subject will eventually develop AD, using
longitudinal follow-ups.
Materials and methods

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu\ADNI). The goal of ADNI is to recruit 800
adults, ages 55 to 90, to participate in the research—approximately
200 CN older individuals to be followed for 3 years, 400 people
with MCI to be followed for 3 years, and 200 people with early AD
to be followed for 2 years. For up-to-date information, see www.
adni-info.org.

Participants

All ADNI participants with structural MR images available on
the ADNI Web site as of February 2007 (the latest scan was from
December 19, 2006) were part of this analysis. This included 66
CN individuals (mean age±S.D., 75.18±5.39), 88 MCI patients
(76.38±7.60), and 56 AD patients (77.40±7.02), whose MRI scans
were analyzed. The MMSE scores (mean±S.D.) of each group at
baseline were 29.08±0.97, 26.78±1.91, and 23.07±1.83, respec-
tively. The groups were relatively well-balanced in terms of gender
(50%, 36%, 57% women in each of the 3 groups, respectively).
MMSE scores from the subset of participants that had completed 3
follow-up exams by the end of this study in June 2007 were also
included in the analysis, andusedas ameasureof diseaseprogression.

Images

The data sets included standard T1-weighted MR images
acquired sagittally using volumetric 3D MPRAGE with 1.25×
1.25 mm in-plane spatial resolution and 1.2 mm thick sagittal slices
(8° flip angle). Most of the images were obtained using 1.5 T
scanners, while a few were obtained using 3T scanners: 8 CN,
11MCI, and 8 AD patients. Detailed information about MR
acquisition procedures is available at the ADNI Web site.

Image analysis

Images were first preprocessed according to previously
validated and published techniques (Goldszal et al., 1998). The
pre-processing steps included (1) alignment to the AC-PC plane;
(2) removal of extra-cranial material (skull-stripping); (3) tissue
segmentation into grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF), using a brain tissue segmentation
method proposed in Pham and Prince (1999); (4) high-dimensional
image warping (Shen and Davatzikos, 2002) to a standardized
coordinate system, a brain atlas (template) that was aligned with
the MNI coordinate space (Kabani et al., 1998); (5) formation of
regional volumetric maps, named RAVENS maps (Goldszal et al.,
1998; Davatzikos et al., 2001; Shen and Davatzikos, 2003), using
tissue preserving image warping (Goldszal et al., 1998). RAVENS
maps quantify the regional distribution of GM, WM, and CSF,
since one RAVENS map is formed for each tissue type. In
particular, if the image warping transformation that registers an
individual scan with the template applies an expansion to a GM
structure, the GM density of the structure decreases accordingly to
insure that the total amount of GM is preserved. Conversely, a
RAVENS value increases during contraction, if tissue from a
relatively larger region is compressed to fit a smaller region in
the template. Consequently, RAVENS values in the template’s
(stereotaxic) space are directly proportional to the volume of the
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respective structures in the original brain scan. Therefore, regional
volumetric measurements and comparisons are performed via
measurements and comparisons of the respective RAVENS maps.
For example, patterns of GM atrophy in the temporal lobe are
quantified by patterns of RAVENS decrease in the temporal lobe in
the stereotaxic space.

The RAVENS approach has been extensively validated (Gold-
szal et al., 1998; Davatzikos et al., 2001) and applied to a variety of
studies (Resnick et al., 2000, 2001; Kim et al., 2003; Resnick et al.,
2003, 2004; Beresford et al., 2006a,b; Gur et al., 2006; Stewart
et al., 2006; Driscoll et al., 2007). It bears similarities with the
“optimized VBM” approach (Good et al., 2002), except it uses a
highly conforming high-dimensional image warping algorithm that
captures finer structural details. Moreover, it uses tissue-preserving
transformations, which ensures that image warping absolutely
preserves the amount of GM, WM, and CSF tissue present in an
individual’s scan, thereby allowing for local volumetric analysis.

Statistical analysis and pattern classification

Group comparisons were performed via voxel-based statistical
analysis of respective RAVENS maps that were normalized by
intra-cranial volume and smoothed using 8 mm full-width at half-
maximum (FWHM) smoothing kernel. Group comparisons
involved voxel-by-voxel t-tests applied by the SPM2 software
(http://www.fil.ion.ucl.ac.uk/spm/software/spm2). Comparison for
multiple corrections utilized the false discovery rate (FDR) method
(Yekutieli and Benjamini, 1999), as implemented in the SPM
software. In addition to the group analyses, we perform individual-
patient analysis, aiming to classify individual scans belonging to
CN, MCI, or AD participants. This analysis is important because it
directly relates to our ability to use quantitative MRI analysis for
individual diagnosis, rather than to identify statistical differences
between two potentially overlapping groups. Toward this end, we
applied a high-dimensional pattern classification approach, which
has been published and used in various neuroimaging studies (Fan
et al., 2005, 2007, in press; Davatzikos et al., in press). This
approach considers all brain regions jointly, and identifies a
minimal set of regions whose volumes jointly maximally
differentiate between the two groups under consideration, on an
individual scan basis. Leave-one-out cross-validation is used to test
this classification scheme on data sets not used for training, and
obtain a relatively unbiased estimate of the generalization power of
the classifier to new patients. The pattern classification method
provides a structural phenotypic score (SPS). For a classifier
constructed from the CN and AD groups, positive SPS implies
AD-like brain structure, and vice versa. The classifier that was
determined to maximally distinguish between CN and AD
participants was subsequently applied to the MCI group.

We also utilized the standard region of interest (ROI) method to
analyze the volumes of the hippocampus and the entorhinal cortex
via a template warping method that has been previously published
and validated (Shen and Davatzikos, 2002; Shen et al., 2002), in
order to determine whether conventional ROI measurements are
sufficient for classification of individual scans with high sensitivity
and specificity.

SPS and rates of MMSE change

Since at this stage of the study, the clinical outcome is not yet
available for most of the participants, we evaluated associations
between the SPS determined from the MRI and rates of changes of
the MMSE scores, which were calculated for those MCI
individuals (n=38) that had at least 3 examinations (baseline plus
2 follow-ups, 12 months). These rates of change were computed
separately for the two subgroups identified by the pattern classi-
fication: the MCI_CN (MCIs having CN-like patterns, n=16) and
MCI_AD (MCIs having AD-like patterns, n=22) subgroups.
Conversely, we divided the MCI participants into two groups, the
progressors (MCI_PR) and the nonprogressors (MCI_NPR). (We
stress that strictly speaking, this categorization does not reflect
progression to AD, but progression of the MMSE scores toward
relatively lower values.) We then evaluated whether the pattern
classification approach can separate MCI_PR from MCI_NPR,
knowing that this is an extremely difficult task due to the noise
that is inherent to the measurement of rate of change of MMSE,
especially from 3 measurements within 1 year, but also because
short-term MMSE decline does not necessarily imply clinical
progression to AD. One of the caveats in this analysis was that it is
difficult to define a threshold for MMSE rate of change that would
define the subgroups MCI_PR and MCI_NPR. We cannot use a
threshold of 0, because we know that even CN individuals display
some decline. Therefore, we decided to examine a range of possible
thresholds on MMSE rate of change, and test the group separability
within that range. The hypothesis was that very low or very high
thresholds would lead to nonseparable subgroups (since they would
lump together progressors and nonprogressors into the same class),
and somewhere in the small negative range (small rate of MMSE
change) we should find maximal separability.

Results

Region of interest volumetry

The volumes of the hippocampus (left+ right) against the
entorhinal cortex (left+ right), after normalization by intra-cranial
volume (ICV), are shown in Fig. 1 as a scatter plot. AD and CN are
relatively well separated, although classification accuracy would
not be clinically sufficient, in terms of providing adequate
sensitivity and specificity on an individual patient basis. Volumes
of the MCI group completely overlap with both groups, especially
the AD group. We also constructed SVM classifiers using these
volume measurements. The classification accuracy computed via
the leave-one-out cross-validation was 82.0%, 76.0%, and 58.3%,
for AD vs. CN, MCI vs. CN, and AD vs. MCI, respectively.

Voxel-based analysis of RAVENS maps

Statistically significant results from the CN vs. AD comparisons
via voxel-based statistical analysis are shown in Fig. 2. These maps
display the t-statistic of voxel-wise t-tests; however, only the
clusters with p values corrected for multiple comparison above
p=0.05 were obtained. SPM2 (FDR multiple comparison correc-
tion) was used for all voxel-based analyses. Fig. 2 indicates severe
GM atrophy in the AD group, and less pronounced WM atrophy
mainly located around the hippocampus. Apparent WM atrophy in
the anterior periventricular region is due to periventricular leuko-
areosis that tends to be segmented as GM, due to its darker T1 signal.

Statistically significant findings from the voxel-based compar-
isons between the CN and MCI groups are shown in Fig. 3. The
pattern of atrophy is similar to the one in Fig. 2, except less pro-
nounced, as indicated by the values of the t-statistic. No significant
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Fig. 1. Scatter plot of the volumes of the hippocampus (left+ right) against the entorhinal cortex (left+ right) of the groups of CN, MCI, and AD, after
normalization by ICV.
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WM group differences were found, after correction for multiple
comparisons, therefore the WM regions shown were determined
without multiple comparison correction at the pb0.001 level.

Fig. 4 shows the statistically significant findings from the MCI
vs. AD comparison. Even smaller regional volumetric differences
were found in this group comparison. Since the differences be-
tween MCI and AD were relatively small and almost disappeared
after correction for multiple comparisons, Fig. 4 also displays the
results prior to FDR correction.

Pattern classification

The pattern classification approach was initially applied separately
to each group comparison: (1) AD vs. CN; (2) MCI vs. CN; and (3)
ig. 2. Voxel-based analysis of group difference between CN and AD. From left to ri
NNAD, CSF: ADNCN, pb0.05, corrected). The color-maps indicate the scale
AD vs. MCI. The classification accuracy was determined via the
leave-one-out (LOO) cross-validation to be 94.3%, 81.8%, and 74.3%,
respectively, for the 3 comparisons. Because LOO was applied, these
are estimations of classification accuracy of a new individual’s scan
and therefore of direct diagnosis relevance. These classifiers’ receiver
operating characteristic (ROC) curves are shown in Fig. 5 (these ROC
curves were determined using LOO). These classifications’ respective
AUCs (area under the ROC curve) were 96.5%, 84.6%, and 75.9%.

Subgrouping of MCI participants and follow-up MMSE scores

In order to further investigate the patterns of brain atrophy in
the MCI participants, the classifier built from the AD and CN
groups was applied to MCI participants. As described in Materials
ght, group comparison results on GM, WM, and CSF are shown (GM, WM
for the t-statistic. Images are displayed in radiological convention.
:



Fig. 3. Voxel-based analysis of group difference between CN and MCI. From left to right, group comparison results on GM, WM, and CSF are shown
(GM: CNNMCI, pb0.05, FDR-corrected; CSF: MCINCN, pb0.05, FDR-corrected; WM: CNNMCI, pb0.001, uncorrected). The color-maps indicate the
scale for the t-statistic. Images are displayed in radiological convention.
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and methods, this classifier provides SPS that is positive for AD-
like structure and negative for CN-like structure. Fig. 6 shows the
distribution of the SPSs of all MCI participants, further indicating
that the majority of the MCI participants displayed AD-like
structural profiles. MCI participants were further divided into the
ones that had positive SPS (AD-like patterns) and the ones that had
negative SPS (CN-like patterns). We refer to these two groups as
MCI_AD (57 MCI participants) and MCI_CN (31 MCI partici-
pants), respectively. These two subgroups were then compared via
voxel-based analysis of their RAVENS maps. Statistically
significant regional volumetric differences are shown in Fig. 7.

Fig. 8 shows the group differences between MCI_AD and CN
participants via voxel-based statistical analysis. It is worth noting
that the group differences in WM RAVENS maps were even
stronger than group differences between AD and CN participants.
Fig. 4. Voxel-based analysis of group difference between MCI and AD. Left colu
without correction of multiple comparisons (MCINAD, pb0.001, uncorrected). A
found only in GM RAVENS maps, as shown in right column. No significant group
for the t-statistic. Images are displayed in radiological convention.
Fig. 9 shows the group differences between MCI_CN and AD
participants via voxel-based statistical analysis. The group
differences between MCI_CN and AD participants are similar with
those between CN and MCI_AD. Almost no significant group
differences were found between MCI_CN and CN participants via
voxel-based statistical analysis: only a small region in the medial
orbitofrontal cortex passed the p=0.05 threshold, after FDR
correction for multiple comparisons. Similarly, no group differ-
ences between MCI_AD and AD participants reached significance,
after FDR correction.

SPS and rate of MMSE change

As discussed in Materials and methods, rates of change of the
MMSE scores were calculated separately for the two subgroups
mn shows GM comparisons, and middle column shows WM comparisons,
fter FDR correction (MCINAD, pb0.05), significant group differences are
difference was found on CSF comparisons. The color-maps indicate the scale



Fig. 5. ROC curves showing the overall classification performance in MRI-based classification of AD from CN, MCI from CN, and AD from MCI. Their
respective AUCs (area under the ROC curve) are 0.965, 0.846, and 0.759.
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identified by the pattern classification: the MCI_CN (n=16) and
MCI_AD (n=22) subgroups. The rate of MMSE score annual
decrease of the former group was significantly smaller than that of
the latter group with a p value of 0.028. The average rate of MMSE
score annual decrease (mean±S.D.) was −0.30±3.13 for the
former group and −2.31±3.07 for the latter group. The correlation
coefficient between the relationship of the SPS and the rate of
Fig. 6. Histograms of the MRI-based classification scores for MCI subjects obtained
of 88 MCI subjects display positive scores, i.e. their MRI scans indicate that they
MMSE change was −0.39 (p=0.0155). The distributions of the
scores during baseline and follow-ups are shown in Fig. 10, and a
regression plot in Fig. 11.

In Materials and methods, we discussed the categorization of
the MCI cohort into progressors and nonprogressors: MCI_PR and
MCI_NPR, via thresholding their rates of MMSE change at various
thresholds. The classification results, after leave-one-out cross-
via applying the classifiers built on AD and CN participants. Fifty-seven out
possess the structural pattern characteristic of AD.



Fig. 7. Voxel-based analysis of group differences between MCI_CN and MCI_AD. From left to right, group comparison results on GM, WM, and CSF are shown
(GM, WM: MCI_CNNMCI_AD, CSF: MCI_ADNMCI_CN, pb0.05, corrected). The color-maps indicate the scale for the t-statistic. Images are displayed in
radiological convention.
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validation, which were obtained from these two subgroups are
shown in Fig. 12, for different values of the threshold on MMSE
rate of change. These results indicate that maximal separation
between MCI_PR and MCI_NPR is obtained for a threshold close to
−1, which is in agreement with our expectations. The classification
rate obtained at that threshold was 87% and the area under the
curve was 0.86.

Discussions and conclusion

This study utilized computational neuroanatomic methods to
quantify cross-sectional patterns of brain atrophy in a relatively
large sample of cognitively normal elderly individuals, and in
patients with MCI and AD. Spatially complex spatial patterns of
brain atrophy were measured, and were found to be consistent with
known patterns of AD pathology from histological studies. MCI
patients had significant temporal lobe atrophy, especially in the
hippocampus, superior, inferior temporal gyrus, and uncus, as well
Fig. 8. Voxel-based analysis of group difference between CN and MCI_AD. From le
WM: CNNMCI_AD, CSF: MCI_ADNCN, pb0.05, corrected). The color-maps
convention.
as medial GM atrophy, especially in the posterior cingulate and
adjacent precuneous, and the medial aspect of the uncus.
Additional GM atrophy was measured between MCI and AD
patients, particularly in the hippocampus, the entorhinal cortex, and
the middle and inferior temporal gyrus. The pattern of atrophy also
included the WM surrounding the hippocampus, and the ventricles,
albeit at much lower significance, compared to GM atrophy.

The complexity of this pattern of atrophy suggests that perhaps
more sophisticated methods for measuring structural brain changes
in MCI and AD can be helpful for diagnosis and prognosis of the
disease, compared to the most common approach that has been
taken up to date in the neuroimaging literature (Kaye et al., 1997;
Convit et al., 2000; Killiany et al., 2000; Dickerson et al., 2001;
Chetelat et al., 2002), namely to examine volumes of a small
number of structures typically of the hippocampus and the
entorhinal cortex. This is further bolstered by histopathological
studies (Braak et al., 1998) that have investigated the pattern of
deposition of β-amyloid plaques and tau-pathology during the
ft to right, group comparison results on GM, WM, and CSF are shown (GM,
indicate the scale for the t-statistic. Images are displayed in radiological



Fig. 9. Voxel-based analysis of group difference between MCI_CN and AD. From left to right, group comparison results on GM, WM, and CSF are shown (GM,
WM: MCI_CNNAD, CSF: ADNMCI_CN, pb0.05, corrected). The color-maps indicate the scale for the t-statistic. Images are displayed in radiological
convention.
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progression of AD, as well as with studies of magnetization
transfer that indicated a more than expected widespread distribu-
tion of brain pathology (Van der Flier et al., 2002). The results of
the current study also demonstrated that sole measurements of the
hippocampus and the entorhinal cortex are not sufficient for
separating the three groups from each other, not even AD from CN,
with clinically adequate sensitivity and specificity, since hippo-
campal and entorhinal cortex measurements were highly over-
lapping between MCI and AD or CN (Fig. 1). Overlap was also
observed between AD and CN.

Perhaps the most exciting finding of the current study is that the
MCI subgroup identified by the classifier as AD-like showed a
markedly faster rate of subsequent MMSE decline, whereas the
group that had similar SPS to CN showed minor MMSE decline.
Fig. 10. The distributions of the MMSE scores durin
Related was the converse finding, namely that MCI individuals
whose MMSE scores decreased relatively more rapidly were
relatively well distinguishable from the ones that show no decline
or relatively small decline similar to that of CN individuals. This
finding indicates that the SPS score determined through pattern
analysis and classification has predictive clinical value, which
would render it a significant biomarker for early AD stages and for
individuals that are good candidates for treatment. Importantly, the
SPS scores were derived using a single cross-sectional MRI scan,
and not from longitudinal scans, which renders them more
practically feasible from a logistical as well as from a financial
point of view.

One of the main conclusions of this study is that two thirds of
the MCI patients of this cohort are closer to AD than they are to
g baseline and follow-ups of MCI subgroups.



Fig. 11. Regression plot of the rates of MMSE change and the SPS scores at
baseline.
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cognitively normal individuals. Although previous MRI-based
studies of MCI patients have demonstrated brain atrophy mainly in
medial temporal lobe structures (Convit et al., 1997; Jack et al.,
1999; Jack et al., 2000; Xu et al., 2000; De Santi et al., 2001; Du
et al., 2001; Grundman et al., 2002; Chetelat, 2003; Karas et al.,
2004; Pennanen et al., 2005; Bozzali et al., 2006; Saykin et al.,
2006; Whitwell et al., 2007), the present study finds that brain
atrophy in this cohort is already quite extensive and involves
superior, middle, and inferior temporal gyri, the insula, the
Fig. 12. Classification rates and areas under the ROC curve obtained by subgroupin
on their rates of MMSE change within a year. Optimal classification rate of 0.87=
progressors as the MCI patients that display rates of change of MMSE score b−1/y
rate of decline. The red curve is a histogram of the rate of MMSE change, the blue
within parentheses are the correct classification rates and the AUCs.
posterior cingulate and adjacent precuneous, the uncus, and the
peri-hippocampal WM, mainly in the MCI_AD subgroup. Two
factors might have contributed to this finding. First, the ADNI MCI
population was selected so that an adequate number of converters
would be expected within 3 years, so that the study would be
adequately powered. Although our findings certainly agree with
this clinically based selection of patients, Fig. 1 suggests that the
volumes of the hippocampus and entorhinal cortex of the MCI
patients were highly overlapping with both CN and AD; the cross-
validated classification results obtained from these ROI measure-
ments also showed significant group overlap. Therefore, patient
selection does not fully explain our finding. It is likely that the
identification of more widespread and complex patterns of brain
atrophy in our study is partly due to the fact that a high-
dimensional template warping mechanism was used to determine
the RAVENS maps and to capture spatial patterns of brain atrophy.
This image warping algorithm has been previously found to
achieve very accurate inter-individual registration, which is of
fundamental importance for measuring subtle patterns of brain
atrophy across individuals.

The similarity of a subgroup of the MCI group to AD was
further supported by the complementary analysis using high-
dimensional pattern classification to determine the optimal group
separation. This analysis showed that the structural phenotypic
scores of two thirds of the MCI group were more similar to those of
AD patients. Relatively recent studies using the PIB compound
have also shown a relatively widespread accumulation of amyloid
plaques in many MCI patients(Kemppainen et al., 2007). These
findings further support that AD pathology might already be at
quite advanced stages by the time cognitive decline becomes
g MCI patients into progressors and nonprogressors, according to a threshold
87% (AUC 0.86) was obtained for a threshold around −1, i.e. if one defines
ear. This is in agreement with the fact that even CN individuals display some
stars are individual MCI patients, and the numbers before and after commas
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clinically detectable, at least for a subgroup of the MCI population
that is hypothesized to have significant AD pathology. Subsequent
follow-up will determine whether this hypothesis is true; however,
the MMSE decline in this subgroup is a significant indicator that
these patients are likely to convert to AD soon. The ability of
pattern classification to serve as a biomarker for such a group
would be very important.

The finding that the majority of MCI patients seem to have
AD-like structural profiles also suggests that more emphasis should
be placed on studying CN groups. Although current clinical trials
of potential treatments, including ADNI, focus primarily on MCI
groups, since MCI patients convert to AD at rates of approximately
15% annually, from a diagnostic perspective it would undoubtedly
be beneficial to study cognitively normal populations that have less
advanced AD pathology. By virtue of its ability to measure subtle
patterns of brain atrophy, the methodology adopted in our study
can potentially assist in identifying cognitively normal individuals
that display patterns of atrophy that render them likely to be in a
very early preclinical AD stage. Earlier analysis using the same
methodology in a longitudinal study of normal aging demonstrated
that high-dimensional pattern analysis and classification can iden-
tify abnormal patterns of brain trophy before clinically detectable
cognitive decline (Davatzikos et al., 2006).

The finding of reduced WM volumes between MCI and CN is
interesting and merits further research. The pattern of WM atrophy
was bilateral, although more pronounced in the right hemisphere,
and extended into the region adjacent to the entorhinal cortex as
well as into the superior and middle temporal gyri. Dense
connections existing between the hippocampus and the posterior
cingulate, which coupled with the early changes that have been
reported in the posterior cingulate (Chetelat, 2003; Chetelat et al.,
2003), might imply that changes in WM might provide additional
markers of disease progression, something that has traditionally not
attracted much attention in the AD literature. A growing recent
literature using diffusion tensor imaging further supports the
importance of examining white matter changes in AD (Bozzali
et al., 2002; Moseley, 2002; Fellgiebel et al., 2004; Choi et al.,
2005; Fellgiebel et al., 2005, 2006; Medina et al., 2006; Naggara
et al., 2006; Ray et al., 2006; Huang and Auchus, 2007), albeit the
majority of these studies have been restricted to measuring
quantities such as fractional anisotropy and diffusivity, and
therefore have not differentiated between brain atrophy and other
tissue changes that can potentially have vascular underpinnings
(for example, both fractional anisotropy and diffusivity are known
to be lower in leukoareosis). More sophisticated types of ana-
lysis of diffusion tensor images (Khurd et al., 2006; Verma and
Davatzikos, 2006) can potentially elucidate alterations of WM
connectivity in AD.

Our findings suggest a bilateral pattern of atrophy in MCI,
although the right hemisphere displayed higher magnitude and
more widespread extent of atrophy of both GM and WM. This
potential asymmetry was, however, balanced with disease
progression, since the pattern of atrophy in AD was fairly
symmetric. The interpretation of such asymmetries is known to
be problematic, since the true reason might be bias in patient
selection rather than differences of the underlying AD pathology.
In particular, the right-more-than-left pattern that we observed is
consistent with the hypothesis that patients that report to the clinic
with memory complaints are more likely to report when they have
language problems. Accordingly, one might expect that a smaller
degree of atrophy on the left hemisphere would meet the threshold
for a patient’s reporting to the clinic, compared to atrophy of the
right hemisphere that would be likely to present less obvious
cognitive deficits. Put differently, a relatively larger degree of
right-hemisphere atrophy, compared to left, is likely to be tolerated
before the patient reports to the clinic. Our pattern of asymmetry is
the reverse of what another similar study reported (Karas et al.,
2004). Differences between the two studies, especially with respect
to the template warping method and the patient populations, render
the two studies not directly comparable. The relatively higher
sensitivity of our methodology in detecting GM and WM atrophy
(e.g. values of the t-statistic in Figs. 2 and 3) further speaks to the
methodological differences between the two studies.

The comparison between the MCI_CN and MCI_AD subgroups
leads to two very interesting conclusions. First, the former group is
almost entirely overlapping with CN, and the latter overlaps almost
entirely with the AD group. Although this result yet remains to be
tested in independent patient populations, it does highlight the
potential of the high-dimensional pattern classification method to
detect subgroups in MCI patients, which would be of great
importance clinically. Second, the main WM differences between
these two subgroups were in periventicular tissue. This finding
could imply decrease of WM via Wallerian degeneration; however,
testing this hypothesis would require different imaging protocols,
and especially diffusion tensor imaging, which is not available in
ADNI. It is interesting to note, however, that the regions identified
by this analysis are exactly where the bulk of leukoareosis tends to
occur in elderly individuals with or without other significant
vascular disease, and which tend to appear as gray rather than
white matter in T1-weighted MR images. The resolution and
contrast of the MRI sequences used in this study do not allow us to
investigate this issue. This finding raises the important issue of the
potential role of vascular pathology in AD, which has also received
attention in the literature (Snowdon et al., 1997; Schneider et al.,
2003; Prins et al., 2004; Schneider et al., 2004; Kim et al., 1998;
Lin et al., 1999; Bennett et al., 2000; Shi et al., 2000; Nihashi et al.,
2001). Our results suggest that one of the significant differences
between the MCI_CN and MCI_AD subgroups is likely to be
periventricular leukoareosis, and further support the need to
examine vascular pathology in tandem with brain atrophy.
Regardless of whether or not AD is pathophysiologically related
to vascular disease, its clinical manifestation almost certainly
depends on the concurrent presence of vascular disease (Schneider
et al., 2004).

A relatively new technique, namely high-dimensional pattern
classification, was used to analyze patterns of spatial distribution of
brain tissue and integrate them into an abnormality score, which
represents how similar the entire structural profile of an individual
fits that of AD patients or of cognitively normal individuals. This
approach has been recently used in several neuroimaging studies
and has shown great potential as a diagnostic tool on individuals
(Lao et al., 2004; Davatzikos et al., 2005a,b; Fan et al., 2007;
Davatzikos et al., in press). It is a significant deviation from either
ROI-based or voxel-based techniques, which examine the brain
region-by-region independently, without integrating the entire
pattern of atrophy (or functional activity; Davatzikos et al.,
2005a,b) throughout all brain regions together. This is very im-
portant, because although many regions generally display signi-
ficant group differences, they also significantly overlap between
groups (see Fig. 1), and therefore do not offer sufficient sensitivity
and specificity for diagnostic purposes. The methodology used
herein achieves high group separation via nonlinear multivariate
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classification using support vector machines, and it has been
shown to possess great diagnostic value in neurodegenerative and
neuropsychiatric disorders, and likely beyond (Zhang et al., 2002;
Davatzikos et al., 2005a,b; LaConte et al., 2005; Mourao-Miranda
et al., 2005).

In summary, this study used advanced quantitative pattern
analysis and classification methodologies and determined spatially
complex patterns of brain atrophy in MCI and AD patients. The
MCI group was highly variable, as anticipated, but its majority
overlapped with AD patients, with regard to brain atrophy.
Analysis of the follow-up scans of this longitudinal study revealed
that the group identified by pattern classification as being similar to
the AD group did indeed present significantly higher rates of
MMSE decline. Further follow-up will help reveal whether
subsequent conversion of the MCI participants to AD will be in
agreement with the two structural profiles observed in this study,
i.e. whether the MCI subgroup that overlaps with AD will indeed
progress to AD within the 3-year follow-up period of ADNI.
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